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Fuzzifying Allen’s Temporal Interval Relations
Steven Schockaert, Martine De Cock, and Etienne E. Kerre

Abstract—When the time span of an event is imprecise, it can
be represented by a fuzzy set, called a fuzzy time interval. In this
paper, we propose a framework to represent, compute, and reason
about temporal relationships between such events. Since our model
is based on fuzzy orderings of time points, it is not only suitable to
express precise relationships between imprecise events (“Roosevelt
died before the beginning of the Cold War”) but also imprecise re-
lationships (“Roosevelt died just before the beginning of the Cold
War”). We show that, unlike previous models, our model is a gener-
alization that preserves many of the properties of the 13 relations
Allen introduced for crisp time intervals. Furthermore, we show
how our model can be used for efficient fuzzy temporal reasoning
by means of a transitivity table. Finally, we illustrate its use in the
context of question answering systems.

Index Terms—Fuzzy ordering, fuzzy relation, interval algebra,
question answering, temporal reasoning.

I. INTRODUCTION

TEMPORAL representation and reasoning is an important
facet in the design of many intelligent systems. For ex-

ample, question answering systems require at least some basic
temporal representation scheme to answer simple temporal
questions such as “When was Franklin Roosevelt born?” To
enable question answering systems to answer more complex
temporal questions, considerable effort has been made to extract
temporal information from natural language texts (e.g., [1],
[12], [15], [16], and [23]–[25]) and to analyze complex tem-
poral questions (e.g., [22]). However, temporal relationships
expressed in natural language are often vague, e.g., “Roosevelt
died just before the end of the Second World War.” Moreover,
historic time periods are more often than not characterized
by a gradual beginning and/or ending [17]. The traditional
temporal reasoning formalisms need to be extended to cope
with this kind of vagueness, which is inherently associated with
real–world temporal information.

One of those well-known formalisms is Allen’s temporal in-
terval algebra [3]. Allen defined a set of 13 qualitative relations
that may hold between two compact intervals and

. Table I shows how Allen expressed these precise
relations by means of constraints on the boundaries of the crisp
intervals involved. In this paper, we extend Allen’s work to a
more general formalism that can handle precise as well as im-
precise relationships between crisp and fuzzy intervals.
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TABLE I
ALLEN’S TEMPORAL INTERVAL RELATIONS BETWEEN INTERVALS

� � �� � � � AND � � �� � � �

Our first concern is generalizing the definitions of the qualita-
tive relations of Table I to make them applicable to fuzzy inter-
vals as opposed to only crisp intervals. Indeed, when an event is
characterized by a gradual beginning and/or ending, it is natural
to represent the corresponding time span as a fuzzy set, which
we call a fuzzy (time) interval. Depending on the intended ap-
plication, this fuzzy set can either be defined by an expert (e.g.,
[17] and [20]) or constructed automatically (e.g., [27]). Since
we cannot refer to the gradual beginning and endings of a fuzzy
interval in the same way we refer to the boundaries of a crisp
interval, we first have to provide a way to express that, for in-
stance, the beginning of a fuzzy interval is before the begin-
ning of a fuzzy interval (as needed in the definition of the
qualitative relation “overlaps”). We suggest to do this by mea-
suring the highest extent to which there exists a time point in
that occurs before all the time points in . In general, in our ap-
proach, qualitative relations between fuzzy intervals are defined
in terms of the ordering of the gradual beginning and endings of
these intervals, which in turn are defined in terms of the ordering
of the time points belonging to these intervals. The resulting
qualitative relations between the fuzzy intervals are gradual, i.e.,
they may hold to some degree only; hence the name fuzzy tem-
poral interval relations. When and are crisp, our approach
reduces to Allen’s work.

Our second goal is providing a means to model imprecise
relations to be able to express that, for instance, event took
place just before event , or that occurred long after . Al-
though these kind of relations are not considered in Allen’s orig-
inal model, in our approach we arrive at them quite elegantly by
using imprecise orderings of time points in the model sketched
above. The resulting approach is applicable again to both crisp
and fuzzy time intervals.

This paper is organized as follows. In the next section, we re-
view related work concerning fuzzifications of Allen’s interval
relations. In Section III, we show how imprecise relationships
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between time points can be modelled by using fuzzy orderings.
In Section IV, we rely on relatedness measures for fuzzy sets to
lift these imprecise orderings of time points into relationships
between fuzzy time intervals [29]. This results in a generaliza-
tion of Allen’s 13 interval relations that are also applicable when
the time intervals are fuzzy. Furthermore, this framework is
powerful enough to additionally express imprecise relationships
that are not considered in Allen’s original model. We show that
our model preserves many important properties regarding (ir)re-
flexivity, (a)symmetry, and transitivity, and that our generalized
definitions remain mutual exclusive and exhaustive. Moreover,
in Section V, we discuss fuzzy temporal reasoning and intro-
duce a transitivity table to derive new temporal knowledge in
an efficient way. This transitivity table is a generalization of the
transitivity table that was introduced by Freksa in [13], which
shows that no transitivity properties are lost in our generalized
framework. Section VI illustrates the usefulness of our approach
within the context of question answering systems. Sections III
and IV contain many new results that require a mathematical
proof. To preserve the continuity of the main text, we present
these proofs in the Appendixes.

II. RELATED WORK

Most fuzzifications of Allen’s interval algebra deal with un-
certainty rather than imprecision (e.g., [4], [9]–[11], and [14]).
These approaches assume that—in the face of complete knowl-
edge—the time span of an event can always be modelled as a
crisp (time) interval. For example, Dubois and Prade [9] rep-
resent a time interval as a pair of possibility distributions that
define the possible values of the endpoints of the crisp interval.
Using possibility theory, the possibility and necessity of each of
the interval relations can then be calculated. This approach also
allows to model imprecise relations such as “ was long before

.” In a different approach adopted by Dutta [11], time inter-
vals are abstract entities and the possibility, for each interval
and each event , that occurs in is defined. In [4], uncertainty
regarding the temporal relations that hold between crisp time in-
tervals is considered in order to reason with statements such as
“the possibility that holds is 0.6.” Guesgen et al. [14]
proposed a similar approach based on the notion of a conceptual
neighborhood, a notion originally introduced in [13].

Temporal information is expressed with respect to a certain
level of granularity (e.g., years, days, seconds, etc.), which parti-
tions the timeline. In [7], it is argued that the time span of events
often skews to the cells of this partitioning. Therefore, a rough
set approach is adopted in which the time span of an event is rep-
resented by a lower approximation consisting of 1) the cells of
the partitioning that are fully included in this time span and 2) an
upper approximation consisting of the cells of the partitioning
that at least partially overlap with this time span. The temporal
interval relations are redefined, using a directed variant of the re-
gion connection calculus (RCC) [21], to cope with these “rough
time intervals.”

In [6], it is suggested to represent time intervals as fuzzy
sets, but no definitions of the interval relations are given.
Most relevant to our approach are definitely the work of

Nagypál and Motik [17] and of Ohlbach [20], which are
concerned with generalizing Allen’s interval relations when
the time span of an event is represented as a fuzzy set. How-
ever, these approaches suffer from a number of important
disadvantages. For example, the relation “equals” defined in
[17] is not reflexive in general; for a continuous fuzzy set
in , ,
while, taking into account Allen’s intended meaning
of these relations, one would expect and

. Moreover, imprecise
temporal relations cannot be expressed. An approach similar to
[17] was suggested in [8] within the context of ranking fuzzy
numbers. Ohlbach [20] suggests an alternative approach that
allows one to model imprecise temporal relations such as “
more or less finishes ” based on measures of overlap for
fuzzy sets. However, this approach cannot handle imprecise
temporal relations such as “ was long before .” Moreover,
as pointed out in [20], many of the (ir)reflexivity, (a)symmetry,
and transitivity properties of the original temporal relations
are lost in this approach; hence it is not suitable for temporal
reasoning. Imprecise temporal relations are also considered
in [10]; however, only crisp intervals are considered in this
approach.

III. FUZZY ORDERING OF TIME POINTS

A. Definitions

The fuzzy temporal interval relations that we will define in
the next section are based on orderings between the time points
contained in the intervals. Throughout this paper, we represent
time points as real numbers. A real number can, for example, be
interpreted as the number of milliseconds since January 1, 1970,
or the number of years since 1900. Because we want to model
imprecise temporal relations, we need a way to express for two
time points and that is long before , that is just before
, and that and occur at approximately the same time.

Let and . Then the extent to which is
long before (with respect to ) can be expressed by the
fuzzy relation in defined as [9]

if
if
otherwise

(1)

for all and in . The partial mapping is depicted
in Fig. 1(a). The parameters and define how the concept
“long before” should be interpreted. For a time point to be long
before to degree one, the time gap with should be at least

. If the time gap with is smaller than , the time point is
long before to degree zero. In between there is a gradual tran-
sition. Although it seems natural to impose that is positive, for
technical reasons we only require . Moreover, as pointed
out by Ohlbach [20], in some applications it may be desirable
for some to express that is (long) before to a (small)
strictly positive degree, which is only possible in our approach if
we allow negative values of . is a generalization of the
crisp strict ordering relation . Indeed, imposing ,
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Fig. 1. Fuzzy ordering of time points. (a) � ��� ��: fuzzy set of time points long before �. (b) � ��� ��: fuzzy set of time points before or at approximately
the same time as �. (c) � ��� ��: fuzzy set of time points at approximately the same time as �. (d) � ��� ��: fuzzy set of time points just before �. (e)
Overview of fuzzy relations between time points � and �.

we obtain if and other-
wise.

The fuzzy relation in is defined as [9]

(2)

for all and in . represents the extent to which
is not “long before” (with respect to ), in other words,

the extent to which is before or at approximately the same time
as . It holds that

if
if
otherwise

(3)

Moreover, if and other-

wise, i.e., is a generalization of the crisp ordering .
As will become clear in Section IV, we only need the fuzzy

relations and to model imprecise temporal interval
relations. The degree to which occurs at approxi-
mately the same time as , and the degree to which
is just before , can easily be expressed using and ,
i.e.,

(4)

(5)

An overview of the four fuzzy relations between time points is
given in Fig. 1.

Example 1: Assume that a time point corresponds to the
number of years since January 1900. Using and ,
we obtain, for example

expressing that 20 occurred long before 23 to a low degree, that
20 occurred just before 23 to a high degree, etc. On the other
hand, we also have

In other words, although 23 is not considered to be long before
or just before 20, it is still considered to be before or at approx-
imately the same time as 20 to a high degree.

B. Properties

The fuzzy relations and behave as can be in-
tuitively expected from orderings. First recall that, in general, a
fuzzy relation in a universe is called, for an arbitrary trian-
gular norm :

1) reflexive iff for all in ;
2) irreflexive iff for all in ;
3) symmetric iff for all and in ;
4) –asymmetric iff for all and

in ;
5) –transitive iff for all

, and in .



520 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 16, NO. 2, APRIL 2008

Furthermore, if a fuzzy relation in is reflexive, sym-
metric, and –transitive, is called a fuzzy –equivalence
relation. A fuzzy – –ordering relation [8] is then defined as
a –transitive fuzzy relation in , which is:

1) -reflexive, i.e., for all and in
;

2) - -antisymmetric, i.e.,
for all and in

Transitivity of the fuzzy orderings is of particular importance
for temporal reasoning. Many interesting properties regarding
the transitivity of and follow from an important
characterization of their composition. Recall that, in general, the
sup– composition of two fuzzy relations and in is the
fuzzy relation in defined for each and in by

(6)

Throughout this paper, we use to denote the Łukasiewicz
–norm, i.e.,

for all and in [0, 1].
Proposition 1 (Composition): Let and

; it holds that

(7)

(8)

(9)

(10)

where and .
For , we obtain the following interesting corollary.
Corollary 1: For and , , and in

(11)

(12)

(13)

(14)

Equation (11) expresses that is –transitive while (12)

says that is –transitive. Furthermore, (13) and (14)

express a mixed transitivity between and , gener-
alizing that from and , it follows that , and
similarly, that from and , it follows that .
Corollary 1 and hence Proposition 1 do not hold for an arbitrary
triangular norm in general.

For , is reflexive and is irreflexive. The
following corollary results from the obvious reflexivity and
symmetry of and Corollary 1.

Corollary 2: is a fuzzy –equivalence relation.
From (4), we obtain the – –antisymmetry of .

Combined with the reflexivity of , we establish yet an-
other interesting corollary.

TABLE II
RELATION BETWEEN THE BOUNDARIES OF THE CRISP INTERVALS �� � � �

AND �� � � �, AND THE FUZZY INTERVALS � AND �

Corollary 3: is a fuzzy – –ordering.
The following proposition is a generalization of the tri-

chotomy law, stating that if is long before , and cannot
be at approximately the same time and cannot be before .

Proposition 2: For and , it holds that

(15)

for all and in .

IV. FUZZY TEMPORAL INTERVAL RELATIONS

A. Ordering of Vague Boundaries

We define a fuzzy time period as a normalized fuzzy set
in , which is interpreted as the time span of some event. Re-
call that a fuzzy set is called normalized if there exists a
in such that . Furthermore, a fuzzy (time) interval

is a convex and upper semicontinuous normalized fuzzy set
in , i.e., for each in ]0,1], the –level set
is a closed interval.1 If and are fuzzy time intervals, the
boundaries of and can be gradual. Hence, we cannot refer
to these boundaries in the same way we refer to the boundaries
of crisp intervals to define temporal relations in the manner of
Table I. Nonetheless, we can use the fuzzy orderings between
time points defined in the previous section. One possibility to
measure, for example, the extent to which the beginning of a
fuzzy time interval is long before the beginning of a fuzzy
time interval is to look at the highest extent to which there
exists a time point in that occurs long before all time points
in . Similarly, for instance, to express the degree to which the
beginning of is before or at the same time as the ending of ,
we can use the highest extent to which there exists a time point
in that occurs before or at the same time as some time point
in . This can be accomplished by using relatedness measures,
as shown in Table II. For an arbitrary fuzzy relation in , and

1All the properties of the fuzzy temporal interval relations in this paper are
valid for arbitrary fuzzy time periods. Hence from a syntactic point of view, nei-
ther convexity nor upper semicontinuity is required. However, from a semantic
point of view, it seems natural to consider only temporal interval relations be-
tween fuzzy time intervals since the convexity condition is needed to adequately
generalize the notion of an interval, while the upper semicontinuity condition
reflects the fact that time intervals are closed intervals.
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TABLE III
TRANSITIVITY TABLE FOR RELATEDNESS MEASURES

fuzzy sets and in , these relatedness measures are defined
as [28]

(16)

(17)

(18)

(19)

(20)

(21)

where is a left-continuous –norm and its residual impli-
cator, defined for all and in [0, 1] as

These definitions are closely related to the sup– composition
of fuzzy relations and to the subproduct and superproduct of
fuzzy relations [5]. In the remainder of this paper, we will
mainly use the Łukasiewicz –norm and its residual impli-
cator in the definition of the relatedness measures, i.e.,

for all and in [0, 1]. When and , we omit
the subscripts of , , and in (16)–(21). In the remainder of
this section, let and be fuzzy relations in , and , , and

fuzzy sets in . We recall the following three propositions
from [28].

Proposition 3 [28]: If and are normalized, then

(22)

(23)

(24)

(25)

(26)

(27)

Proposition 4 (Reflexivity) [28]: If is reflexive, then

(28)

(29)

Proposition 5 (Irreflexivity) [28]: If is irreflexive, then

(30)

(31)

Substituting fuzzy time intervals for and and either
or for in the propositions above shows that our ap-
proach for modeling relations between the vague boundaries of
fuzzy time intervals is sound. For example, from (23) and (27),
we derive

Hence the degree to which the beginning of is long before the
end of is at least as high as the degree to which the beginning
of is long before the beginning of . Furthermore, if
to ensure the reflexivity of , from (28) and (29), we derive

Hence the ending of is less than or approximately equal to the
ending of to degree one and the beginning of is less than
or approximately equal to the beginning of to degree one. In
the same way, from (30) and (31), we obtain

In other words, the ending of is not “long before” the ending
of and the beginning of is not “long before” the beginning
of . Finally, as a result of the following important proposition,
the transitivity behavior of the ordering of the interval bound-
aries is preserved.

Proposition 6 (Transitivity): For normalized fuzzy sets , ,
and , the relatedness measures exhibit the transitivity proper-
ties displayed in Table III. Let be the entry in this
table on the row corresponding with the relatedness measure
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and the column corresponding with the relatedness measure
. Then it holds that .

For example, the entry on the sixth line and the third column
of Table III should be read as

Using Proposition 1, we obtain as a special case

which generalizes the statement that if the beginning of is
before the beginning of and the ending of is before the
ending of , then the beginning of is before the ending of .
This correspondence with the transitivity behavior of the crisp
relations and also reveals why, for some entries in Table III,
we have no information at all, i.e., the entries that equal one.
For example, from the fact that the beginning of is before
the ending of , and the fact that the beginning of is before
the ending of , we can conclude nothing about the relative
positioning of and . As a consequence, the entry on the first
row, first column equals one.

All results from this section can easily be generalized to an
arbitrary universe and an arbitrary left-continuous –norm. Our
commitment to the Łukasiewicz –norm is mainly motivated by
the rich interactions of with and , as exempli-
fied by Propositions 1 and 2.

B. Relations Between Fuzzy Time Periods

Using the expressions in Table II, it is straightforward to gen-
eralize the temporal interval relations from Table I: using the
minimum to generalize the conjunctions in Table I, we obtain
the generalized definitions in Table IV. Due to the idempotency
of the minimum, using the minimum to combine the different
constraints on the vague boundaries in this way seems much
more natural than, for example, using the Łukasiewicz –norm.
Moreover, it turns out that this choice of the minimum is a pre-
requisite for some desirable properties of the fuzzy temporal in-
terval relations, which will be introduced further on in this sec-
tion.

Note that the definitions in Table IV coincide with Allen’s
original definitions if each and equals zero and and

are crisp sets. Quantitative information ( happened at least
four years after ) and semiquantitative information ( hap-
pened long after ) can be expressed using values or dif-
ferent from zero. The (semi)quantitative information we may
have at our disposal about the relative positioning of the begin-
nings of and is independent of the semiquantitative infor-
mation we may have at our disposal concerning the endings of

and ; hence, the fuzzy relation involves two dif-
ferent sets of parameters and . On
the other hand, the two relatedness measures in the definition
of together express that the ending of is approx-
imately equal to the beginning of ; hence the same set of pa-
rameters is used twice. Notice how the notion

TABLE IV
FUZZY TEMPORAL INTERVAL RELATIONS. � � �� � � � � � � � � � � �,
� � �� � � � � � � �, � � �� � � �, � � �� � � �, AND � � �� � � �

Fig. 2. Fuzzy time intervals � and �.

of approximate equality in the definition of is ex-
pressed entirely analogous to the definition of in (4) by
making use of .

Example 2: For the fuzzy time intervals and displayed in
Fig. 2, it holds that and . In
other words, is considered to be fully before , as the overlap
between and is too low for to hold to a degree
higher than zero. However, it is clear that also more or less
meets . By increasing the value of , we apply a stricter def-
inition of “long before” and a more tolerant definition of “ap-
proximately at the same time.” Hence the degree to which is
long before decreases and the degree to which more or less
meets increases. We obtain

When is sufficiently large, the end of is not considered to be
long before the beginning of anymore, hence

. A similar observation can be made when increasing the value
of

Our generalization preserves several interesting properties of
Allen’s original algebra, many of which are lost in other ap-
proaches. First, Allen’s temporal interval relations are jointly
exhaustive, which means that between any two time intervals, at
least one of the temporal relations holds. For fuzzy time periods
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we obtain a generalization, using the Łukasiewicz –conorm
defined for all and in [0, 1], as

Proposition 7 (Exhaustivity): Let and be fuzzy time pe-
riods. It holds that

(32)

For nondegenerate time intervals, i.e., time intervals
with , Allen’s relations are mutually exclusive. This
means that at most one of the temporal relations holds between
two given nondegenerate time intervals, and hence precisely
one. We call a fuzzy time period nondegenerate with respect
to iff , i.e., if the beginning of is
long before the end of . Again, we obtain a generalization of
this property.

Proposition 8 (Mutual Exclusiveness): Let and be non-
degenerate fuzzy time periods with respect to (2 ). More-
over, let and both be one of the 13 fuzzy temporal rela-
tions defined in Table IV, and

. If , it holds that

(33)

The condition that and should be nondegenerate fuzzy time
periods is only needed when or is or . This is
not different from the traditional crisp case. For example, using
Allen’s definitions, we have for two crisp intervals
and that holds. However, if , we
also have that holds. Likewise, if , we have that

holds.
Finally, we obtain generalizations of the (a)symmetry and the

(ir)reflexivity properties of Allen’s relations.
Proposition 9 [(A)symmetry]: Let , , and be de-

fined as in Table IV, and let , ( ).
The relations , , , , , , , ,

, and are –asymmetric, i.e., let be one of the
aforementioned fuzzy relations and let and be fuzzy time
periods. It holds that

(34)

Furthermore, it holds that

(35)

If and are nondegenerate fuzzy time periods with respect
to , it holds that

(36)

(37)

Proposition 10 [(Ir)reflexivity]: Let , , and be de-
fined as in Table IV, and let , ( ). The
relations , , , , , , , , ,
and are irreflexive, i.e., let be one of the aforementioned
fuzzy relations and let and be fuzzy time periods. It holds
that

(38)

Furthermore, it holds that

(39)

If is a nondegenerate fuzzy time period with respect to
, it holds that

(40)

In Propositions 7–10, fuzzy relations of the form and

are used to express the concepts “long before” and “more
or less before.” In principle, more general classes of fuzzy rela-
tions could be used to this end, i.e., fuzzy relations that cannot
be written as either or . However, as can easily
be seen from their proof in Appendix III, these propositions re-
main valid for more general classes of fuzzy relations, provided
some weak assumptions are satisfied. For example, let and

be arbitrary fuzzy relations in that are used to express the
concepts “long before” and “more or less before,” respectively.
Then, Proposition 7 remains valid if for
all and in . For Propositions 8–10 to hold, we also have
to assume, among others, that , , , etc., are
irreflexive.

However, using fuzzy relations of the form and
to express fuzzy orderings of time points has a number of impor-
tant advantages. As shown in Section III-B, these fuzzy relations
satisfy many desirable properties, and their sup– composi-
tion can be conveniently characterized (Proposition 1), which
is important for reasoning with fuzzy temporal relations. More-
over, in [30], we have shown that this choice allows one to eval-
uate the fuzzy temporal interval relations in an efficient way for
piecewise linear fuzzy intervals, an important prerequisite for
most real-world applications.

V. FUZZY TEMPORAL REASONING

When , , and are
crisp intervals, using Allen’s original definitions, we can de-
duce, for example, from and that
holds. Indeed by , we have , and by ,
we have ; from and , we conclude

, or in other words, . When , , and are
fuzzy time intervals, we would like to make similar deductions,
even when the interval relations are imprecise (i.e., or

). To this end, we use the Łukasiewicz –norm to gen-
eralize such deductions. For example, let , , and be fuzzy
time intervals, and . Furthermore
let , , , and

as before. We obtain the equation shown at the
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bottom of the page. Using Table III, i.e., the transitivity table
for relatedness measures and (10), we obtain

where . In
particular, when and ,
we have ,
stating how the degree to which is during and the degree to
which more or less meets can be used to compute a lower
bound for the degree to which is long before . This is a
generalization of the statement that if occurs during and
meets , then occurs before .

As another example, in the crisp case from and
, one can conclude that holds, under the as-

sumption that is a nondegenerate interval [3]. In our general-
ized approach, we obtain for fuzzy time intervals , , and

Assuming that is nondegenerate with respect to , i.e.,
that , and using Table III and (9), we obtain

and thus, using Table III and (10)

This deduction process can easily be automated, which is what
we have done to obtain Table V. In the crisp case, the tem-
poral relation that results from composing two temporal rela-
tions is not always fully determined. For example, for crisp in-
tervals , , and such that and , we have
that , , or may hold since we can de-
duce only that and . Freksa [13] defined
a set of coarser temporal relations, which he calls conceptual
neighborhoods, and provided a transitivity table that is deduc-
tively closed for Allen’s original relations as well as the con-
ceptual neighborhoods. For example, or or

is equivalent to . The definitions of the rele-
vant conceptual neighborhoods are shown in Table VI. Gener-
alizing these definitions to cope with fuzzy time intervals and
imprecise temporal relations is straightforward, using again the
relatedness measures from Table II. To obtain Table V, we have
assumed that , , and are nondegenerate fuzzy time inter-
vals with respect to (0 ,0). One can verify that when , , and
are crisp intervals, Table V corresponds to Freksa’s transitivity
table. As a consequence, by restricting Table V to the first 13
rows and the first 13 columns, we obtain a transitivity table that
is a sound generalization of Allen’s transitivity table. Note that
while Table III serves to derive knowledge about relationships
between the gradual boundaries of fuzzy intervals, Table V is
used to reason about the relationships between fuzzy intervals
themselves.

Table V cannot be used for reasoning with (semi) quantitative
temporal information, i.e., when some or . It is
not feasible to construct a more general transitivity table, which
would permit this and which is still deductively closed. Instead,
when or , the transitivity table for relatedness
measures can be used to make deductions. For example, it holds
that

where is defined as in Table IV and

This result can only be written as for a given if

which does not hold for arbitrary and .
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TABLE V
TRANSITIVITY TABLE FOR FUZZY TEMPORAL INTERVAL RELATIONS (� � ��� ��, � � ��� �� �� ��, � � ����� �� �� �� ���. LET � BE

THE ENTRY IN THIS TABLE ON THE ROW CORRESPONDING WITH THE FUZZY TEMPORAL RELATION � AND THE COLUMN CORRESPONDING WITH

THE FUZZY TEMPORAL RELATION � . FOR NONDEGENERATE (WITH RESPECT TO �����) FUZZY TIME PERIODS �, �, AND � , IT HOLDS THAT

� �� ������ � ������ � � �����

Note that a lot of interesting theoretical results related to tem-
poral reasoning with crisp intervals have already been estab-
lished (e.g., [18], [31], and [32]). Among others, these results
pertain to constructing maximal subalgebras of Allen’s original
algebra for which reasoning with a composition table is suffi-
cient to detect inconsistencies (i.e., satisfiability) and to find all
consequences of an initial set of assumptions (i.e., complete-

ness). Generalizing these results, however, is clearly outside the
scope of this paper.

VI. APPLICATION TO QUESTION ANSWERING

The list question “Who was president of the USA during the
Cold War?” is problematic for a traditional question and an-
swer (QA)–system, since there is no generally accepted starting
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TABLE VI
FREKSA’S CONCEPTUAL NEIGHBORHOODS [13]

date and ending date for the Cold War. Assume, however, that,
while searching the Web, our QA–system has discovered the
following relevant statements.

• Truman took office when President Roosevelt died just be-
fore the end of World War II.2

• The Cold War began after World War II.3

• The Cold War began at the close of World War II and ended
with the dissolution of the Soviet Union.4

• President (…) George H. W. Bush declared a U.S.-Soviet
strategic partnership at the summit of July 1991, decisively
marking the end of the Cold War.5

For ease of notation, we use the following abbreviations.

FDR Denotes the life span of Franklin Roosevelt.

TRP Denotes the time span of the presidency of Harry
Truman.

WW2 Denotes the time span of the second World War.

CW Denotes the time span of the Cold War.

BSP Denotes the time span of the presidency of
George H. W. Bush.

2http://www.juntosociety.com/uspresidents/hstruman.html.
3http://www.globalsecurity.org/military/ops/cold_war.htm.
4http://www.videofact.com/coldwar.htm.
5http://www.absoluteastronomy.com/encyclopedia/H/Hi/His-

tory_of_the_Soviet_Union_(1985–1991).htm.

Dates are treated as real numbers that express the number of
years since January 1, 1900. As temporal information extrac-
tion is not the focus of this paper, we assume that we have the
following interpretation of the above statements at our disposal:

FDR,TRP

FDR,WW2

FDR,WW2

WW2,CW

WW2,CW

CW,BSP

Note that means that two time points within
a period of 3.6 months are considered approximately equal to
degree one, and two time points within a period of 9.6 months
are approximately equal to a degree that is higher than zero.
Using Table III and (8), we obtain the equation shown at the
bottom of the page. Furthermore, using Table III and (9), we
have

CW FDR FDR,TRP

CW FDR

FDR TRP TRP FDR

CW FDR FDR TRP

CW TRP

CW TRP

and since we can assume that TRP is nondegenerate with re-
spect to (0.6, 0.5) (i.e., Truman was president for more than 13.2
months), we obtain

CW TRP TRP TRP

CW TRP

CW TRP

CW,TRP

FDR,WW2 WW2,CW

FDR WW2 WW2 FDR

WW2 CW CW WW2

WW2 FDR CW WW2

CW FDR

CW FDR
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Fig. 3. Modelling the time span of the Cold War.

From Table V, we immediately have

TRP,FDR FDR,WW2

TRP,WW2

TRP,WW2 WW2,CW

TRP,CW

Hence we have that when Harry Truman became president,
the Cold War had not yet started, i.e., (TRP,CW),
while it had already started when his presidency ended, i.e.,

(CW,TRP). In other words, Truman was the first to be
president of the United States during the Cold War. Moreover,

(CW,BSP) means that George H. W. Bush was the last
to be president of the United States during the Cold War. To
answer the question under consideration, we only have to de-
termine who was president of the United States between Harry
Truman and George H. W. Bush, which is a fairly simple task.

Another solution would be to construct a fuzzy time interval
CW that represents the time span of the Cold War. Such a fuzzy
time interval is illustrated in Fig. 3. For each president of
the United States, (CW,X) expresses the degree to which

has been president during the Cold War. A clear advantage
of this method is that we can differentiate between presidents
that were definitely president during the Cold War (e.g., Richard
Nixon, 1969–1974) and presidents whose presidency was more
or less during the Cold War (e.g., Harry Truman, 1945–1953).
A disadvantage of this method is that the automatic construction
of the fuzzy time interval CW is more time-consuming. More-
over, in some situations, we may lack sufficient information to
construct the fuzzy time interval corresponding to a given im-
precise event.

In practice, both approaches may be combined, yielding a
system that simply evaluates which fuzzy temporal relations
hold if a suitable fuzzy time span can be constructed and ap-
plies fuzzy temporal reasoning otherwise. We refer to [2] and
[26] for more details on the architecture and implementation of
such a system. Currently, only qualitative temporal relations are
considered in this system. This is due to the fact that interpreting
a natural language statement such as “ began just before the
end of ,” i.e., providing suitable values for the parameters
and , is far from trivial.

VII. CONCLUSIONS

We have suggested a general approach to represent and com-
pute precise and imprecise temporal relations between crisp as
well as fuzzy time intervals. To this end, we have used fuzzy

orderings of time points, which are lifted into interval relations
through the use of relatedness measures. We have shown that
both the fuzzy orderings of time points and the relatedness mea-
sures satisfy many desirable properties regarding (ir)reflexivity,
(a)symmetry, and transitivity. When considering only precise
relations between crisp time intervals, our approach coincides
with Allen’s temporal interval algebra. However, even in the
most general model, i.e., for imprecise relations between fuzzy
intervals, unlike in previous approaches, generalizations of all
the important properties of Allen’s interval relations are valid,
in particular those related to exhaustivity, mutual exclusiveness,
(ir)reflexivity, and (a)symmetry. Moreover, a sound generaliza-
tion of Freksa’s transitivity table was given that can be used for
fuzzy temporal reasoning with qualitative temporal information.
In general, fuzzy temporal reasoning can easily be automated
by using the transitivity table for relatedness measures which
we have introduced in this paper. Finally, we have provided an
example that illustrates how fuzzy temporal reasoning could be
useful for (temporal) question answering systems, as these sys-
tems have to deal with both imprecise events (e.g., the Cold War)
and imprecise temporal relations expressed in natural language
(e.g., Roosevelt died just before the end of the Second World
War).

APPENDIX I
PROOF OF PROPERTIES CONCERNING THE FUZZY ORDERINGS

AND

Throughout the appendixes, let denote a left-continuous
–norm (i.e., a –norm with left-continuous partial mappings);

then and its residual implicator satisfy the residuation prin-
ciple, i.e., for all , , and in [0, 1], it holds that

(41)

Moreover, it can be shown that for all , , , and in [0, 1], it
holds that (see, e.g., [19])

(42)

(43)

(44)

(45)

(46)

If is an arbitrary index set and if and are
families in [0, 1], it holds that

(47)

(48)

(49)

(50)

It is easy to see that for an arbitrary –norm , it holds that

(51)
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Lemma 1: Let and ; it holds that

(52)

(53)

(54)

(55)

for all and in .
Lemma 2: Let and ; it holds that

(56)

for all and in .
Proof: If , then the proof is trivial; therefore as-

sume that . For and for
, (56) holds trivially, since in the former case the

left-hand side of (56) equals zero, while in the latter case, the
right-hand side equals one. Hence we only need to consider the
case where and ; it holds
that

Since , we obtain

which completes the proof.
Lemma 3 (Transitivity): Let and ; it

holds that

(57)

(58)

(59)

(60)

for all , , and in .
Proof: As an example, we prove (57); the proof of

(58)–(60) is analogous. When or , (57)
obviously holds since the left-hand side equals zero. When

, we have

Because the first partial mappings of are decreasing,
and by using the assumption , we obtain

and by (52)

and by Lemma 2

In the same way, we can prove (57) when .
Finally, assume and
(hence and ). For , we obtain

Since and , we have

For , the proof is entirely analogous.
Proof of Proposition 1 (Composition): We prove (7) as an

example; the proof of (8)–(10) is analogous. By (57), we already
have

for arbitrary and in . Conversely, for , we have

Taking into account that the first partial mappings of
are decreasing and right-continuous, we obtain

and by (52)

For , the proof is entirely analogous.
Proof of Proposition 2: For or ,

(15) trivially holds. Hence, we can assume that
, and thus, using the assumptions and
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, and
(hence and ), we obtain

since . Finally, we have

which concludes the proof since .

APPENDIX II
PROOF OF THE TRANSITIVITY TABLE FOR RELATEDNESS

MEASURES

In this Appendix, we provide a proof for the inequalities in
Table III. Throughout this Appendix, let and be fuzzy re-
lations in a universe , and let , , and be normalized
fuzzy sets in . Recall that the inverse fuzzy relation of
a fuzzy relation in is the fuzzy relation in defined by

for all and in .
Lemma 4 (Duality):

(61)

(62)

(63)

(64)

Proof: Equalities (63) and (64) follow immediately from
the definitions of the relatedness measures; (61) follows from
(47), while (62) follows from (45) and (48).

We will now prove the correctness of the inequalities in
Table III. First, note that each inequality corresponding to an
entry that equals one trivially holds. A first series of inequalities
to prove is

(65)

(66)

(67)

(68)

(69)

(70)

where .

Proof: By using (47), we obtain

By (43), we have

and by (49) and (42)

and finally by (47) and (50)

Hence we have shown that (65) holds; (66) and (67) follow from
(65) by using Proposition 3. Furthermore, by using duality, (68)
follows from (65) [using (61), (62), and (64)], (69) follows from
(67) [using (62)–(64)], and (70) follows from (66) [using (62)
and (64)].

Next, we prove the following series of inequalities:

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)

where .
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Proof: The proof of (71) is analogous to the proof of (65);
(72)–(76) follow from (71) by using Proposition 3. Furthermore,
by using duality, (77) follows from (72) [using (61) and (64)]
and (78) follows from (71) [using (61) and (63)].

A third series of inequalities to prove is

(79)

(80)

(81)

(82)

(83)

where .
Proof: The proof of (81) is analogous to the proof of (65);

(79) and (80) follow from (81) by using Proposition 3. Further-
more, by using duality, (82) follows from (81) [using (62) and
(63)] and (83) follows from (80) [using (62) and (64)].

Next, we prove the following series of inequalities:

(84)

(85)

(86)

(87)

(88)

(89)

where .
Proof: The proof of (85) is analogous to the proof of

(65); the proof of (86) is entirely analogous. Furthermore, (84)
follows from (85) by using Proposition 3. Finally, by duality,
(87) follows from (84) [using (64)], (88) follows from (86)
[using (63) and (64)], and (89) follows from (85) [using (63)
and (64)].

Finally, we still need to prove the following inequalities:

(90)

(91)

where .
Proof: By (49), we have

By (42) and (47), we obtain

and by (43) and (47)

which completes the proof of (90). By duality, (91) follows from
(90) [using (63)].

APPENDIX III
PROOF OF PROPERTIES OF THE FUZZY TEMPORAL INTERVAL

RELATIONS

In this Appendix, we will only use the Łukasiewicz –norm
and implicator. Hence we will omit the subscripts in , ,
and .

Lemma 5: Let be a fuzzy set in , a fuzzy set in ,
and a fuzzy relation from to . It holds that

(92)

(93)

(94)

Proof: As an example, we prove (92). We obtain

Lemma 6: For all , and in [0, 1], it holds that

(95)
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Proof: We have

On the other hand, we have

which proves (95) since .
Lemma 7: For all , , and in [0, 1], it holds that

(96)

Proof: We obtain

Proof of Proposition 7 (Exhaustivity): We have

By twice applying (95), we obtain that

for all , , , and in [0, 1]. Substituting

we obtain

and by (96)

and by (93) and (2)

since for all in [0, 1]. We can show analo-
gously that

which completes the proof.
Note that the conceptual neighborhoods and are not

included in Table VI, as they are not relevant to the transitivity
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table for temporal interval relations. Here the (generalized) con-
ceptual neighborhoods are merely used as a shorthand.

Proof of Proposition 8 (Mutual Exclusiveness): To prove
the mutual exclusiveness of the fuzzy temporal relations, 78
cases have to be considered. Here, as an example, we provide
a proof for two of these cases. First, we show that

Using Table III, we obtain

where . By (10), we obtain

which equals zero by Proposition 5, since for , is
an irreflexive fuzzy relation.

As a second example, we show that

Since is nondegenerate with respect to (2 ), we obtain
using Table III and (9)

We obtain using Table III and (10)

which equals zero by Proposition 5, since for , is
an irreflexive fuzzy relation.

Proof of Proposition 9 ((A)symmetry): As an example, we
show that

By using Table III and (7), we obtain

which equals zero by Proposition 5, since for , is
an irreflexive fuzzy relation.

As another example, we show that

if and are nondegenerate fuzzy time periods with respect
to . We obtain

Since is nondegenerate, we have by Table III and (10) that

Analogously, since is nondegenerate, we obtain

Hence we already have

and by Table III and (7)

which equals zero by Proposition 5, since for , is
an irreflexive fuzzy relation.

Proof of Proposition 10 [(Ir)reflexivity]: We will only
prove that when is a nondegenerate fuzzy
time period with respect to , as the other equalities
follow straightforwardly from Propositions 4 and 5. We obtain
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Since is nondegenerate with respect to , we have by
Table III and (9)

which equals zero by Proposition 5.
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