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Abstract

Traditional approaches to temporal reasoning assume that time periods and time
spans of events can be accurately represented as intervals. Real–world time pe-
riods and events, on the other hand, are often characterized by vague temporal
boundaries, requiring appropriate generalizations of existing formalisms. This paper
presents a framework for reasoning about qualitative and metric temporal relations
between vague time periods. In particular, we show how several interesting prob-
lems, like consistency and entailment checking, can be reduced to reasoning tasks
in existing temporal reasoning frameworks. We furthermore demonstrate that all
reasoning tasks of interest are NP–complete, which reveals that adding vagueness
to temporal reasoning does not increase its computational complexity. To support
efficient reasoning, a large tractable subfragment is identified, among others, gener-
alizing the well–known ORD Horn subfragment of the Interval Algebra (extended
with metric constraints).
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1 Introduction

Time plays a key role in many application domains, ranging from schedul-
ing and planning [2,17,19] to natural language understanding [29,34], multi–
document summarization [6], question answering [39,32,22] and dynamic mul-
timedia presentation [3,10,18]. Starting from Allen’s seminal work on quali-
tative interval relations (e.g., A happened during B, A overlaps with B; [1]),
increasingly more expressive formalisms have been proposed to reason about
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time, among others allowing to specify metric constraints between two time
points (e.g., p happened 4 time units before q; [12]), to combine qualitative
and metric information [25,31], to specify constraints on the (relative) dura-
tion of events [35], and to specify arbitrary disjunctions of temporal constraints
[23,27]. Most reasoning tasks of interest in these formalisms are NP–complete.
To cope with this, a lot of research efforts have been directed towards identify-
ing subfragments of the various calculi in which reasoning becomes tractable
[13,14,28,37], as well as towards deriving efficient solution strategies for NP–
complete reasoning problems [8,36,45,46].

Research, however, has largely focused on reasoning about time periods, and
time spans of events, which can be accurately represented as an interval. In
contrast, many real–world events and time periods are characterized by an
inherently gradual or ill–defined beginning and ending. Typical examples are
large–scale historical events like the Russian Revolution, the Great Depression,
the Second World War, the Cold War, and the Dotcom Bubble, or historical
time periods like the Middle Ages, the Renaissance, the Age of Enlighten-
ment, and the Industrial Revolution, but also small-scale events like sleeping
and being born. Moreover, in natural language, vague temporal markers are
frequently found to convey underspecified temporal information: early sum-
mer, during his childhood, in the evening, etc. Note that the vagueness of these
events and time periods is fundamentally different from the uncertainty that
exists among historicians about, for example, the time period during which
the Mona Lisa was painted.

A formal definition of the notion of an event is difficult to provide. Clearly,
an event is something that happens at a particular time and a particular
place (e.g., World War II); it can have parts (e.g., the Battle of the Bulge),
it can belong to a certain category (e.g., Military Conflict) and it can have
consequences (e.g., the Cold War) [47]. We will, however, abstract away from
any particular formalization of events, and focus on their temporal dimension
only. As such, we will conceptually make no difference between time periods
and events. Vague time periods are naturally represented as fuzzy sets [48]. A
vague time period is then represented as a mapping A from the real line R to
the unit interval [0, 1]. For a time instant t (t ∈ R), A(t) expresses to what
extent t belongs to the time period A. When A is a crisp time period, for all t in
R, A(t) is either 0 (perfect non-membership) or 1 (perfect membership). When
A is a vague time period, on the other hand, A will typically be gradually
increasing over an interval [t1, t2] and gradually decreasing over an interval
[t3, t4], where A(t) = 1 for t in [t2, t3] and A(t) = 0 for t < t1 and t > t4. As
an example, consider Picasso’s Blue, Rose and Cubist periods. Regarding the
definition of the Rose period, for example, we find 2

2 http://pablo-picasso.paintings.name/rose-period/, accessed May 21,
2007
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Fig. 1. Fuzzy sets defining the vague time span of Picasso’s Blue, Rose, and Cubist
periods.

So 1904 is a transitional year and belongs neither truly to the blue period,
nor to the rose period.

Similarly, the ending of the Rose period, as well as the beginning and ending of
the Cubist period are inherently gradual. Figure 1 depicts a possible definition
of Picasso’s Rose period, as well as the ending of his Blue period and the
beginning of his Cubist period. These definitions reflect the gradual transition
to the Rose period during 1904, as well as Picasso’s experiments with new
styles from 1906 and especially from 1907, eventually leading to his Cubist
period. Clearly, the definition of a fuzzy set representing a vague time period
is to some extent subjective. In fact, there is no real reason why January 1,
1907 should belong to the Rose period to degree 0.8 and not to degree 0.75
or 0.85. What is most important is the qualitative ordering the membership
degrees impose, e.g., June 1, 1907 is more compatible with the Rose period
than the Cubist period; March 15, 1904 is less compatible with the Rose period
than June 1, 1907, etc.

Applications based on classical temporal reasoning algorithms, like temporal
question answering or multi–document summarization, fail to work correctly
when the events or time periods involved are vague. For example, when ex-
tracting information about the life and work of Picasso from web documents,
inconsistencies quickly arise:

(1) Bread and Fruit Dish on a Table (1909) marks the beginning of Picasso’s
“Analytical” Cubism . . . 3

(2) The first stage of Picasso’s cubism is known as analytical cubism. It began
in 1908 and ended in 1912, . . . 4

3 http://www.abcgallery.com/P/picasso/picassobio.html, accessed May 21,
2007
4 http://www.pokemonultimate.wanadoo.co.uk/picasso.html, accessed May
21, 2007
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(3) The ‘Demoiselles d’Avignon’ of 1907 mark the beginning of his [Picasso’s]
Cubist period in which he exceeded the classical form. 5

The solution to this problem is not to discard the least reliable sources un-
til the resulting knowledge base is consistent, but to acknowledge that some
of the temporal relations expressed in the sentences above are only true to
some extent: the beginning of Picasso’s Analytical Cubism coincides with the
beginning of cubism to some degree λ1, Picasso’s Cubist period began with
“Demoiselles d’Avignon” in 1907 to some degree λ2, Picasso’s Analytical Cu-
bism began in 1908 to some degree λ3, Picasso’s Analytical Cubism began with
“Bread and Fruit Dish on a Table” in 1909 to some degree λ4. The aim of this
paper is to derive algorithms for reasoning about such fuzzy temporal infor-
mation, e.g., which values of λ1, λ2, λ3, λ4 result in a consistent interpretation
of the sentences above? What conclusions can we establish given a consistent
set of (fuzzy) assertions about (vague) time periods? Our primary objective is
to obtain a temporal reasoning framework that is, among others, suitable for
natural language applications like multi–document summarization or question
answering when some of the time periods and events involved are vague.

The structure of this paper is as follows. In the next section, we review related
work on fuzzy temporal information processing, while Section 3 familiarizes
the reader with some important preliminaries from fuzzy set theory and tem-
poral reasoning. In Section 4, we introduce our framework for representing
fuzzy temporal information. Next, in Section 5, we introduce an algorithm to
check the consistency of a set of assertions about fuzzy time periods. The com-
putational complexity of this problem is investigated in Section 6. Section 7
discusses how new information can be derived from given information. Finally,
Section 8 presents some concluding remarks and directions for future work.

2 Related work

Although processing fuzzy temporal information is well studied in literature,
research has tended to focus on modelling vague temporal information about
crisp events (e.g., Picasso died in the early 1970s), rather than on modelling
temporal information about vague events. For example, in [16] possibility the-
ory is employed to represent vague dates (e.g., early summer), and vague
temporal constraints (e.g., A happened about three months before B). The
underlying assumption is that all events have crisp, albeit unknown, temporal
boundaries; only our knowledge about these crisp boundaries is vague. Based
on this possibilistic approach, [5] introduced the notion of a fuzzy temporal

5 http://www.kettererkunst.com/details-e.php?obnr=410702527&anummer=
315, accessed May 21, 2007
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constraint network. In this framework, temporal information is represented
as fuzzy temporal constraints, i.e., fuzzy restrictions on the possible distances
between time points. Sound and complete reasoning procedures were provided
in [30]. A generalization in which disjunctions of fuzzy temporal constraints
can be expressed has been introduced in [8].

A different line of research has focused on fuzzy extensions of classical calculi
for temporal reasoning to encode preferences. For example, [26] discusses a
generalization of Temporal Constraint Satisfaction Problems (TCSP) in which
a preference value is attached to each temporal constraint. When a given TCSP
is inconsistent, the preference values are used to determine which constraints
should be ignored. Similarly, [4] introduces the framework IAfuz in which
preference values are attached to atomic Allen relations. A relation in IAfuz

can thus be regarded as a fuzzy set of atomic Allen relations. Interestingly, all
main reasoning tasks are shown to be NP–complete and a maximal tractable
subfragment is identified. Fuzzy sets of atomic Allen relations have also been
considered in [21], where the adequate modelling of temporal expressions in
natural language was the main motivation, rather than encoding preferences.

The need for formalisms dealing with vague events and time periods has been
pointed out in various contexts, including semantic web reasoning [9], his-
torical databases and ontologies [33], document retrieval [24], and temporal
question answering [40]. Nevertheless, none of the approaches mentioned above
is suitable to represent temporal information about events whose boundaries
are inherently gradual or ill–defined. Inspired by measures for comparing and
ranking fuzzy numbers [7,15], some definitions of fuzzy temporal relations be-
tween vague events have already been proposed [33,38,42]. A key problem in
generalizing temporal relations to cope with fuzzy time spans is that tradition-
ally, temporal relations have been defined as constraints on boundary points
of intervals. Because such well–defined boundary points are absent in fuzzy
time intervals, alternative ways of looking at temporal relations are required.

Nagypál and Motik [33] start from the observation that several sets of time
points can be associated with each interval A = [a−, a+], viz. the semi–
intervals A<− =] − ∞, a−[, A≤− =] − ∞, a−], A<+ =] − ∞, a+[, A≤+ =
] − ∞, a+], A>− =]a−, +∞[, A≥− = [a−, +∞[, A>+ =]a+, +∞[ and A≥+ =
[a+, +∞[. Qualitative constraints on the boundary points of two intervals
A = [a−, a+] and B = [b−, b+] can be translated into set operations on the
corresponding semi–intervals. For example, m(A, B) holds iff a+ = b−, which
can be expressed as A>+ ∩ B<− = ∅ ∧ A<+ ∩ B>− = ∅. To define qualita-
tive temporal relations between fuzzy time spans, Nagypál and Motik define
A<−, A≤−, A<+, A≤+, A>−, A≥−, A>+, A≥+ for a fuzzy set A as:

A>−(p) = sup
q<p

A(q) A≤−(p) = 1 − A>−(p)

5
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A≥−(p) = sup
q≤p

A(q) A<−(p) = 1 − A≥−(p)

A<+(p) = sup
q>p

A(q) A≥+(p) = 1 − A<+(p)

A≤+(p) = sup
q≥p

A(q) A>+(p) = 1 − A≤+(p)

The degree to which m(A, B) is satisfied, for instance, is then defined as

m(A, B) = min(1 − sup
p∈R

min(A>+(p), B<−(p)), 1 − sup
p∈R

min(A<+(p), B>−(p)))

= min(inf
p∈R

max(1 − A>+(p), 1 − B<−(p)),

inf
p∈R

max(1 − A<+(p), 1 − B>−(p)))

= min(inf
p∈R

max(A≤+(p), B≥−(p)), inf
p∈R

max(A≥+(p), B≤−(p)))

Although this approach has a certain appeal, the resulting fuzzy temporal
relations do not always behave intuitively. For example, for crisp intervals the
equals relation is reflexive, while starts, finishes and during are irreflexive.
Taking into account this intended meaning, we would expect that for fuzzy
time spans e(A, A) = 1 and s(A, A) = f(A, A) = d(A, A) = 0, or at least,
that e(A, A) > max(s(A, A), f(A, A), d(A, A)). However, using the definitions
proposed by Nagypál and Motik, if A is a continuous fuzzy set, it holds that
e(A, A) = s(A, A) = f(A, A) = d(A, A) = 0.5. The reason for this anomaly lies
in the definition of the fuzzy sets A<−, A≤−, . . . , A≥+. While these definitions
do correspond to their intended meaning when A is a crisp interval, for a
continuous fuzzy set A, we have the undesirable property that A>− = A≥−,
A<− = A≤−, A>+ = A≥+ and A<+ = A≤+.

In [38], a fundamentally different approach to modelling temporal relations
between fuzzy time spans is taken. The starting point is that even for crisp
intervals A and B, relations like before can hold to some degree. For example,
if A = [0, 50] and B = [45, 100], we may intuitively think of A as being before
B, instead of overlapping with B, because most of A is before the beginning
of B. In [38], the degree to which b(A, B) holds is therefore defined based
on which fraction of A is before the beginning of B, where A and B may be
crisp or fuzzy time spans. When temporal relations are defined in this way,
we (deliberately) lose the original meaning of Allen’s relations. Although such
definitions may definitely be useful in many domains (e.g., querying temporal
databases), they are not suitable as a basis for fuzzy temporal reasoning.

To the best of our knowledge, however, the issue of temporal reasoning about
fuzzy time intervals has only been addressed in [40], where a sound but incom-
plete algorithm is introduced to find consequences of a given, restricted set of
assertions. Finally, note that this paper is an extended and generalized version
of [43]. In addition to providing a more detailed discussion, as well as proofs
of all results, we generalize the results from [43], where a purely qualitative

6
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approach was adopted, by also considering metric constraints.

3 Preliminaries

3.1 Fuzzy temporal relations

A fuzzy set [48] in a universe U is defined as a mapping A from U to [0, 1],
representing a vague concept. For u in U , A(u) expresses the degree to which
u is compatible with the concept A and is called the membership degree of
u in A. In particular, we will use fuzzy sets in R to represent time spans of
vague events. For clarity, traditional sets are sometimes called crisp sets in the
context of fuzzy set theory. If A and B are fuzzy sets in the same universe U ,
A is called a fuzzy subset of B, written A ⊆ B, iff A(u) ≤ B(u) for all u in U .

For every α in ]0, 1], we let Aα denote the crisp subset of U defined by

Aα = {u|u ∈ U ∧ A(u) ≥ α}

Aα is called the α–level set of the fuzzy set A. In particular, A1 is the set of
elements from U that are fully compatible with the vague concept modelled
by A. If A1 �= ∅, the fuzzy set A is called normalised and elements from A1

are called modal values of A. The support supp(A) of A is the (crisp) set of
elements from U which belong to A to a strictly positive degree:

supp(A) = {u|u ∈ U ∧ A(u) > 0}

A fuzzy set A in R is called convex if for every α in ]0, 1], the set Aα is convex
(i.e., a singleton or an interval).

To adequately generalize the notion of a time interval, a closed and bounded
interval of real numbers, some natural restrictions on the α–level sets are
typically imposed.
Definition 1 (Fuzzy time interval). [42] A fuzzy (time) interval is a nor-
malised fuzzy set in R with a bounded support, such that for every α in ]0, 1],
Aα is a closed interval.

For example, the fuzzy sets corresponding to Picasso’s Blue, Rose and Cubist
period from Figure 1 are fuzzy time intervals. The condition that all α–level
sets of a fuzzy time span be intervals implies that any fuzzy time interval
is a convex fuzzy set in R. Hence, fuzzy time intervals always consist of a
monotonically increasing part, followed by a monotonically decreasing part.
As a consequence, the fuzzy set depicted in Figure 2(a) is a fuzzy time span,
whereas the fuzzy set from 2(b) is not, because of the decreasing part between

7
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(a) (b)

(c) (d)

Fig. 2. The fuzzy sets of real numbers displayed in (a) and (c) are fuzzy time spans,
whereas those in (b) and (d) are not.

a and b. By furthermore requiring that α–level sets be closed sets, we restrict
the kind of discontinuities allowed. For example, the fuzzy set from Figure
2(d) is not a fuzzy time interval, since its 0.4– and 0.7–level sets are half open
intervals. On the other hand, the fuzzy set shown in Figure 2(c) is a fuzzy
time interval. It can be shown that a bounded fuzzy set of real numbers is
a fuzzy time interval iff it is convex and upper semi–continuous. For a fuzzy
interval A and α ∈]0, 1], we let A−

α and A+
α denote the beginning and ending

of the interval Aα.

When the time spans of events are vague, also the temporal relations between
them are a matter of degree. Traditionally, temporal relations between time
intervals have been defined by means of constraints on the boundary points
of these intervals. Due to the gradual nature of fuzzy time spans, a different,
more general approach has to be adopted here. The definitions of our fuzzy
temporal relations are inspired by the fact that temporal relations between
time intervals can alternatively be specified using first-order expressions that
do not involve any boundary points. For example, for crisp intervals A =
[a−, a+] and B = [b−, b+], it is easy to see that (d ∈ R)

a− < b− − d ⇔ (∃p)(p ∈ A ∧ (∀q)(q ∈ B ⇒ p < q − d)) (1)

To define the degree to which the beginning of a fuzzy time interval A is more
than d time units before the beginning of B, written bb�d (A, B), we gener-
alize the right-hand side of (1) using fuzzy logic connectives. In fuzzy logic,
elements from the unit interval [0, 1] represent truth degrees. To generalize
logical conjunction to fuzzy logic, a wide class of [0, 1]2 − [0, 1] mappings,

8
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t-norm residual implicator

TM (x, y) = min(x, y) ITM
(x, y) =

{
1 if x ≤ y

y otherwise

TP (x, y) = x · y ITP
(x, y) =

{
1 if x ≤ y
y
x otherwise

TW (x, y) = max(0, x + y − 1) ITW
(x, y) = min(1, 1 − x + y)

Table 1
Commonly used t-norms and their residual implicators.

called t-norms, can be used. The only requirements are that the mapping T
being used is symmetric, associative, increasing, and satisfies the boundary
condition T (x, 1) = x for all x in [0, 1]. Logical implication can be generalized
using the residual implicator IT of a t-norm T , i.e. the [0, 1]2 − [0, 1] mapping
defined for x and y in [0, 1] as

IT (x, y) = sup{λ|λ ∈ [0, 1] ∧ T (x, λ) ≤ y}

Some commonly used t-norms are the minimum TM , the product TP and
the �Lukasiewicz t-norm TW . Their definitions and the corresponding residual
implicators are displayed in Table 1. Universal and existential quantification
can be generalized using the infimum and supremum respectively.

This leads to the following definition [42]:

bb�d (A, B) = sup
p∈R

T (A(p), inf
q∈R

IT (B(q), L�
d (p, q))) (2)

where L�
d (p, q) = 1 iff p < q − d and L�

d (x, y) = 0 otherwise. In the same
way, we can define the degree ee�d (A, B) to which the end of A is more than d
time units before the end of B, the degree be�d (A, B) to which the beginning
of A is more than d time units before the end of B and the degree eb�(A, B)
to which the end of A is more than d time units before the beginning of B as
[42]:

ee�d (A, B) = sup
q∈R

T (B(q), inf
p∈R

IT (A(p), L�
d (p, q))) (3)

be�d (A, B) = sup
p∈R

T (A(p), sup
q∈R

T (B(q), L�
d (p, q))) (4)

eb�d (A, B) = inf
p∈R

IT (A(p), inf
q∈R

IT (B(q), L�
d (p, q))) (5)

Finally, the degree bb�
d (A, B) to which the beginning of A is at most d time

units after the beginning of B is defined by

bb�
d (A, B) = 1 − bb�d (B, A) (6)

9
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Table 2
Characterization of the fuzzy temporal relations when A and B correspond to crisp
intervals [a−, a+] and [b−, b+].

Fuzzy Crisp Fuzzy Crisp

bb�d (A,B) a− < b− − d bb�
d (A,B) a− ≤ b− + d

ee�d (A,B) a+ < b+ − d ee�
d (A,B) a+ ≤ b+ + d

be�d (A,B) a− < b+ − d be�
d (A,B) a− ≤ b+ + d

eb�d (A,B) a+ < b− − d eb�
d (A,B) a+ ≤ b− + d

Fig. 3. Since the definition of the fuzzy time intervals B and C are similar, it is
desirable that |bb�(A,B) − bb�(A,C)| is small.

In the same way, we define ee�
d (A, B), be�

d (A, B) and eb�
d (A, B) as

ee�
d (A, B) = 1 − ee�d (B, A) (7)

be�
d (A, B) = 1 − eb�d (B, A) (8)

eb�
d (A, B) = 1 − be�d (B, A) (9)

For convenience, we will sometimes omit the subscript when d = 0 (e.g.,
bb�0 = bb�). In this case, (2)–(9) express qualitative relations between fuzzy
time intervals; e.g., ee�(A, B) is the degree to which the end of A is strictly
before the end of B, eb�(A, B) is the degree to which the end of A is before or
equal to the beginning of B. Note that it is the vagueness of the events that
gives rise to the vagueness of the temporal relations. If A and B correspond
to crisp intervals [a−, a+] and [b−, b+], the fuzzy temporal relations reduce to
classical temporal constraints. This is illustrated in Table 2.

There are several reasons why using the �Lukasiewicz t-norm TW in the defin-
itions (2)–(5) is advantageous over using, for example, TM or TP . First, it is
desirable that small changes in the definitions of the fuzzy time intervals A and
B result in small changes of the values of bb�d (A, B), ee�d (A, B), be�d (A, B)
and eb�d (A, B). This is particularly true in applications where fuzzy time in-
tervals are constructed automatically from, for example, web documents, as in
such applications, small variations in membership degrees may be due to noise
(e.g., incorrect information on web pages, errors introduced by the information
extraction technique that is used, etc.). Consider the fuzzy time intervals A,
B and C depicted in Figure 3. Because B and C are very similar, we would

10
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Fig. 4. The generalized transitivity rule (11) may be violated when TM or TP is
used.

like to have that the value of bb�(A, B) is close to the value of bb�(A, C).
Irrespective of the t-norm T being used, it holds that bb�(A, B) = 1, i.e., the
beginning of A is strictly before the beginning of B to degree 1. When using
TM , however, we have that

bb�(A, C) = sup
p∈R

TM(A(p), inf
q∈R

ITM
(C(q), L�(p, q)))

≤ sup
p∈R

TM(A(p), ITM
(C(c1), L

�(p, c1)))

where c1 is defined as in Figure 3. As for each p in R either A(p) = 0 or
L�(p, c1) = 0, we establish that bb�(A, C) = 0. In the same way, we can show
that bb�(A, C) = 0 when using TP . On the other hand, when T = TW , we can
show that

bb�(A, C) = sup
p∈R

TW (A(p), inf
q∈R

ITW
(C(q), L�(p, q)))

= TW (A(a2), ITW
(C(c1), L

�(a2, c1)))

= ITW
(0.1, 0)

= 0.9

Another advantage of the �Lukasiewicz t-norm is related to transitivity. To
ensure that the fuzzy temporal relations (2)–(9) display an intuitive behaviour,
it is desirable that they satisfy generalized transitivity rules like

T (bb�(A, B), bb�(B, C)) ≤ bb�(A, C) (10)

T (bb�(A, B), bb�(B, C)) ≤ bb�(A, C) (11)

expressing that the degree to which the beginning of A is (strictly) before the
beginning of C is at least as high as the degree to which both the beginning
of A is (strictly) before the beginning of B and the beginning of B is (strictly)
before the beginning of C. While it is possible to show that (10) holds for
any left-continuous t-norm (i.e., a t-norm whose partial mappings are left-
continuous, such as TM , TP and TW ), (11) may be violated when TM or TP is
used. For example, let A, B and C be defined as in Figure 4. Regardless of

11
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whether T is TM , TP or TW , it holds that

bb�(A, B) = bb�(B, C) = 0.5

bb�(A, C) = 1

This implies

TM(bb�(C, B), bb�(B, A))

= min(1 − bb�(B, C), 1 − bb�(A, B))

= 0.5

> bb�(C, A) = 0

violating (11). In the same way, we find

TP (bb�(C, B), bb�(B, A)) = 0.25 > bb�(C, A) = 0

As shown in [41], all generalized transitivity rules of interest are satisfied when
the �Lukasiewicz t-norm is used. Although we can use alternative definitions for
bb�

d , ee�
d , be�

d and eb�
d for which the generalized transitivity rules are satisfied

for any left-continuous t-norm, we would then lose the important property
that bb�d (A, B) = 1 − bb�

d (B, A), ee�d (A, B) = 1 − ee�
d (B, A), etc. We refer

to [41] for more details. Henceforth, we will always assume that T = TW . For
convenience, we will write IW instead of ITW

.

Finally, we show two characterizations which will be useful for solving the
satisfiability problem in Section 5.
Lemma 1. It holds that

bb�d (A, B) ≥ l ⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε, 1])(bb�d (Aλ, Bλ+ε−l)) (12)

bb�d (A, B) ≤ k ⇔ (∀λ ∈]k, 1])(bb�
d (Bλ−k, Aλ)) (13)

ee�d (A, B) ≥ l ⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε, 1])(ee�d (Aλ+ε−l, Bλ)) (14)

ee�d (A, B) ≤ k ⇔ (∀λ ∈]k, 1])(ee�
d (Bλ, Aλ−k)) (15)

be�d (A, B) ≥ l ⇔ (∀ε ∈]0, l[)(∃λ ∈ [l − ε, 1])(be�d (Aλ, B1−λ−ε+l)) (16)

be�d (A, B) ≤ k ⇔ (∀ε ∈]0, 1 − k[)(∀λ ∈ [k + ε, 1])(eb�
d (B1−λ+ε+k, Aλ)) (17)

eb�d (A, B) ≥ l ⇔ (∀ε ∈]0, l])(∀λ ∈ [1 − l + ε, 1])(eb�d (A1−λ+ε+1−l, Bλ)) (18)

eb�d (A, B) ≤ k ⇔ (∃λ ∈ [1 − k, 1])(be�
d (Bλ, A2−λ−k)) (19)

Proof. See Appendix A.1.

Lemma 2. Let A and B be normalised and convex fuzzy sets in R. Further-
more, let ma and mb be arbitrary modal values of A and B respectively. It

12
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holds that

bb�d (A, B) = sup
p+d<mb,p≤ma

TW (A(p), 1 − B(p + d)) (20)

ee�d (A, B) = sup
p−d>ma,p≥mb

TW (B(p), 1 − A(p − d)) (21)

Proof. See Appendix A.2.

3.2 Linear constraints

An atomic linear constraint over a set of variables X is an expression of the
form a1x1+a2x2+· · ·+anxn � b where a1, a2, . . . , an, b ∈ R, x1, x2, . . . , xn ∈ X,
and � is <,≤, >,≥, = or �=. If φ1, φ2, . . . , φm are atomic linear constraints over
X, φ1 ∨ φ2 ∨ · · · ∨ φm is called a linear constraint over X. If m > 1, the linear
constraint is called disjunctive. Furthermore, φ1 ∨ φ2 ∨ · · · ∨ φm is called a
Horn linear constraint if at least m − 1 of the disjuncts φi correspond to �=.
In particular, all atomic linear constraints are Horn, as well as, for example,
3x + 4y ≤ 6 ∨ x �= 8 ∨ y �= 7 ∨ x + 3y �= 12. On the other hand, a linear
constraint like 3x + 4y ≤ 6 ∨ x ≥ 8 is not Horn.

The framework of linear constraints subsumes most other frameworks for tem-
poral reasoning, including the Interval Algebra [1] and Temporal Constraint
Networks [12], but also, for example, approaches combining qualitative and
quantitative information [31] or expressing constraints on the duration of
events [35].

A P–interpretation I over X is a mapping that maps every variable x from
X to a real number. For convenience, I(x) will also we written as xI . An
atomic linear constraint a1x1 + a2x2 + · · · + anxn � b is satisfied by I iff
a1x

I
1 +a2x

I
2 + · · ·+anx

I
n � b. A disjunctive linear constraint φ1 ∨φ2 ∨ · · · ∨φm

is satisfied by I iff I satisfies at least one of the disjuncts φ1, φ2, . . . , φm. Let
Ψ be a set of linear constraints; I is called a P–model of Ψ iff I satisfies every
linear constraint in Ψ. If a P–model of Ψ exists, Ψ is called P–satisfiable. It has
been shown independently in [23] and [27] that checking the P–satisfiability
of a set of Horn linear constraints can be done in polynomial time.

4 Temporal relations between vague events

For A and B fuzzy time intervals, bb�d (A, B), bb�
d (A, B), ee�d (A, B), ee�

d (A, B),
be�d (A, B), be�

d (A, B), eb�d (A, B) and eb�
d (A, B) take values from [0, 1] (d ∈ R).

The reasoning tasks discussed in this paper are based on upper and lower

13
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bounds for these values when the definitions of the fuzzy time intervals A
and B are unknown. For example, knowing that x, y, and z are fuzzy time
intervals, is it possible that simultaneously bb�3 (x, y) ≥ 0.6, bb�4 (y, z) ≤ 0.5,
be�2 (y, z) ≤ 0.8, and ee�8 (x, z) ≥ 0.3? From the available knowledge, what
can be said about the possible values of be�9 (x, z)? Throughout the paper, we
will assume that all upper and lower bounds are taken from a fixed, finite set
M = {0, Δ, 2Δ, . . . , 1}, where Δ = 1

ρ
for some ρ ∈ N \ {0}. For convenience,

we write M0 for M \ {0} and M1 for M \ {1}.
Definition 2 (Atomic FI–formula). An atomic FI–formula over a set of vari-
ables X is an expression of the form r(x, y) ≥ l or r(x, y) ≤ k, where l ∈ M0,
k ∈ M1, (x, y) ∈ X2 and r is bb�d , ee�d , be�d or eb�d (d ∈ R).

Note that we will not consider atomic FI–formulas like bb�
d (x, y) ≥ l in this pa-

per. Such expressions can be omitted from discussions without loss of general-
ity because of their correspondence to atomic FI–formulas involving bb�d , ee�d ,
be�d or eb�d . In applications, however, it may be convenient to use bb�

d (x, y) ≥ l
as a notational alternative to bb�d (y, x) ≤ 1 − l.
Definition 3 (FI–formula). An FI–formula over a set of variables X is an
expression of the form

φ1 ∨ φ2 ∨ · · · ∨ φn

where φ1, φ2, . . . , φn are atomic FI–formulas over X. If n > 1, the FI–formula
is called disjunctive.
Definition 4 (FI–interpretation). An FI–interpretation over a set of variables
X is a mapping that assigns a fuzzy interval to each variable in X. An FIM–
interpretation over X is an FI–interpretation that maps every variable from
X to a fuzzy interval which takes only membership degrees from M .

The interpretation I(x) of a variable x, corresponding to an FI–interpretation
I, will also be written as xI . An FI–interpretation I over X satisfies the
temporal formula bb�d (x, y) ≥ l (x, y ∈ X, l ∈ M0, d ∈ R) iff bb�d (xI , yI) ≥ l,
and analogously for other types of atomic FI-formulas. Furthermore, I satisfies
φ1 ∨ φ2 ∨ · · · ∨ φn iff I satisfies φ1 or I satisfies φ2 or . . . or I satisfies φn.
Definition 5 (FI–satisfiable). A set Θ of FI–formulas over a set of variables
X is said to be FI–satisfiable (resp. FIM–satisfiable) iff there exists an FI–
interpretation (resp. FIM–interpretation) over X which satisfies every FI–
formula in Θ. An FI–interpretation (resp. FIM–interpretation) meeting this
requirement is called an FI–model (resp. FIM–model) of Θ.

14
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5 FI–satisfiability

One of the most important temporal reasoning tasks consists of checking
whether a given knowledge base is consistent. Here, this corresponds to check-
ing the FI–satisfiability of a set of FI–formulas Θ. To solve this problem,
we will show how a set Ψ of linear constraints can be constructed which is
P–satisfiable iff Θ is FI–satisfiable. In this way, existing, highly optimized rea-
soners for temporal problems can be reused to reason about vague temporal
information. This reduction from FI–satisfiability to P–satisfiability is made
possible by virtue of the following proposition, stating that because the upper
and lower bounds in a set of FI–formulas are taken from the set M , as defined
above, we can restrict ourselves to fuzzy intervals that only take membership
degrees from M .
Proposition 1. Let Θ be a finite set of FI–formulas over X. It holds that Θ
is FI–satisfiable iff Θ is FIM–satisfiable.

Proof. Clearly, if Θ is FIM–satisfiable then Θ is also FI–satisfiable. Conversely,
we show that given an FI–model I of Θ, it is always possible to construct an
FIM–model I∗ of Θ.

Let I be an FI–model of Θ, and let the [0, 1] − [0, 1] mappings l and u be
defined for y0 in [0, 1] as

l(y0) = max{y|y ∈ M ∧ y ≤ y0}
u(y0) = min{y|y ∈ M ∧ y ≥ y0}

From the definition of fuzzy time interval (Definition 1), we establish that for
each x in X, there exists an mx in R such that xI(mx) = 1. We now define I ′

as a mapping from X to the class of fuzzy sets in R:

xI′
(p) =

⎧⎨
⎩l(xI(p)) if p ≤ mx

u(xI(p)) if p > mx

for all x in X and p in R. Figure 5 depicts the relationship between I and I ′.
Although for x in X, the fuzzy set xI′

only takes membership degrees from
M , I ′ is not an FIM–interpretation as the α-level sets of xI′

do not necessarily
correspond to closed intervals (α ∈]0, 1], x ∈ X). However, from I ′, we can
construct an FIM–interpretation I∗ as follows. Let P be the (finite) set of
points in which xI′

is discontinuous for at least one x in X (P ⊆ R), and let
P x

s be the set of points in which xI′
is not upper semi–continuous (P x

s ⊆ P ),
i.e., P x

s contains the endpoints of α-level sets of xI′
which do not correspond

to closed intervals. Furthermore, let D be the set of distances d occurring in
the FI–formulas from Θ (D ⊆ R).

15
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(a) xI (b) xI′

(c) xI∗

Fig. 5. Relationship between the FI–interpretation I, the mapping I ′ and the
FIM–interpretation I∗

The FIM–interpretation I∗ is defined as

xI∗
(p) =

⎧⎨
⎩minq∈[p,p+ε[ x

I′
(q) if (∃q ∈ P x

s )(q ∈]p, p + ε[)

xI′
(p) otherwise

for all x in X and p in R, where ε denotes an arbitrary, fixed element from
]0, min{|p + d− q| : p, q ∈ P ∧ d ∈ D ∪ {0} ∧ p + d �= q}[. The definition of xI∗

is illustrated in Figure 5(c). To prove that I∗(x) satisfies all FI–formulas from
Θ, we first show that for d in R, x and y in X, and m in M , it holds that

bb�d (xI , yI) ≤ m ⇒ bb�d (xI′
, yI′

) ≤ m (22)

bb�d (xI , yI) ≥ m ⇒ bb�d (xI′
, yI′

) ≥ m (23)

ee�d (xI , yI) ≤ m ⇒ ee�d (xI′
, yI′

) ≤ m (24)

ee�d (xI , yI) ≥ m ⇒ ee�d (xI′
, yI′

) ≥ m (25)

be�d (xI , yI) ≤ m ⇒ be�d (xI′
, yI′

) ≤ m (26)

be�d (xI , yI) ≥ m ⇒ be�d (xI′
, yI′

) ≥ m (27)

eb�d (xI , yI) ≤ m ⇒ eb�d (xI′
, yI′

) ≤ m (28)

eb�d (xI , yI) ≥ m ⇒ eb�d (xI′
, yI′

) ≥ m (29)

To show (22) and (23), we obtain by (20)

bb�d (xI′
, yI′

)

= sup
p+d<my ,p≤mx

TW (xI′
(p), 1 − yI′

(p + d))
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= sup
p+d<my ,p≤mx

TW (xI(p) − (xI(p) − xI′
(p)),

1 − yI(p + d) + (yI(p + d) − yI′
(p + d)))

From the definition of I ′, it follows that (xI(p)− xI′
(p)) ∈ [0, Δ[ and (yI(p +

d) − yI′
(p + d)) ∈ [0, Δ[, for p + d < my and p ≤ mx. Hence, we have

≤ sup
p+d<my ,p≤mx

TW (xI(p), 1 − yI(p + d) + (yI(p + d) − yI′
(p + d)))

≤ sup
p+d<my ,p≤mx

TW (xI(p), 1 − yI(p + d)) + (yI(p + d) − yI′
(p + d))

< sup
p+d<my ,p≤mx

TW (xI(p), 1 − yI(p + d)) + Δ

= bb�d (xI , yI) + Δ

Similarly, we can show that

bb�d (xI′
, yI′

) > bb�d (xI , yI) − Δ

Hence

bb�d (xI′
, yI′

) − bb�d (xI , yI) ∈] − Δ, Δ[ (30)

Assume that bb�d (xI′
, yI′

) > m would hold. Since both bb�d (xI′
, yI′

) and m
are contained in M , this implies that bb�d (xI′

, yI′
) ≥ m + Δ. Using (30) we

establish that bb�d (xI , yI) > m also holds, proving (22) by contraposition. In
the same way, we establish from bb�d (xI′

, yI′
) < m that bb�d (xI′

, yI′
) ≤ m−Δ

and thus bb�d (xI , yI) < m, proving (23). The implications (24)–(29) can be
shown entirely analogously.

Next, we show that

bb�d (xI′
, yI′

) = bb�d (xI∗
, yI∗

) (31)

ee�d (xI′
, yI′

) = ee�d (xI∗
, yI∗

) (32)

be�d (xI′
, yI′

) = be�d (xI∗
, yI∗

) (33)

eb�d (xI′
, yI′

) = eb�d (xI∗
, yI∗

) (34)

First note that (31) immediately follows from the definition of I∗ by (20), as
for each p satisfying p ≤ mx and p+d < my, xI∗

(p) = xI′
(p) and yI∗

(p+d) =
yI′

(p + d). Turning now to (32), we find using (21) that

ee�d (xI′
, yI′

) = sup
p−d>mx,p≥my

TW (yI′
(p), 1 − xI′

(p − d)) (35)

ee�d (xI∗
, yI∗

) = sup
p−d>mx,p≥my

TW (yI∗
(p), 1 − xI∗

(p − d)) (36)
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where mx and my are the smallest modal values of xI′
and yI′

, or, equivalently,
of xI∗

and yI∗
. First, we show that for every p1 satisfying p1 − d > mx and

p1 ≥ my there exists a p2 satisfying p2 − d > mx and p2 ≥ my such that

TW (yI′
(p1), 1 − xI′

(p1 − d)) = TW (yI∗
(p2), 1 − xI∗

(p2 − d)) (37)

which already proves ee�d (xI′
, yI′

) ≤ ee�d (xI∗
, yI∗

). If yI′
(p1) = yI∗

(p1) and
xI′

(p1 − d) = xI∗
(p1 − d) we can choose p2 = p1. Next, assume that yI′

(p1) >
yI∗

(p1) and xI′
(p1 − d) > xI∗

(p1 − d). This means that there is a q1 in P y
s and

q2 in P x
s such that q1 ∈]p1, p1 +ε[ and q2 ∈]p1−d, p1−d+ε[. The latter implies

that q2+d ∈]p1, p1+ε[ which, combined with the former, yields |q2+d−q1| < ε.
By definition of ε, this is only possible if q2 = q1 − d, since for q2 + d �= q1, the
definition of ε would imply ε < |q2 + d − q1|. We show that (37) is satisfied
for p2 = q1 − ε. Note that mx, my ∈ P but mx /∈ P x

s and my /∈ P y
s , hence

mx �= q2 and my �= q1, and even mx < q2 and my < q1. The definition of ε
implies that ε < q1 + 0 − my and ε < q2 + 0 − mx. Since q2 = q1 − d and
p2 = q1 − ε, this entails p2 ≥ my and p2 − d > mx. Since yI′

is constant
over [q1 − ε, q1[, by definition of ε, it holds that yI∗

(q1 − ε) = yI′
(q1 − ε), or

yI∗
(p2) = yI′

(p2). As p1 ∈]q1 − ε, q1[, it holds that yI′
is constant over [p2, p1],

hence yI′
(p2) = yI′

(p1). In the same way, we establish xI∗
(p2−d) = xI′

(p1−d).

If yI′
(p1) > yI∗

(p1) and xI′
(p1 − d) = xI∗

(p1 − d), there is a q1 in P y
s such

that q1 ∈]p1, p1 + ε[. We show that (37) is satisfied for p2 = q1 − ε. As in
the previous case, the definition of ε implies that ε < q1 + 0 − my, hence
p2 ≥ my. Again, we have that yI∗

(p2) = yI∗
(q1 − ε) = yI′

(q1 − ε) = yI′
(p2),

and yI′
(p2) = yI′

(p1). Note that xI′
is continuous in [q1−d−ε, q1−d[. Indeed,

if xI′
were discontinuous in a point q2 in [q1 − d− ε, q1 − d[, it would hold that

0 < |q2 − q1 + d| ≤ ε, which is impossible by definition of ε. Since p1 − d > mx

and there are no discontinuities in [q1−d−ε, p1−d], we know that q1−d−ε >
mx (recall that mx is the smallest modal value of xI′

). The continuity of xI′

in [q1−d− ε, q1−d[ furthermore implies that xI∗
(q1−d− ε) = xI′

(q1−d− ε),
and, since p1 − d < q1 − d, xI′

(q1 − d− ε) = xI′
(p1 − d). From p2 = q1 − ε we

can conclude that xI∗
(p2 − d) = xI′

(p1 − d)

The case where yI′
(p1) = yI∗

(p1) and xI′
(p1 − d) > xI∗

(p1 − d) is shown
entirely analogously.

Conversely, we show that for every p2 satisfying p2 − d > mx and p2 ≥ my

there exists a p1 satisfying p1−d > mx and p1 ≥ my such that (37) is satisfied.
If yI′

(p2) = yI∗
(p2) and xI′

(p2 − d) = xI∗
(p2 − d) we can choose p1 = p2. If

yI′
(p2) > yI∗

(p2) and xI′
(p2 − d) > xI∗

(p2 − d) there is a q1 in P y
s and q2 in

P x
s such that q1 ∈]p2, p2 + ε[ and q2 ∈]p2 − d, p2 − d + ε[. We show that (37) is

satisfied for p1 = q1. Again, this is only possible if q2 = q1 − d by definition of
ε. First note that p1 = q1, q1 ∈]p2, p2 + ε[ and p2 ≥ my entail p1 ≥ my, while
p1 = q1, q1−d ∈]p2−d, p2+ε−d[ and p2−d > mx entail p1−d > mx. As q1 ∈ P y

s ,
we know that yI′

is lower semi–continuous in q1. Since yI′
is decreasing in q1,
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this means that yI′
is right–continuous in q1. Furthermore, by definition of ε

we know that yI′
is continuous over [q1 − ε, q1[ and over ]q1, q1 + ε]. Together

with p2 ∈]q1 − ε, q1[, this yields yI∗
(p2) = yI′

(q1) = yI′
(p1). Similarly, we can

show that xI∗
(p2 − d) = xI′

(q1 − d).

If yI′
(p2) > yI∗

(p2) and xI′
(p2 − d) = xI∗

(p2 − d) there is a q1 in P y
s such

that q1 ∈]p2, p2 + ε[. We show that (37) is satisfied for p1 = q1. As before,
we have that p1 ≥ my, p1 − d > mx, and yI∗

(p2) = yI′
(q1). Note that xI′

is
continuous in [q1 − d − ε, q1 − d[∪]q1 − d, q1 − d + ε]. Indeed, for every q2 in
[q1 − d − ε, q1 − d + ε] \ {q1 − d}, it holds that 0 < |q2 − q1 + d| ≤ ε, which
implies q2 /∈ P , using the definition of ε. If xI′

is also continuous in q1 − d,
then obviously xI∗

(p2 − d) = xI′
(q1 − d). If xI′

is upper semi–continuous in
q1 − d then xI′

is also left–continuous (as xI′
is decreasing in q1 − d), hence

xI′
(q1 − d) = xI′

(p2 − d) = xI∗
(p2 − d). Finally, we show that xI′

cannot be
lower semi–continuous in q1 − d. Indeed, this would imply that q1 − d ∈ P x

s

and thus xI′
(p2 − d) > xI∗

(p2 − d), which contradicts the assumption that
xI′

(p2 − d) = xI∗
(p2 − d).

The case where yI′
(p1) = yI∗

(p1) and xI′
(p1 − d) > xI∗

(p1 − d) is shown in
the same way.

Finally, (33) and (34) can be shown analogously.

From Lemma 1, we already know that upper and lower bounds of fuzzy tem-
poral relations can be characterized by crisp temporal relations between the
α–level sets of the fuzzy time intervals involved. As the next proposition shows,
when these fuzzy time intervals only take membership degrees from M , only a
finite number of α–level sets needs to be considered. The intuition behind this
proposition is that a fuzzy interval A taking only membership degrees from
M is completely characterized by the set of crisp intervals {AΔ, A2Δ, . . . , A1},
which is in turn completely characterized by the set of instants (real numbers)
{A−

Δ, A−
2Δ, . . . , A−

1 , A+
1 , . . . , A+

2Δ, A+
Δ}.

Proposition 2. Let A and B be fuzzy intervals that only take membership
degrees from M , k ∈ M1 and l ∈ M0. It holds that:

bb�d (A, B) ≥ l ⇔ A−
l < B−

Δ − d ∨ A−
l+Δ < B−

2Δ − d

∨ · · · ∨ A−
1 < B−

1−l+Δ − d (38)

bb�d (A, B) ≤ k ⇔ B−
Δ ≤ A−

k+Δ + d ∧ B−
2Δ ≤ A−

k+2Δ + d

∧ · · · ∧ B−
1−k ≤ A−

1 + d (39)

ee�d (A, B) ≥ l ⇔ A+
Δ < B+

l − d ∨ A+
2Δ < B+

l+Δ − d

∨ · · · ∨ A+
1−l+Δ < B+

1 − d (40)

ee�d (A, B) ≤ k ⇔ B+
k+Δ ≤ A+

Δ + d ∧ B+
k+2Δ ≤ A+

2Δ + d

∧ · · · ∧ B+
1 ≤ A+

1−k + d (41)

be�d (A, B) ≥ l ⇔ A−
l < B+

1 − d ∨ A−
l+Δ < B+

1−Δ − d
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∨ · · · ∨ A−
1 < B+

l − d (42)

be�d (A, B) ≤ k ⇔ B+
1 ≤ A−

k+Δ + d ∧ B+
1−Δ ≤ A−

k+2Δ + d

∧ · · · ∧ B+
k+Δ ≤ A−

1 + d (43)

eb�d (A, B) ≥ l ⇔ A+
1 < B−

1−l+Δ − d ∧ A+
1−Δ < B−

1−l+2Δ − d

∧ · · · ∧ A+
1−l+Δ < B−

1 − d (44)

eb�d (A, B) ≤ k ⇔ B−
1−k ≤ A+

1 + d ∨ B−
1−k+Δ ≤ A+

1−Δ + d

∨ · · · ∨ B−
1 ≤ A+

1−k + d (45)

Proof. As an example, we show (38). From Lemma 1 we already know that

bb�d (A, B) ≥ l ⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε, 1])(bb�d (Aλ, Bλ+ε−l))

First note that if ε1 < ε2, B−
λ+ε1−l ≤ B−

λ+ε2−l and therefore bb�d (Aλ, Bλ+ε1−l) ⇒
bb�d (Aλ, Bλ+ε2−l). We thus obtain

bb�d (A, B) ≥ l ⇔ (∀ε ∈]0, Δ[)(∃λ ∈]l − ε, 1])(bb�d (Aλ, Bλ+ε−l))

Let ε ∈]0, Δ[ and let λ in ]l−ε, 1] be such that bb�d (Aλ, Bλ+ε−l). We first show
that there must exist some λ′ in {l, l + Δ, . . . , 1} such that bb�d (Aλ′ , Bλ′+ε−l).
If λ ∈]l − ε, l[, then Aλ = Al as A only takes membership degrees from
M . Moreover, B−

λ+ε−l ≤ B−
l+ε−l, hence from bb�d (Aλ, Bλ+ε−l) we establish

bb�d (Al, Bl+ε−l), i.e., we can choose λ′ = l. Similarly, if λ ∈]iΔ, (i + 1)Δ[
(i ∈ N, l ≤ iΔ < (i + 1)Δ ≤ 1), we have that bb�d (Aλ, Bλ+ε−l) implies
bb�d (A(i+1)Δ, B(i+1)Δ+ε−l), and we can choose λ′ = (i + 1)Δ. This yields

bb�d (A, B) ≥ l ⇔ (∀ε ∈]0, Δ[)(∃λ ∈ {l, l + Δ, . . . , 1})(bb�d (Aλ, Bλ+ε−l))

Since now λ ∈ M and ε ∈]0, Δ[, we have that Bλ+ε−l = Bλ+Δ−l:

bb�d (A, B) ≥ l ⇔ (∀ε ∈]0, Δ[)(∃λ ∈ {l, l + Δ, . . . , 1})(bb�d (Aλ, Bλ+Δ−l))

⇔ (∃λ ∈ {l, l + Δ, . . . , 1})(bb�d (Aλ, Bλ+Δ−l))

proving (38).

Given a set of atomic FI–formulas Θ over a set of variables X, we construct
a set of variables X ′ and a set of linear constraints Ψ over X ′ such that Θ is
FI–satisfiable iff Ψ is P–satisfiable. From Proposition 1, we know that we can
restrict ourselves to fuzzy intervals that only take membership degrees from
M . Proposition 2 furthermore reveals that checking whether an FIM interpre-
tatation satisfies an FI–formula can be done by evaluating a constant number
of linear inequalities. This suggests the following procedure for constructing
X ′ and Ψ.

Let X ′ and Ψ initially be the empty set. For each variable x in X, we add
the new variables x−

Δ, x−
2Δ, . . . , x−

1 , x+
1 , . . . , x+

2Δ and x+
Δ to X ′. Intuitively, these
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new variables correspond to the beginning and ending points of α–level sets
of the fuzzy interval corresponding with x. By adding the following linear
constraints to Ψ, for each m in M1 \ {0}, we ensure that in every P–model I
of Ψ, these new variables can indeed be interpreted as beginning and ending
points of α-level sets of a fuzzy interval:

x−
1 ≤ x+

1 (46)

x−
m ≤ x−

m+Δ (47)

x+
m+Δ ≤ x+

m (48)

In this way, every P–model I of Ψ corresponds to an FIM–interpretation I ′ of
Θ in which xI′

is the fuzzy interval taking only membership degrees from M ,
defined through its α–level sets by (I ′(x))m = [I(x−

m), I(x+
m)] for all m ∈ M0.

Finally, for each FI–formula in Θ, we add a particular set of linear constraints
to Ψ, based on the equivalences of Proposition 2. For example, if Θ contains
the FI–formula bb�d (x, y) ≤ k, we add the following set of linear constraints:

{y−
Δ ≤ x−

k+Δ + d, y−
2Δ ≤ x−

k+2Δ + d, . . . , y−
1−k ≤ x−

1 + d} (49)

Similarly, if Θ contains the FI–formula bb�d (x, y) ≥ l, we add the following
linear constraint:

x−
l < y−

Δ − d ∨ x−
l+Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1−l+Δ − d (50)

Clearly, Θ∪{r1∨r2} is FI–satisfiable iff either Θ∪{r1} is FI–satisfiable or Θ∪
{r2} is FI–satisfiable. Therefore, we only needed to consider sets of atomic FI–
formulas in the procedure described above. Nonetheless, this procedure is not
inherently restricted to sets of atomic FI–formulas, as disjunctive FI–formulas
correspond to (sets of) linear constraints as well. However, the number of linear
constraints can be exponential in the number of disjuncts in the FI–formulas.

As expressed by the following proposition, it holds that the set of linear con-
straints Ψ is P–satisfiable iff Θ is FI–satisfiable.
Proposition 3. Let Θ be a finite set of atomic FI–formulas over X, and
let Ψ be the corresponding set of linear constraints over X ′, obtained by the
procedure outlined above. It holds that Θ is FI–satisfiable iff Ψ is P–satisfiable.

Proof. Assume that Θ is FI–satisfiable. Then there exists an FIM–model I
of Θ by Proposition 1. We define the P–interpretation I ′ for all variables x−

iΔ

and x+
iΔ as (i ∈ N, Δ ≤ iΔ ≤ 1):

I ′(x−
iΔ) = (xI)−iΔ (51)

I ′(x+
iΔ) = (xI)+

iΔ (52)
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Fig. 6. There exists an FIM–interpretation I for a set of FI-formulas Θ iff there
exists a P–interpretation I ′ for the corresponding set Ψ of linear constraints.

In other words, I ′(x−
iΔ) and I ′(x+

iΔ) correspond to the beginning and ending
of the iΔ–level set of the fuzzy time interval xI . Figure 6 illustrates the re-
lationship between I and I ′. Clearly, I ′ satisfies (46)–(48). By Proposition 2,
we also have that all (sets of) linear constraints like (49) and (50) are satisfied.
Hence, I is a P–model of Ψ.

Conversely, assume that Ψ is P–satisfiable. Then there exists a P–model I ′ of
Ψ. We define the FIM–interpretation I from I ′ as

xI(r) =

⎧⎨
⎩max{λ|λ ∈ M ∧ r ∈ [I ′(x−

λ ), I ′(x+
λ )]} if r ∈ [I ′(xΔ)−, I ′(xΔ)+]

0 otherwise

(53)

for each x in X and r in R. By construction of Ψ, we have that xI is a fuzzy
time interval. Moreover, by Proposition 2, we establish that I satisfies every
FI-formula in Θ.

Interestingly, by reducing FI–satisfiability to P–satisfiability of a set of linear
constraints, we can impose additional constraints on the variables involved. For
example, we can express that a given variable x corresponds to a crisp interval,
rather than a fuzzy interval, by adding the linear constraints {x−

Δ = x−
2Δ, x−

2Δ =
x−

3Δ, . . . , x−
1−Δ = x−

1 , x+
1 = x+

1−Δ, . . . , x+
2Δ = x+

Δ} to Ψ. By additionally adding
x−

1 = x+
1 , we can even ensure that x is always interpreted as an instant (time

point). Similarly, we can add x−
1 < x+

1 to express that x should never be
interpreted as a time point. If we know that the beginning of x is inherently
gradual, we can even impose {x−

Δ < x−
2Δ, x−

2Δ < x−
3Δ, . . . , x−

1−Δ < x−
1 }. Such

additional constraints can be very useful if it is a priori known which variables
correspond to (possibly) vague events, crisp events, and instants. Moreover,
adding such constraints does not change the computational complexity of the
algorithm.

Another important advantage of the reduction to P–satisfiability is that exist-
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ing, optimized algorithms for reasoning about linear constraints can be used.
Existing algorithms can not only be used for checking FI–satisfiability, but
also to find FI–models (or consistent scenarios) of FI–satisfiable sets of FI–
formulas. This technique is illustrated in the following example.
Example 1. Let Θ = {bb�10(a, b) ≥ 0.5, eb�5 (c, a) ≥ 0.5, eb�5 (b, c) ≥ 0.75}.
We can choose Δ = 0.25, and thus M = {0, 0.25, 0.5, 0.75, 1}. The linear
constraints of the form (46)–(48) are given by

Ψ1 = {a−
0.25 ≤ a−

0.5, a
−
0.5 ≤ a−

0.75, a
−
0.75 ≤ a−

1 , a−
1 ≤ a+

1 ,

a+
1 ≤ a+

0.75, a
+
0.75 ≤ a+

0.5, a
+
0.5 ≤ a+

0.25,

b−0.25 ≤ b−0.5, b
−
0.5 ≤ b−0.75, b

−
0.75 ≤ b−1 , b−1 ≤ b+

1 ,

b+
1 ≤ b+

0.75, b
+
0.75 ≤ b+

0.5, b
+
0.5 ≤ b+

0.25,

c−0.25 ≤ c−0.5, c
−
0.5 ≤ c−0.75, c

−
0.75 ≤ c−1 , c−1 ≤ c+

1 ,

c+
1 ≤ c+

0.75, c
+
0.75 ≤ c+

0.5, c
+
0.5 ≤ c+

0.25}

The additional linear constraints corresponding to the FI–formulas in Θ are
given by

Ψ2 = {a−
0.5 < b−0.25 − 10 ∨ a−

0.75 < b−0.5 − 10 ∨ a−
1 < b−0.75 − 10,

c+
1 < a−

0.75 − 5, c+
0.75 < a−

1 − 5,

b+
1 < c−0.5 − 5, b+

0.75 < c−0.75 − 5, b+
0.5 < c−1 − 5}

The set Ψ of all linear constraints corresponding with Θ is then given by
Ψ1 ∪ Ψ2. It holds that Ψ can be satisfied by choosing the first disjunct a−

0.5 <
b−0.25 − 10 in the disjunctive linear constraint a−

0.5 < b−0.25 − 10 ∨ a−
0.75 < b−0.5 −

10 ∨ a−
1 < b−0.75 − 10. In [20], an algorithm is presented to find a solution of

a set of atomic linear constraints, i.e., a P–interpretation I satisfying Ψ. One
possible solution of Ψ is defined by

I(a−
0.25) = I(a−

0.5) = I(c−0.25) = 0

I(a−
0.75) = I(a−

1 ) = I(a+
1 ) = I(a+

0.75) = I(a+
0.5) = I(a+

0.25) = 22

I(b−0.25) = I(b−0.5) = I(b−0.75) = I(b−1 ) = 11

I(b+
1 ) = I(b+

0.75) = I(b+
0.5) = I(b+

0.25) = 11

I(c−0.5) = I(c−0.75) = I(c−1 ) = I(c+
1 ) = I(c+

0.75) = I(c+
0.5) = I(c+

0.25) = 16

As explained above, the P–model I of Ψ defines an FIM–model I ′ of Θ.

In applications, we usually need to find an FI–satisfiable set of FI–formulas,
corresponding to some given (natural language) description, rather than check-
ing the FI–satisfiablity of a given set of FI–formulas. Typically, in this context,
the information provided may be inconsistent when interpreted as classical,
crisp temporal relations. The goal is then to weaken information such as A
happened before B to A happened before B at least to degree 0.8. The vari-
ous lower and upper bounds introduced in this way (e.g., 0.8) should be the
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strongest possible, w.r.t. a given precision Δ. The next example illustrates this
process.
Example 2. Consider again the example about Picasso’s work from the intro-
duction. To allow for a concise description, we use the following abbreviations
to refer to the relevant events and periods:

BFT Picasso creates Bread and Fruit Dish on a Table
DMA Picasso creates the Demoiselles d’Avignon
AC Picasso’s Analytical Cubism period
C Picasso’s Cubism period

The information that Bread and Fruit Dish on a Table marks the beginning
of Picasso’s Analytical Cubism can be represented as

bb�(BFT,AC) ≥ λ1 (54)

bb�(AC, BFT ) ≥ λ2 (55)

ee�(BFT,AC) ≥ λ3 (56)

where initially λ1, λ2 and λ3 are assumed to be 1. Values lower than 1 are
only considered when inconsistencies arise. Similarly, the information that the
Demoiselles d’Avignon marks the beginning of Picasso’s Cubist period can be
represented as

bb�(DMA, C) ≥ λ4 (57)

bb�(C, DMA) ≥ λ5 (58)

ee�(DMA, C) ≥ λ6 (59)

Next, the information that Analytical Cubism is the first stage of Picasso’s
Cubism can be represented by

bb�(AC, C) ≥ λ7 (60)

bb�(C, AC) ≥ λ8 (61)

ee�(AC, C) ≥ λ9 (62)

In addition to this qualitative description, we also have some quantitative
information. In particular, we know that Bread and Fruit Dish on a Table was
created in 1909, the Demoiselles d’Avignon was created in 1907 and Analytical
Cubism lasted from somewhere in 1908 to somewhere in 1912. We can encode
this information using metric constraints by referring to an artificial time point
Z, for instance, corresponding to the beginning of the year 1900:

bb�
8 (Z,AC) ≥ λ10 bb�−9(AC, Z) ≥ λ11 (63)

ee�
12(Z,AC) ≥ λ12 ee�−13(AC, Z) ≥ λ13 (64)

bb�
9 (Z,BFT ) ≥ λ14 ee�−10(BFT,Z) ≥ λ15 (65)

bb�
7 (Z,DMA) ≥ λ16 ee�−8(DMA, Z) ≥ λ17 (66)
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When checking the FI–satisfiability of this representation for various values of
the lower bounds λi, we need to ensure that Z is a time point. As discussed
above, this can be done by adding the constraint Z−

Δ = Z−
2Δ = · · · = Z−

1 =
Z+

1 = · · · = Z+
Δ to the corresponding set of linear constraints. From available

domain knowledge, we may moreover find out that creating a painting is a
crisp event 6 , and therefore impose that DMA and BFT are crisp intervals
in a similar way.

For λ1 = λ2 = · · · = λ17 = 1, the description above is not FI–satisfiable.
Hence, we need to weaken one or more of the lower bounds, i.e., we let some
of the λi correspond to values from M lower than 1. Different sets of lower
bounds may be weakened to obtain an FI–satisfiable representation. Moreover,
the actual strategy adopted to decide how to arrive at such a representation
may differ from application to application, as well as depend on additional
background information (e.g., degrees of confidence in each of the original
natural language statements). In the example at hand, we may impose that
λ14 = λ15 = λ16 = λ17 = 1, as Z, BFT and DMA all refer to crisp events.
Furthermore, we may initially require that λ1 = λ2 = · · · = λ13, as we lack any
further background knowledge for differentiating between the FI–formulas.
Assuming Δ = 0.25, we first try λ1 = · · · = λ13 = 0.75, which is not FI–
satisfiable, and next λ1 = · · · = λ13 = 0.5, which turns out to be FI–satisfiable.
Although we have now arrived at an FI–satisfiable interpretation of the natural
language statements, it is not necessarily maximally FI–satisfiable, i.e., it may
be the case that not all of the λi’s (i ∈ {1, 2, . . . , 13}) need to be weakened
to 0.5. Therefore, we subsequently try to strengthen the λi’s again, one by
one. For example, when λ2 = 0.75 or even λ2 = 1, the resulting representation
remains FI–satisfiable. On the other hand, strengthening λ1 to 0.75 leads to
a representation which is not FI–satisfiable anymore (even when λ2 = 0.5).
Thus, after a linear number of FI–satisfiability checks, we obtain the following
maximally FI–satisfiable representation:

λ14 = λ15 = λ16 = λ17 = 1

λ2 = λ3 = λ4 = λ6 = λ7 = λ8 = λ9 = λ10 = λ12 = λ13 = 1

λ1 = λ5 = λ11 = 0.5

A corresponding FI–interpretation is depicted in Figure 7, illustrating that
the inconsistencies in the original natural language statements are caused
by the vagueness of the Analytical Cubism and Cubism periods. In this FI–
interpretation, both periods are assumed to have started in 1907 to degree 0.5,

6 Although the assumption made in this example is reasonable in most contexts,
creating a painting could be seen as a vague event as well, assuming, for instance,
that related studies and sketches made prior to the actual painting belong to the
creation to varying degrees.
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Fig. 7. FI–interpretation of events corresponding to the creation of Bread and Fruit
Dish on a Table (BFT ) and the Demoiselles d’Avignon (DMA), as well as Picasso’s
Analytical Cubism (AC) and Cubism (C) periods.

and to have started completely in 1909.

6 Computational complexity

Let A be a subset of FX , the set of all FI–formulas over a set of variables X.
In the following discussion, we assume that X contains a sufficiently large, or
infinite number of different variables. We call FISAT(A) the problem of decid-
ing whether a finite set of FI–formulas from A is FI–satisfiable. Deciding the
P–satisfiability of an arbitrary set of linear constraints is NP–complete [44].
To decide whether a set Θ of FI–formulas is FI–satisfiable, we can guess which
disjuncts can be satisfied for all disjunctive FI–formulas, resulting in a set of
atomic FI–formulas Θ′. Checking if Θ′ is FI–satisfiable can be polyomially
reduced to checking the P–satisfiability of a set of linear constraints, as ex-
plained above. We thus find that FISAT(A) is in NP for every A ⊆ FX . As will
become clear below, FISAT(FX) is also NP–hard and thereby NP–complete.
However, checking the P–satisfiability of a set of linear constraints without
disjunctions is tractable [23,27]. From Proposition 2, it follows that a signif-
icant subset of the FI–formulas do not lead to disjunctive linear constraints.
We will refer to this subset as F t

X :

F t
X =

⋃
(x,y)∈X2

⋃
d∈R

(
{bb�d (x, y) ≤ k|k ∈ M1} ∪ {ee�d (x, y) ≤ k|k ∈ M1}

∪ {be�d (x, y) ≤ k|k ∈ M1} ∪ {eb�d (x, y) ≥ l|l ∈ M0}
∪ {bb�d (x, y) ≥ 1, ee�d (x, y) ≥ 1, be�d (x, y) ≥ 1, eb�d (x, y) ≤ 0}

)

Clearly FISAT(F t
X) is tractable. Note, however, that the procedure described

above for deciding FISAT(F t
X) is only weakly polynomial, as it depends on

the value of 1
Δ

= ρ.
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To support efficient reasoning, it is of interest to identify maximally tractable
subsets of FX , i.e., sets of FI–formulas A ⊆ FX such that FISAT(A) is
tractable and for any proper superset A′ of A, it holds that FISAT(A′) is
NP–complete 7 . As we show in the following two propositions, when extend-
ing F t

X with FI–formulas, it is not possible to keep tractability without putting
restrictions on the variables.
Proposition 4. Let k ∈ M1 \ {0} and d ∈ R. FISAT(A) is NP-complete if A
contains any of the following sets of FI-formulas:

F t
X ∪ ⋃

(x,y)∈X2

{bb�d (x, y) ≥ k} (67)

F t
X ∪ ⋃

(x,y)∈X2

{ee�d (x, y) ≥ k} (68)

F t
X ∪ ⋃

(x,y)∈X2

{be�d (x, y) ≥ k} (69)

F t
X ∪ ⋃

(x,y)∈X2

{eb�d (x, y) ≤ k} (70)

Proof. As an example, we show (67) for d = 0. The proof for (68)–(70) and
d �= 0 is entirely analogous.

Since FISAT(FX) is in NP, we already have that FISAT(A) is in NP. To
establish the NP-hardness of FISAT(A), we will show that 3SAT can be poly-
nomially reduced to it. The proof is inspired by [37], where a similar reduction
is made to prove NP-hardness for the satisfiability problem in a subfragment
of the Interval Algebra.

Let D = {C1, C2, . . . , Cn}, where Ci denotes a clause of the form li1 ∨ li2 ∨ li3,
containing exactly three disjuncts. Each literal lij is either an atomic proposi-
tion or the negation of an atomic proposition. 3SAT is the problem of deciding
whether D is satisfiable, i.e., deciding if there exists a truth assignment of the
atomic propositions that makes all clauses from D true. To prove (67), we
will construct a set Θ of FI-formulas from A which is FI-satisfiable iff D is
satisfiable, thereby reducing 3SAT to FISAT(A).

For each i in {1, . . . , n} and j in {1, 2, 3}, we add the following FI–formulas
to Θ:

bb�(aij, bij) ≥ k (71)

bb�(cij, bij) ≤ k − Δ (72)

where aij, bij and cij are different variables from X.

7 Throughout the paper, we assume P �= NP.
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Fig. 8. Linear constraints (73)–(74).

These FI-formulas correspond to the following linear constraints:

(aij)
−
k < (bij)

−
Δ ∨ (aij)

−
k+Δ < (bij)

−
2Δ ∨ · · · ∨ (aij)

−
1 < (bij)

−
1−k+Δ (73)

{(bij)
−
Δ ≤ (cij)

−
k , (bij)

−
2Δ ≤ (cij)

−
k+Δ, . . . , (bij)

−
1−k+Δ ≤ (cij)

−
1 } (74)

Linear constraints can be depicted as a graph in which nodes correspond to
variables, and edges labeled with < or ≤ are added between two nodes if <
or ≤ is imposed on the corresponding variables. Figure 8 shows the graph
corresponding to (73)–(74). Linear constraints with disjunctions are displayed
as dotted lines, as only one of several possible edges needs to be satisfied in
this case. Furthermore, we add the following FI–formulas to Θ:

bb�(ci1, di1) ≥ 1 bb�(ai2, di1) ≤ 1 − Δ

bb�(ci2, di2) ≥ 1 bb�(ai3, di2) ≤ 1 − Δ

bb�(ci3, di3) ≥ 1 bb�(ai1, di3) ≤ 1 − Δ

The corresponding linear constraints are given by

(ci1)
−
1 < (di1)

−
Δ (di1)

−
Δ ≤ (ai2)

−
1 (75)

(ci2)
−
1 < (di2)

−
Δ (di2)

−
Δ ≤ (ai3)

−
1 (76)

(ci3)
−
1 < (di3)

−
Δ (di3)

−
Δ ≤ (ai1)

−
1 (77)

Figure 9 contains a graph corresponding to Figure 8 for ai1, bi1 and ci1, as
well as the graph for ai2, bi2 and ci2, and the graph for ai3, bi3 and ci3. For
clarity, the nodes for the bij–variables are omitted. Furthermore, these three
subgraphs are linked together by the constraints (75)–(77). If (ai1)

−
1 < (ci1)

−
1 ,

(ai2)
−
1 < (ci2)

−
1 and (ai3)

−
1 < (ci3)

−
1 would hold, we obtain (ai1)

−
1 < (ci1)

−
1 <

(ai2)
−
1 < (ci2)

−
1 < (ai3)

−
1 < (ci3)

−
1 < (ai1)

−
1 , and thus (ai1)

−
1 < (ai1)

−
1 which

cannot be satisfied. Hence, every FI–model of Θ corresponds to a P–model in
which at least one of (ai1)

−
1 ≥ (ci1)

−
1 , (ai2)

−
1 ≥ (ci2)

−
1 and (ai3)

−
1 ≥ (ci3)

−
1 holds.

A truth assignment that makes lij true if (aij)
−
1 ≥ (cij)

−
1 will therefore make

all clauses in D true. To ensure that such a truth assignment indeed exists,
what remains is to make sure that an atomic proposition lij and its negation,
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Fig. 9. Linear constraints (75)–(77).

denoted below by lrs, are not made true simultaneously. If we want to define
a correspondence between Θ and D, we therefore need to encode that one of
(aij)

−
1 < (cij)

−
1 or (ars)

−
1 < (crs)

−
1 must hold. This can be accomplished by

adding the following FI–formulas to Θ:

bb�(eijrs, cij) ≤ Δ (78)

bb�(eijrs, fijrs) ≥ 1 (79)

bb�(ars, fijrs) ≤ k − Δ (80)

bb�(ersij, crs) ≤ Δ (81)

bb�(ersij, frsij) ≥ 1 (82)
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bb�(aij, frsij) ≤ k − Δ (83)

which correspond to the following (sets of) linear constraints

{(cij)
−
Δ ≤ (eijrs)

−
2Δ, (cij)

−
2Δ ≤ (eijrs)

−
3Δ, . . . , (cij)

−
1−Δ ≤ (eijrs)

−
1 } (84)

(eijrs)
−
1 < (fijrs)

−
Δ (85)

{(fijrs)
−
Δ ≤ (ars)

−
k , (fijrs)

−
2Δ ≤ (ars)

−
k+Δ, . . . , (fijrs)

−
1−k+Δ ≤ (ars)

−
1 } (86)

{(crs)
−
Δ ≤ (ersij)

−
2Δ, (crs)

−
2Δ ≤ (ersij)

−
3Δ, . . . , (crs)

−
1−Δ ≤ (ersij)

−
1 } (87)

(ersij)
−
1 < (frsij)

−
Δ (88)

{(frsij)
−
Δ ≤ (aij)

−
k , (frsij)

−
2Δ ≤ (aij)

−
k+Δ, . . . , (frsij)

−
1−k+Δ ≤ (aij)

−
1 } (89)

Figure 10 displays these linear constraints. In particular, (84)–(89) imply that
(cij)

−
1−Δ < (ars)

−
k and (crs)

−
1−Δ < (aij)

−
k . Assume that there exists an FI-model

of Θ such that the corresponding P–model I ′ neither satisfies (aij)
−
1 < (cij)

−
1

nor (ars)
−
1 < (crs)

−
1 . Then there exist a k1 and a k2 in M such that k ≤ k1 ≤

1 − Δ and k ≤ k2 ≤ 1 − Δ, and such that I ′ satisfies (aij)
−
k1

< (cij)
−
k1

and
(ars)

−
k2

< (crs)
−
k2

. We obtain (cij)
−
1−Δ < (ars)

−
k ≤ (ars)

−
k2

< (crs)
−
k2

≤ (crs)
−
1−Δ <

(aij)
−
k ≤ (aij)

−
k1

< (cij)
−
k1

≤ (cij)
−
1−Δ, and thus that (cij)

−
1−Δ < (cij)

−
1−Δ would

hold. Hence, any FI-model of Θ corresponds to a P–model satisfying (aij)
−
1 <

(cij)
−
1 or (ars)

−
1 < (crs)

−
1 . If both (aij)

−
1 < (cij)

−
1 and (ars)

−
1 < (crs)

−
1 would

be satisfied in an FI-model of Θ, we can arbitrarily choose to make either lij
or lrs true without making any of the clauses in D false. Therefore, we have
established that whenever Θ is FI-satisfiable, D must be satisfiable.

To complete the proof, we also show the converse, i.e., whenever D is satisfi-
able, there exists an FI–model of Θ, or equivalently, a P–model of the linear
constraints corresponding to Θ. If the literal lij is interpreted as true, we
choose the disjunct (aij)

−
1−Δ < (bij)

−
1−k in (73), while if lij is interpreted as

false, we choose the disjunct (aij)
−
1 < (bij)

−
1−k+Δ. Thus we obtain a set Ψ of

linear constraints without disjunctions whose P–satisfiability implies the FI–
satisfiability of Θ. It holds that Ψ is P–satisfiable iff the graph representation
of Ψ does not contain any cycles involving at least one edge labeled with <.

We begin by considering the edges corresponding to linear constraints of the
form (73), (74) and (75)–(77), as depicted in Figure 9. Note that in the con-
struction of Ψ, as mentioned above, we chose one specific disjunct in (75).
Since at least one of the literals li1, li2, li3 is interpreted as true, for at
least one j in {1, 2, 3}, we chose the disjunct (aij)

−
1−Δ < (bij)

−
1−k, resulting

in (aij)
−
1−Δ < (cij)

−
1−Δ instead of (aij)

−
1 < (cij)

−
1 . For a cycle, however, we

would need (ai1)
−
1 < (ci1)

−
1 , (ai2)

−
1 < (ci2)

−
1 and (ai3)

−
1 < (ci3)

−
1 . From this we

conclude that the constraints of the form (73), (74) and (75)–(77) alone do
not lead to cycles in the graph representation of Ψ.

Any cycle would therefore have to include at least one edge corresponding to a
linear constraint of the form (84)–(89). Such a cycle can only occur if for some
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Fig. 10. Linear constraints (84)–(89).

i, j, r, s in {1, 2, . . . , n}, we have that (cij)
−
1−Δ < (ars)

−
k , (ars)

−
1−Δ < (crs)

−
1−Δ,

(crs)
−
1−Δ < (aij)

−
k and (aij)

−
1−Δ < (cij)

−
1−Δ. By construction, (cij)

−
1−Δ < (ars)

−
k

and (crs)
−
1−Δ < (aij)

−
k are only implied by Ψ iff lij ≡ ¬lrs. However, if this is the

case, either lij or lrs is false, and (ars)
−
1−Δ < (crs)

−
1−Δ and (aij)

−
1−Δ < (cij)

−
1−Δ

cannot both be contained in Ψ. Hence Ψ cannot contain any cycle, which
completes the proof.

Proposition 4 shows that, when no restrictions on the variables are imposed,
F t

X cannot be extended with atomic FI–formulas without losing tractability.
From the next proposition, it follows that this also holds for disjunctive FI-
formulas.
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Fig. 11. Linear constraints (93)–(95).

Proposition 5. Let rd and sd be bb�d , ee�d , be�d or eb�d (d ∈ R). FISAT(A)
is NP-complete if A contains any of the following sets of FI-formulas:

F t
X ∪ ⋃

(x,y,u,v)∈X4

{rd1(x, y) ≥ l1 ∨ sd2(u, v) ≥ l2} (90)

F t
X ∪ ⋃

(x,y,u,v)∈X4

{rd1(x, y) ≥ l1 ∨ sd2(u, v) ≤ k2} (91)

F t
X ∪ ⋃

(x,y,u,v)∈X4

{rd1(x, y) ≤ k1 ∨ sd2(u, v) ≤ k2} (92)

for any d1, d2 ∈ R, l1, l2 ∈ M0 and k1, k2 ∈ M1.

Proof. As an example, we show (90) for rd1 = sd2 = bb�0 . First note that if
∪(x,y)∈X2{rd1(x, y) ≥ l1} �⊆ F t

X or ∪(u,v)∈X2{sd2(u, v) ≥ l2} �⊆ F t
X , (90) follows

straightforwardly from Proposition 4. Therefore, we only need to consider the
case where l1 = l2 = 1. We will establish that FISAT(F t

X∪
⋃

(x,y)∈X2{bb�(x, y) ≥
1−Δ}), which is NP-complete by Proposition 4, can be polynomially reduced
to FISAT(F t

X ∪ ⋃
(x,y,u,v)∈X4{bb�(x, y) ≥ 1 ∨ bb�(u, v) ≥ 1}).

Let Θ1 be a set of FI–formulas from F t
X ∪ ⋃

(x,y)∈X2{bb�(x, y) ≥ 1 − Δ}. We
construct a set Θ2 of FI-formulas from FISAT(F t

X ∪ ⋃
(x,y,u,v)∈X4{bb�(x, y) ≥

1∨bb�(u, v) ≥ 1}) by replacing every FI-formula in Θ1 of the form bb�(x, y) ≥
1 − Δ by the following FI-formulas

bb�(x, v) ≥ 1 ∨ bb�(u, y) ≥ 1

bb�(u, x) ≤ Δ

bb�(y, v) ≤ Δ

giving rise to the following linear constraints:

x−
1 < v−

Δ ∨ u−
1 < y−

Δ (93)

{x−
Δ ≤ u−

2Δ, x−
2Δ ≤ u−

3Δ, . . . , x−
1−Δ ≤ u−

1 } (94)

{v−
Δ ≤ y−

2Δ, v−
2Δ ≤ y−

3Δ, . . . , v−
1−Δ ≤ y−

1 } (95)

These linear constraints are depicted in Figure 11. On the other hand, the
corresponding FI–formula bb�(x, y) ≥ 1 − Δ from Θ1 gives rise to

x−
1−Δ < y−

Δ ∨ x−
1 < y−

2Δ
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Let Ψ1 and Ψ2 be the sets of linear constraints corresponding to Θ1 and Θ2

respectively. By Proposition 3, it suffices to show that Ψ1 is P–satisfiable iff
Ψ2 is P–satisfiable. Clearly, if I is a P–model of Ψ2, I is also a P–model of Ψ1.
Conversely, we show that if I is a P–model of Ψ1, there exists a P–model I ′ of
Ψ2. For all variables a occurring in Ψ1, we define I ′(a) = I(a). Moreover, for
additional variables occurring in (93)–(95), I ′ is defined as follows. For each
k in {2Δ, 3Δ, . . . , 1}, we define

I ′(u−
k ) = I(x−

k−Δ)

while for each k in {Δ, . . . , 1 − 2Δ, 1 − Δ}, we define

I ′(v−
k ) = I(y−

k+Δ)

Finally, we define

I ′(u−
Δ) = I ′(u−

2Δ)

I ′(v−
1 ) = I ′(v−

1−Δ)

Note that I ′(x−
1−Δ) < I ′(y−

Δ) ∨ I ′(x−
1 ) < I ′(y−

2Δ) implies that I ′ satisfies (93),
as I ′(x−

1−Δ) = I ′(u−
1 ) and I ′(v−

Δ) = I ′(y−
2Δ). Clearly, I ′ also satisfies (94) and

(95), hence I ′ is a P–model of Ψ2.

To find tractable sets of FI–formulas that are larger than F t
X , we can impose

restrictions on the variables in the FI–formulas. For example, it can be shown
that bb�d (x, x) = ee�d (x, x) = eb�d (x, x) = 0 for any d ≥ 0 [41]. Hence, for
example, bb�d (x, x) ≤ k is satisfied by any FI–interpretation for every k ∈ M1,
while no FI–interpretation can satisfy bb�d (x, x) ≥ l for l ∈ M0. Therefore, if
φ is an FI–formula from F t

X , FISAT(F t
X ∪ {φ ∨ bb�d (x, x) ≤ k1 ∨ ee�d (x, x) ≤

k2 ∨ bb�d (z, z) ≥ l1}) is still tractable. In the same way, if k1 ≤ k2, a formula
like bb�d (x, y) ≥ k1 ∨ bb�d (x, y) ≤ k2 will be satisfied by any FI-interpretation.

These extensions of F t
X are of limited practical value because of their rather

trivial character. More useful tractable extensions can be derived by consid-
ering disjunctive FI–formulas that give rise to disjunctive linear constraints
which are Horn. For example, let φ be an FI–formula from F t

X and let the
corresponding set of linear constraints be given by {ρ1, ρ2, . . . , ρs}. An FI–
formula like φ ∨ bb�d (x, y) ≥ Δ ∨ bb�−d(y, x) ≥ Δ gives rise to the set of linear
constraints {α1, α2, . . . , αs}, where

αi = ρi ∨ x−
Δ < y−

Δ − d ∨ x−
2Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1 − d

∨ y−
Δ − d < x−

Δ ∨ y−
2Δ − d < x−

2Δ ∨ · · · ∨ y−
1 − d < x−

1

= ρi ∨ x−
Δ �= y−

Δ − d ∨ x−
2Δ �= y−

2Δ − d ∨ · · · ∨ x−
1 �= y−

1 − d

In other words, each αi is a Horn linear constraint (i ∈ {1, 2, . . . , s}), hence
FISAT(F t

X ∪ {φ ∨ bb�d (x, y) ≥ Δ ∨ bb�d (y, x) ≥ Δ}) is tractable.
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More generally, let the set GX of FI–formulas be defined as follows:

GX =
⋃

(x,y)∈X2

⋃
d∈R

{bb�d (x, y) ≥ Δ ∨ bb�−d(y, x) ≥ Δ,

ee�d (x, y) ≥ Δ ∨ ee�−d(y, x) ≥ Δ,

be�d (x, y) ≥ 1 ∨ be�−d(y, x) ≥ 1}

Furthermore, let HX be recursively defined as follows

(1) If φ ∈ F t
X , then φ ∈ HX

(2) If φ1 ∈ HX and φ2 ∈ GX , then (φ1 ∨ φ2) ∈ HX

(3) HX contains no other elements

As any FI–formula in HX corresponds to a Horn linear constraint, or a set of
Horn linear constraints, we have that FISAT(HX) is tractable.

When Δ = 1 (i.e., M = {0, 1}), we know by Proposition 1 that a set of FI–
formulas is FI–satisfiable iff there exists an interpretation that assigns a crisp
interval to every variable. The set of FI–formulas HX is then exactly equal to
the set of all Horn linear constraints involving the endpoints of these crisp in-
tervals. Hence, for Δ = 1, our (tractable) fuzzy temporal reasoning framework
degenerates to reasoning about (Horn) linear constraints. By decreasing the
value of Δ to 1

2
, 1

3
, 1

4
, 1

5
, . . . , an increasingly higher expressiveness is achieved.

7 Entailment

Let Θ be a set of FI–formulas over X, and γ an FI–formula over X. We say that
Θ entails γ, written Θ |= γ, iff every FI–model of Θ is also an FI–model of {γ}.
The notion of entailment is important for applications, because it allows to
draw conclusions that are not explicitly contained in an initial set of assertions.
Obviously, Θ |= γ if Θ and the negation of γ can never be satisfied at the
same time. For example, Θ |= bb�d (x, y) ≤ k iff Θ∪{bb�d (x, y) > k} is not FI–
satisfiable. Unfortunately, our procedure for checking FI–satifiability cannot
be applied for strict inequalities like bb�d (x, y) > k, as Proposition 1 does
not hold in this case. However, for every FIM–interpretation I, we have that
bb�d (xI , yI) > k iff bb�d (xI , yI) ≥ k + Δ. Inspired by this observation, we say
that Θ weakly entails γ (w.r.t. M), written Θ |=M γ iff every FIM–model of Θ
is also an FIM–model of {γ}. Checking weak entailment can straightforwardly
be reduced to checking FI–satisfiability.
Proposition 6. Let Θ be a set of FI–formulas and let r(x, y) be one of
bb�d (x, y), ee�d (x, y), be�d (x, y) and eb�d (x, y) (d ∈ R, (x, y) ∈ X2). For k
in M1 and l in M0 it holds that
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(1) Θ |=M r(x, y) ≥ l iff Θ ∪ {r(x, y) ≤ l − Δ} is not FI–satisfiable.
(2) Θ |=M r(x, y) ≤ k iff Θ ∪ {r(x, y) ≥ k + Δ} is not FI–satisfiable.

Proof. The proof follows trivially from the fact that for any FIM–interpretation
I, r(xI , yI) < l implies r(xI , yI) ≤ l−Δ and r(xI , yI) > k implies r(xI , yI) ≥
k + Δ.

As the name already suggests, weak entailment is a weaker notion than en-
tailment, i.e., (Θ |= γ) ⇒ (Θ |=M γ). Nonetheless, weak entailment can still
be used in applications to derive sound conclusions, by virtue of the following
proposition.
Proposition 7. Let Θ be a set of FI–formulas and let r(x, y) be one of
bb�d (x, y), ee�d (x, y), be�d (x, y) and eb�d (x, y) (d ∈ R, (x, y) ∈ X2). For k
in M1 \ {1 − Δ} and l in M0 \ {Δ} it holds that

(1) If Θ |=M r(x, y) ≥ l then Θ |= r(x, y) ≥ l − Δ
(2) If Θ |=M r(x, y) ≤ k then Θ |= r(x, y) ≤ k + Δ

Proof. If Θ |=M r(x, y) ≥ l, then by Proposition 6, Θ∪{r(x, y) ≤ l−Δ} is not
FI–satisfiable. Hence in every FI–interpretation of Θ, it holds that r(x, y) >
l − Δ, and in particular, r(x, y) ≥ l − Δ. The second implication is shown in
the same way.

In the remainder of this section, we will investigate when weak entailment
coincides with entailment, i.e., in which situations Proposition 6 also holds for
(regular) entailment. Clearly Θ∪{φ1∨φ2∨· · ·∨φn} |= γ iff Θ∪{φ1} |= γ and
Θ ∪ {φ2} |= γ and . . . and Θ ∪ {φn} |= γ. Therefore, we can restrict ourselves
to the case where Θ only contains atomic FI–formulas.

As we discussed in Section 5, for each set of FI–formulas Θ, we can find a set
of linear constraints Ψ which is P–satisfiable iff Θ is FI–satisfiable. If Ψ does
not contain any disjunctive linear constraints, we can represent Ψ as a graph
G whose nodes correspond to variables like x−

l or x+
l (l ∈ M0). If Ψ contains a

linear constraint x+d ≤ y, we add an edge from the node corresponding with
x to the node corresponding with y which is labeled with (≤, d). Similarly, if
Ψ contains a linear constraint x + d < y, we add an edge labeled with (<, d).
The sum of two labels (≤, d1) and (≤, d2) is defined as (≤, d1 + d2), while
the sum of (<, d1) and (≤, d2), (≤, d1) and (<, d2), or (<, d1) and (<, d2), is
defined as (<, d1 + d2). A cycle for which the edge labels sum up to (≤, d),
with d > 0, or to (<, d′), with d′ ≥ 0, is called a forbidden cycle. It holds that
Ψ is P–satisfiable iff there are no forbidden cycles in G [25]. If Ψ does contain
disjunctive linear constraints, every choice of the disjuncts leads to a different
graph representation, and Ψ is P–satisfiable as soon as one of these graphs is
free of forbidden cycles.
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In the following, nodes corresponding to variables like x−
l will be called be-

ginning nodes, while nodes corresponding to variables like x+
l will be called

ending nodes. Furthermore, we will sometimes assume that Δ = 1
2p

for some

p ∈ N \ {0}. Nodes like x−
l or x+

l will then be called white nodes if l ∈
{2Δ, 4Δ, . . . , 1} and black nodes otherwise. Finally, for l ∈ M \ {0, Δ} and
k ∈ M1, x−

l−Δ (resp. x+
k+Δ) will be called the left neighbour of x−

l (resp. x+
k ),

while x−
k+Δ (resp. x+

l−Δ) will be called the right neighbour of x−
k (resp. x+

l ).

Graphs representing linear constraints derived from a set of FI–formulas ex-
hibit some interesting properties. In particular, the following two lemmas will
be useful in reducing entailment checking to FI–satisfiability checking, or,
equivalently, weak entailment checking.
Lemma 3. Let Δ = 1

2p
for some p ∈ N \ {0}, and let Θ be a (finite) set of

FI–formulas. Let Ψ be the corresponding set of linear constraints and let G
be the graph representation corresponding to a particular choice of disjuncts
for the disjunctive constraints in Ψ. Furthermore, assume that there is a path
in G from v to u in which each edge either corresponds to a linear constraint
of the form (46)–(48), or is the result of an FI–formula in Θ of the form
bb�d (x, y) ≤ k, ee�d (x, y) ≤ k, be�d (x, y) ≤ k, or eb�d (x, y) ≥ l for some k in
{0, 2Δ, 4Δ, . . . , 1 − 2Δ} and l in {2Δ, 4Δ, . . . , 1}). Assume, moreover, that:

(1) v is a black beginning node and u is a white beginning node, or
(2) v is a white ending node and u is a black ending node, or
(3) v is a white ending node and u is a white beginning node, or
(4) v is a black beginning node and u is a black ending node.

It holds that there is a path in G from v to the left neighbour of u, as well as
a path from the right neighbour of v to u. Moreover, for both paths, the edge
labels sum up to the same value as for the original path.

Proof. The proof is presented in Appendix A.3.

We define the right(resp. left) neighbour of an edge from v to u as the edge
from the right (resp. left) neighbour of v to the right (resp. left) neighbour of
u.
Lemma 4. Let Δ = 1

2p
for some p in N \ {0}, and let Θ and Ψ be defined

as before. Moreover, assume that all upper and lower bounds in Θ are taken
from {0, 2Δ, 4Δ, . . . , 1}. Let I be a P–model of Ψ, and let G1 be the corre-
sponding graph representation of Ψ without forbidden cycles. Let the graph G2

be constructed from G1 by replacing

(1) edges resulting from an FI–formula of the form bb�d (x, y) ≥ l by their
right neighbour if they start from a black beginning node;

(2) edges resulting from an FI–formula of the form ee�d (x, y) ≥ l by their
right neighbour if they start from a white ending node;
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(3) edges resulting from an FI–formula of the form be�d (x, y) ≥ l or eb�d (x, y) ≤
k by their right neighbour if they start from a black beginning node.

It holds that G2 does not contain any forbidden cycles.

Proof. The proof is presented in Appendix A.4

Using Lemma 3 and Lemma 4, we can show the following lemma about FI–
satisfiability when all upper and lower bounds are of the form 2iΔ.
Lemma 5. Let Δ = 1

2p
for some p in N \ {0}, let Θ be a set of atomic FI–

formulas in which all upper and lower bounds are taken from {0, 2Δ, 4Δ, . . . , 1}.
For l in {0, 2Δ, 4Δ, . . . , 1 − 2Δ} and k in {2Δ, 4Δ, . . . , 1}, it holds that:

(1) Θ ∪ {bb�d (x, y) ≥ l + Δ} is FI–satisfiable iff Θ ∪ {bb�d (x, y) ≥ l + 2Δ} is
FI–satisfiable;

(2) Θ ∪ {ee�d (x, y) ≥ l + Δ} is FI–satisfiable iff Θ ∪ {ee�d (x, y) ≥ l + 2Δ} is
FI–satisfiable;

(3) Θ ∪ {be�d (x, y) ≥ l + Δ} is FI–satisfiable iff Θ ∪ {be�d (x, y) ≥ l + 2Δ} is
FI–satisfiable;

(4) Θ ∪ {eb�d (x, y) ≤ k − Δ} is FI–satisfiable iff Θ ∪ {eb�d (x, y) ≤ k − 2Δ}
is FI–satisfiable.

Proof. The proof is presented in Appendix A.5.

Finally, we can show the following characterization of entailment in terms of
FI–satisfiability for FI–formulas of the form bb�d (x, y) ≤ k, ee�d (x, y) ≤ k,
be�d (x, y) ≤ k, and eb�d (x, y) ≥ l.
Proposition 8. Let Θ be a set of atomic FI–formulas. It holds for k in M1

and l in M0 that

(1) Θ |= bb�d (x, y) ≤ k iff Θ ∪ {bb�d (x, y) ≥ k + Δ} is not FI–satisfiable;
(2) Θ |= ee�d (x, y) ≤ k iff Θ ∪ {ee�d (x, y) ≥ k + Δ} is not FI–satisfiable;
(3) Θ |= be�d (x, y) ≤ k iff Θ ∪ {be�d (x, y) ≥ k + Δ} is not FI–satisfiable;
(4) Θ |= eb�d (x, y) ≥ l iff Θ ∪ {eb�d (x, y) ≤ l − Δ} is not FI–satisfiable.

Proof. As an example, we show that Θ |= bb�d (x, y) ≤ k iff Θ ∪ {bb�d (x, y) ≥
k+Δ} is not FI–satisfiable. Clearly, if Θ∪{bb�d (x, y) ≥ k+Δ} is FI–satisfiable,
then Θ �|= bb�d (x, y) ≤ k. Therefore, we only need to show that if there is an FI–
model of Θ which does not satisfy bb�d (x, y) ≤ k, it holds that Θ∪{bb�d (x, y) ≥
k + Δ} is FI–satisfiable.

Let I be an FI–model of Θ, and assume that bb�d (xI , yI) > k. There exists an n
in N such that bb�d (xI , yI) ≥ k+ Δ

2n . Obviously, we have that Θ∪{bb�d (x, y) ≥
k + Δ

2n} is FI–satisfiable. By letting Δ
2n play the role of Δ, we obtain using
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Lemma 5 that Θ ∪ {bb�d (x, y) ≥ k + Δ
2n−1} is FI–satisfiable. Again applying

Lemma 5 reveals that also Θ ∪ {bb�d (x, y) ≥ k + Δ
2n−2} is FI–satisfiable. By

repeating this argument n times, we find that Θ ∪ {bb�d (x, y) ≥ k + Δ} is
FI–satisfiable.

To find a characterization of entailment for FI–formulas of the form bb�d (x, y) ≥
l, ee�d (x, y) ≥ l, be�d (x, y) ≥ l, and eb�d (x, y) ≤ k, we restrict ourselves to the
case where Θ only contains FI–formulas from F t

X .
Lemma 6. Let Δ = 1

2p
for some p ∈ N\{0}, let Θ be a set of FI–formulas from

F t
X in which all upper and lower bounds are taken from {0, 2Δ, 4Δ, . . . , 1}. For

l in {0, 2Δ, 4Δ, . . . , 1 − 2Δ} and k in {2Δ, 4Δ, . . . , 1}, it holds that:

(1) Θ ∪ {be�d (x, y) ≤ k − Δ} is FI–satisfiable iff Θ ∪ {be�d (x, y) ≤ k − 2Δ}
is FI–satisfiable;

(2) Θ ∪ {eb�d (x, y) ≥ l + Δ} is FI–satisfiable iff Θ ∪ {eb�d (x, y) ≥ l + 2Δ} is
FI–satisfiable.

Moreover, for k in {4Δ, 6Δ, . . . , 1}, it holds that

(1) Θ∪{bb�d (x, y) ≤ k−Δ} is FI–satisfiable iff Θ∪{bb�d (x, y) ≤ k− 2Δ} is
FI–satisfiable;

(2) Θ ∪ {ee�d (x, y) ≤ k − Δ} is FI–satisfiable iff Θ ∪ {ee�d (x, y) ≤ k − 2Δ}
is FI–satisfiable.

Proof. The proof is presented in Appendix A.6.

Note that the FI–satisfiability of Θ ∪ {bb�d (x, y) ≤ Δ} does not necessarily
imply that Θ∪{bb�d (x, y) ≤ 0} is FI–satisfiable. For example, for d′+d > 0, it
holds that {bb�d′ (y, x) ≤ 0, bb�d (x, y) ≤ Δ} is FI–satisfiable, while {bb�d′ (y, x) ≤
0, bb�d (x, y) ≤ 0} is not. Similarly, we have that {ee�d′ (y, x) ≤ 0, ee�d (x, y) ≤
Δ} is FI–satisfiable and {ee�d′ (y, x) ≤ 0, e�d (x, y) ≤ 0} is not.
Proposition 9. Let Θ be a set of atomic FI–formulas from F t

X . For k in M1

and l in M0, it holds that

(1) Θ |= be�d (x, y) ≥ l iff Θ ∪ {be�d (x, y) ≤ l − Δ} is not FI–satisfiable;
(2) Θ |= eb�d (x, y) ≤ k iff Θ ∪ {eb�d (x, y) ≥ k + Δ} is not FI–satisfiable.

Moreover, for l in M0 \ {Δ}, it holds that

(1) Θ |= bb�d (x, y) ≥ l iff Θ ∪ {bb�d (x, y) ≤ l − Δ} is not FI–satisfiable;
(2) Θ |= ee�d (x, y) ≥ l iff Θ ∪ {ee�d (x, y) ≤ l − Δ} is not FI–satisfiable.

Proof. The proof is entirely analogous to the proof of Proposition 8, using
Lemma 6 instead of Lemma 5.
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Proposition 9 does not hold in general when Θ contains atomic FI–formulas
from FX \ F t

X . As a counterexample, let Δ = 0.25 and Θ = {bb�(a, e) ≥
0.75, bb�(d, g) ≥ 0.75, bb�(e, f) ≥ 1, bb�(b, c) ≥ 1, bb�(b, a) ≤ 0.5, bb�(d, c) ≤
0.5, bb�(g, f) ≤ 0.5, bb�(d, e) ≤ 0.75}. It holds that Θ∪{bb�(a, g) ≤ 0.375} is
FI–satisfiable, implying that Θ �|= bb�(a, g) ≥ 0.5, whereas Θ ∪ {bb�(a, g) ≤
0.25} is not FI–satisfiable.

Note that Proposition 9 provides no characterization of entailment for the
case where bb�d (x, y) ≥ Δ or ee�d (x, y) ≥ Δ. However, to check entailment
for bb�d (x, y) ≥ Δ or ee�d (x, y) ≥ Δ, we can always redefine the set M as
{0, Δ

2
, Δ, . . . , 1 − Δ

2
, 1}, i.e., we let Δ

2
play the role of Δ. Also note that from

Proposition 8 and 9, it follows that the tractability of F t
X w.r.t. FI–satisfiability

carries over to entailment checking. Indeed, if Θ only contains FI–formulas
from F t

X , Θ |= γ can be checked by checking the FI–satisfiability of a set of FI–
formulas which contains at most one FI–formula which is not in F t

X . Although
this one FI–formula may correspond to a disjunctive linear constraint, the
number of disjuncts is bounded by |M |. Therefore, FI–satisfiability can be
checked in polynomial time, using O(|M |) P–satisfiability checks of sets of
linear constraints without disjuncts.

In addition to entailment checking, it may also be of interest to know what the
strongest upper bound or lower bound is for the value of bb�d (x, y), ee�d (x, y),
be�d (x, y) or eb�d (x, y), given that a set of FI–formulas Θ is satisfied. As a
corollary of Proposition 8, we find that the strongest upper bound of bb�d (x, y),
ee�d (x, y) and be�d (x, y), as well as the strongest lower bound of eb�d (x, y), is
always a value from M :
Corollary 1. Let Θ be a set of atomic FI–formulas. It holds that (d ∈ R,
(x, y) ∈ X2)

inf{k|k ∈ [0, 1] ∧ Θ |= bb�d (x, y) ≤ k} = min{k|k ∈ M ∧ Θ |= bb�d (x, y) ≤ k}
inf{k|k ∈ [0, 1] ∧ Θ |= ee�d (x, y) ≤ k} = min{k|k ∈ M ∧ Θ |= ee�d (x, y) ≤ k}
inf{k|k ∈ [0, 1] ∧ Θ |= be�d (x, y) ≤ k} = min{k|k ∈ M ∧ Θ |= be�d (x, y) ≤ k}
sup{k|k ∈ [0, 1] ∧ Θ |= eb�d (x, y) ≥ k} = max{k|k ∈ M ∧ Θ |= eb�d (x, y) ≥ k}

In the same way, as a corollary of Proposition 9, we can establish the strongest
lower bound of bb�d (x, y), ee�d (x, y) and be�d (x, y), as well as the strongest
upper bound of eb�d (x, y), given that a set of atomic FI–formulas from F t

X is
satisfied.
Corollary 2. Let Θ be a set of atomic FI–formulas from F t

X . It holds that
(d ∈ R, (x, y) ∈ X2)

sup{k|k ∈ [0, 1] ∧ Θ |= be�d (x, y) ≥ k} = max{k|k ∈ M ∧ Θ |= be�d (x, y) ≥ k}
inf{k|k ∈ [0, 1] ∧ Θ |= eb�d (x, y) ≤ k} = min{k|k ∈ M ∧ Θ |= eb�d (x, y) ≤ k}
If Θ |= bb�d (x, y) ≥ Δ or Θ ∪ {bb�d (x, y) ≤ 0} is FI–satisfiable, resp. Θ |=
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ee�d (x, y) ≥ Δ or Θ ∪ {ee�d (x, y) ≤ 0} is FI–satisfiable, it holds that

sup{k|k ∈ [0, 1] ∧ Θ |= bb�d (x, y) ≥ k} = max{k|k ∈ M ∧ Θ |= bb�d (x, y) ≥ k}
sup{k|k ∈ [0, 1] ∧ Θ |= ee�d (x, y) ≥ k} = max{k|k ∈ M ∧ Θ |= ee�d (x, y) ≥ k}

Finally, if Θ |= bb�d (x, y) ≥ Δ while Θ∪{bb�d (x, y) ≤ 0} is not FI–satisfiable,
resp. Θ |= ee�d (x, y) ≥ Δ while Θ ∪ {ee�d (x, y) ≤ 0} is not FI–satisfiable, it
holds that in any FI–model I of Θ

bb�d (xI , yI) > 0

ee�d (xI , yI) > 0

while for any k > 0, there exists an FI–model I of Θ in which

bb�d (xI , yI) < k

ee�d (xI , yI) < k

In other words, in this last case, the strongest lower bound implied by Θ is a
strict lower bound.

As becomes clear from Corollary 1 and 2, finding the strongest upper and
lower bounds on bb�d (x, y), ee�d (x, y), be�d (x, y), or eb�d (x, y) implied by Θ can
be done by O(log(|M |)) FI–satisfiability checks, using binary search.

8 Concluding remarks

In this paper, we have shown how temporal reasoning about fuzzy time in-
tervals can be reduced to reasoning about linear constraints. An important
advantage of this approach is that we can draw upon well–established results
for solving disjunctive temporal reasoning problems, as well as reuse exist-
ing, optimized tools for crisp temporal reasoning. The problem of satisfiability
checking was shown to be NP–complete. Hence, introducing vagueness in tem-
poral reasoning does not increase the computational complexity. Moreover, an
important tractable subfragment HX was identified in this paper, which for
Δ = 1 degenerates to the well–known framework of Horn linear constraints.
In general, for Δ = 1 our framework degenerates to reasoning about crisp
intervals, i.e., if only 0 and 1 are used as upper and lower bounds, a set of FI–
formulas can be satisfied by fuzzy time intervals iff it can be satisfied by crisp
intervals. For Δ = 0.5, the framework degenerates to reasoning about three
valued intervals. Such intervals can be represented as a pair of crisp intervals
(a, a), where a contains the dates which fully belong to the vague time period
and a contains the dates which at least belong to the vague time period to
some extent (a ⊆ a). This essentially corresponds to a temporal counterpart
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of the Egg-Yolk calculus [11] for spatial reasoning about vague regions. Fur-
ther decreasing the value of Δ leads to an increasingly higher expressiveness,
requiring, however, an increasing amount of computation time.

In contrast to crisp temporal reasoning frameworks, entailment checking in our
framework cannot straightforwardly be reduced to satisfiability checking. To
cope with this, we have introduced the notion of weak entailment, which can
be used to derive sound conclusions. Next, we have investigated in Proposition
8 and Proposition 9 how entailment relates to weak entailment. Finally, we
have discussed how the strongest upper and lower bound on the possible values
of a fuzzy temporal relation, applied to a particular pair of variables, can be
obtained.

Our work is complementary to existing approaches for fuzzy temporal reason-
ing, which have focused on modelling possibilistic uncertainty and preferences
(e.g., [4]). An interesting direction for future work might be to combine our
framework with, for example, the IAfuz framework from [4] to allow temporal
reasoning with uncertain information about vague time periods, or with fuzzy
temporal constraint networks to allow imprecise metric constraints like “A
happened about three weeks before B”. Further investigation is also needed to
optimize the reasoning procedures. Properties about the specific structure of
the linear constraints that arise from a set of FI–formulas may be very useful
to prune the search space.

A Proofs

A.1 Proof of Lemma 1

First, we consider (12):

bb�d (A, B) ≥ l

⇔ sup
p∈R

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))) ≥ l

⇔ (∀ε > 0)(sup
p∈R

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))) > l − ε)

⇔ (∀ε > 0)(∃p ∈ R)(TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))) > l − ε)

If A(p) = 0, it holds that T (A(p), infq∈R IT (B(q), L�
d (p, q))) = 0. Therefore,

we can assume that A(p) > 0. Hence, there must exist a λ in ]0, 1] such that
λ = A(p) and thus p ∈ Aλ:

⇔ (∀ε > 0)(∃λ ∈]0, 1])(∃p ∈ Aλ)(TW (λ, inf
q∈R

IW (B(q), L�
d (p, q))) > l − ε)
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⇔ (∀ε > 0)(∃λ ∈]0, 1])(∃p ∈ Aλ)(λ + inf
q∈R

IW (B(q), L�
d (p, q)) − 1 > l − ε)

⇔ (∀ε > 0)(∃λ ∈]0, 1])(∃p ∈ Aλ)(inf
q∈R

IW (B(q), L�
d (p, q)) > l + 1 − λ − ε)

As any fuzzy time interval is upper semi–continuous, the mapping defined by
1−B(q) for each q in R is lower semi–continous. Moreover, as L�

d (p, q) is lower
semi–continuous, the mapping defined by IW (B(q), L�

d (p, q)) for each q in R is
lower semi–continuous as well. Hence, the infimum infq∈R IW (B(q), L�

d (p, q))
is attained for some q in R. We therefore find:

⇔ (∀ε > 0)(∃λ ∈]0, 1])(∃p ∈ Aλ)(∀q ∈ R)

(IW (B(q), L�
d (p, q)) > l + 1 − λ − ε)

For λ ≤ l− ε, IW (B(q), L�
d (p, q)) > l +1−λ− ε can never be satisfied, hence:

⇔ (∀ε > 0)(∃λ ∈]l − ε, 1])(∃p ∈ Aλ)(∀q ∈ R)

(IW (B(q), L�
d (p, q)) > l + 1 − λ − ε)

If L�
d (p, q) = 1, then IW (B(q), L�

d (p, q)) = 1, while IW (B(q), L�
d (p, q)) =

1 − B(q) if L�
d (p, q) = 0. We thereby obtain:

⇔ (∀ε > 0)(∃λ ∈]l − ε, 1])(∃p ∈ Aλ)(∀q ∈ R)

(L�
d (p, q) = 1 ∨ 1 − B(q) > l + 1 − λ − ε)

⇔ (∀ε > 0)(∃λ ∈]l − ε, 1])(∃p ∈ Aλ)(∀q ∈ R)

(L�
d (p, q) = 1 ∨ ¬(B(q) ≥ λ + ε − l))

If ε > l, then ¬(B(q) ≥ λ + ε− l)) can always be satisfied by choosing λ = 1.
This yields:

⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε, 1])(∃p ∈ Aλ)(∀q ∈ R)

(L�
d (p, q) = 1 ∨ ¬(B(q) ≥ λ + ε − l))

⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε, 1])(∃p ∈ Aλ)(∀q ∈ R)

(L�
d (p, q) = 1 ∨ ¬(q ∈ Bλ+ε−l))

⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε, 1])(∃p ∈ Aλ)(∀q ∈ R)(q ∈ Bλ+ε−l ⇒ L�
d (p, q) = 1)

⇔ (∀ε ∈]0, l])(∃λ ∈]l − ε, 1])(bb�d (Aλ, Bλ+ε−l))

proving (12).

Turning now to (13), we find:

bb�d (A, B) ≤ k

⇔ sup
p∈R

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))) ≤ k

⇔ (∀p ∈ R)(TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))) ≤ k) (A.1)
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If A(p) = 0, then TW (A(p), infq∈R IW (B(q), L�
d (p, q))) ≤ k is trivially satisfied.

Consequently, it is sufficient to show that for every p satisfying A(p) > 0, it
holds that TW (A(p), infq∈R IW (B(q), L�

d (p, q))) ≤ k, or equivalently, to show
that for every λ ∈]0, 1] and every p in Aλ:

⇔ (∀λ ∈]0, 1])(∀p ∈ Aλ)(TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))) ≤ k) (A.2)

which implies

(∀λ ∈]0, 1])(∀p ∈ Aλ)(TW (λ, inf
q∈R

IW (B(q), L�
d (p, q))) ≤ k) (A.3)

since p ∈ Aλ means that A(p) ≥ λ. Conversely, we also have that (A.3) implies
(A.2). Indeed, if (A.2) is violated, i.e., TW (A(p0), infq∈R IW (B(q), L�

d (p0, q))) >
k for some λ0 ∈]0, 1] and some p0 ∈ Aλ0 , then (A.3) is violated for λ = A(p0)
and p = p0. We conclude that (A.1) is equivalent to (A.3). We furthermore
find

(∀p ∈ R)(TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))) ≤ k)

⇔ (∀λ ∈]0, 1])(∀p ∈ Aλ)(TW (λ, inf
q∈R

IW (B(q), L�
d (p, q))) ≤ k)

⇔ (∀λ ∈]0, 1])(∀p ∈ Aλ)(λ + inf
q∈R

IW (B(q), L�
d (p, q)) − 1 ≤ k)

⇔ (∀λ ∈]0, 1])(∀p ∈ Aλ)(inf
q∈R

IW (B(q), L�
d (p, q)) ≤ 1 − λ + k)

If λ ≤ k, then IW (B(q), L�
d (p, q)) ≤ 1 − λ + k is trivially satisfied. Therefore,

we have

⇔ (∀λ ∈]k, 1])(∀p ∈ Aλ)(inf
q∈R

IW (B(q), L�
d (p, q)) ≤ 1 − λ + k)

⇔ (∀λ ∈]k, 1])(∀p ∈ Aλ)(∃q ∈ R)(IW (B(q), L�
d (p, q)) ≤ 1 − λ + k)

⇔ (∀λ ∈]k, 1])(∀p ∈ Aλ)(∃q ∈ R)(L�
d (p, q) = 0 ∧ B(q) ≥ λ − k)

⇔ (∀λ ∈]k, 1])(∀p ∈ Aλ)(∃q ∈ R)(L�
d (p, q) = 0 ∧ q ∈ Bλ−k)

⇔ (∀λ ∈]k, 1])(∀p ∈ Aλ)(∃q ∈ Bλ−k)(L
�
d (p, q) = 0)

⇔ (∀λ ∈]k, 1])(∀p ∈ Aλ)(∃q ∈ Bλ−k)(¬(L�
d (p, q) = 1))

⇔ (∀λ ∈]k, 1])(¬(∃p ∈ Aλ)(∀q ∈ Bλ−k)(L
�
d (p, q) = 1))

⇔ (∀λ ∈]k, 1])(¬bb�d (Aλ, Bλ−k))

⇔ (∀λ ∈]k, 1])(bb�
d (Bλ−k, Aλ))

which proves (13). The characterizations (14)–(19) can be shown in the same
way as (12) or (13).
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A.2 Proof of Lemma 2

By definition of bb�d , we obtain

bb�d (A, B)

= sup
p∈R

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q)))

= max( sup
p≥mb−d

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))),

sup
p<mb−d

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))))

From the convexity of B, we establish that B is increasing for values smaller
than mb and decreasing for values greater than mb. Hence, we obtain

inf
q∈R

IW (B(q), L�
d (p, q)) =

⎧⎨
⎩IW (B(p + d), L�

d (p, p + d)) if p < mb − d

IW (B(mb), L
�
d (p, mb)) if p ≥ mb − d

We thus find

max( sup
p≥mb−d

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))),

sup
p<mb−d

TW (A(p), inf
q∈R

IW (B(q), L�
d (p, q))))

= max( sup
p≥mb−d

TW (A(p), IW (B(mb), L
�
d (p, mb))),

sup
p<mb−d

TW (A(p), IW (B(p + d), L�
d (p, p + d))))

= max( sup
p≥mb−d

TW (A(p), IW (1, 0)), sup
p<mb−d

TW (A(p), IW (B(p + d), 0)))

= max( sup
p≥mb−d

TW (A(p), 0), sup
p<mb−d

TW (A(p), 1 − B(p + d)))

= sup
p<mb−d

TW (A(p), 1 − B(p + d))

Due to its convexity, A is increasing for values smaller than ma and decreasing
for values greater than ma. Hence if p < mb − d and p > ma, it holds that
TW (A(p), 1−B(p+d))) ≤ TW (A(ma), 1−B(ma +d)). Therefore, we have that

sup
p<mb−d

TW (A(p), 1 − B(p + d)) = sup
p<mb−d,p≤ma

TW (A(p), 1 − B(p + d))

proving (20). Eq. (21) is shown entirely analogously.
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A.3 Proof of Lemma 3

As an example, we show that there is a path from v to the left neighbour
of u when v is a black beginning node and u is a white beginning node. Let
v0 = v, v1, v2, . . . , vn = u be a path in G from v to u. If an edge from vj to vj+1

in G corresponds to a linear constraint that is the result of an FI–formula of
the form bb�d (x, y) ≤ k, with k ∈ {0, 2Δ, 4Δ, . . . , 1−2Δ}, then vj and vj+1 are
either both white beginning nodes, or both black beginning nodes. If this edge
is the result of an FI–formula of the form ee�d (x, y) ≤ k, vj and vj+1 are both
white ending nodes or both black ending nodes. Finally, if the edge from vj to
vj+1 is the result of an FI–formula of the form be�d (x, y) ≤ k, or an FI–formula
of the form eb�d (x, y) ≥ l, with l ∈ {2Δ, 4Δ, . . . , 1}, either vj is a white ending
node and vj+1 a black beginning node, or vj is a black ending node and vj+1

a white beginning node. The only remaining possibility is that the edge from
vj to vj+1 corresponds to a linear constraint of the form (46)–(48).

First assume that none of the edges on the path from v to u corresponds to
a linear constraint of the form (46)–(48). Then all of the nodes v1, . . . , vn−1

need to be beginning nodes, as none of the remaining types of edges starts
at a beginning node and ends at an ending node. This means that all edges
(v0, v1), (v1, v2), . . . , (vn−1, vn) would correspond to a linear constraint that is
the result of an FI–formula of the form bb�d (x, y) ≤ k. Thus, from the fact
that v is a black node, we establish that v1, v2, . . . , vn are all black nodes. This,
however, is not possible since u = vn is a white beginning node.

Hence, at least one of the edges corresponds to a linear constraint of the form
(46)–(48). Let (vs, vs+1) be the last of these edges. If (vs, vs+1) corresponds to
an edge of the form (46), vs+1 is a white ending node. Then all edges between
vs+1 and vn correspond to FI–formulas of the form ee�d (x, y) ≤ k, be�d (x, y) ≤
k, or eb�d (x, y) ≥ l. This would imply that the nodes vs+2, vs+3, . . . , vn are all
white ending nodes or black beginning nodes. This, however, is not possible
since u = vn is a white beginning node. Therefore, (vs, vs+1) has to correspond
to either (47) or (48). In both cases, vs+1 is the right neighbour of vs, and the
path v0, v1, . . . , vs, v

′
s+2, v

′
s+3, . . . , v

′
n, where v′

i denotes the left neighbour of vi,
is a path from v to the left neighbour v′

n of u. Moreover, the edge labels of
v′

s+2, v
′
s+3, . . . , v

′
n are the same as those of vs+2, vs+3, . . . , vn (i.e., (≤, 0)), and

the edge label of (vs, vs+1) is (≤, 0), which adds nothing to the sum of the edge
labels on the original path.
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Fig. A.1. The forbidden cycle in G2 is independent from the fact that the edge
(v′r, v′r+1) in G1 was replaced by (vr, vr+1).

A.4 Proof of Lemma 4

Assume that G2 contains a forbidden cycle v1, v2, . . . , vn, v1, and let (vr, vr+1)
be an edge in G2 that does not occur in G1. Then (vr, vr+1) is the right
neighbour of the edge (v′

r, v
′
r+1) from G1.

Moreover, first assume that vr is a white beginning node and vr+1 is a black
beginning node. Suppose that the edge from vr to vr+1 is the only edge
in the cycle that corresponds to an FI–formula of the form bb�d (x, y) ≥ l,
ee�d (x, y) ≥ l, be�d (x, y) ≥ l or eb�d (x, y) ≤ k. This means that the path
vr+1, vr+2, . . . , vn, v1, . . . , vr in G2 also exists in G1. Indeed, none of the con-
straints on the edges of this path fulfills the conditions for replacement in the
construction process of G2 from G1. Furthermore, all of the constraints on the
edges of this path fulfill the conditions of Lemma 3. Hence, we establish that
in G1 there is a path from vr+1 to v′

r whose edge labels sum up to the same
value as the edge labels of the path vr+1, vr+2, . . . , vr−1, vr. This would mean
that G1 contains the forbidden cycle consisting of the path from vr+1 to v′

r,
the edge from v′

r to v′
r+1 and the edge from v′

r+1 to vr+1. Note that the latter
edge exists since v′

r+1 is the left neighbour of vr+1.

Therefore, at least two edges in the forbidden cycle have to correspond to
an FI–formula of the form bb�d (x, y) ≥ l, ee�d (x, y) ≥ l, be�d (x, y) ≥ l or
eb�d (x, y) ≤ k. Let the edge from vs to vs+1 be the first such edge in the for-
bidden cyle after vr+1, and let the edge from vt to vt+1 be the last such edge in
the forbidden cycle before vr (where r + 1 = s or t + 1 = r are also allowed).
Figure A.1 depicts the forbidden cycle. It holds that vs is either a white be-
ginning node or a black ending node, because of the way we transformed G1

to G2. In both cases, we can establish by Lemma 3 that there is a path from
vr+1 to the left neighbour v′

s of vs whose edge labels sum up to the same value
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as those of the path from vr+1 to vs. In the same way, we have by construction
of G2 that vt+1 is either a black beginning node or a white ending node. From
Lemma 3, we obtain that there is a path from vt+1 to v′

r, whose edge labels
sum up to the same value as those of the path from vt+1 to vr.

Thus we have established that the forbidden cycle in G2 is independent from
the fact that the edge (v′

r, v
′
r+1) in G1 was replaced by (vr, vr+1). In a similar

way, we can show this result when vr is a black ending node and vr+1 is a
white ending node, or when vr is a white beginning node and vr+1 is a white
ending node. We can repeat this argument for every edge that was changed in
the transformation from G1 to G2. Hence, if G2 contained a forbidden cycle,
then G1 would contain a forbidden cycle as well.

A.5 Proof of Lemma 5

As an example, we show that Θ ∪ {bb�d (x, y) ≥ l + Δ} is FI–satisfiable iff
Θ ∪ {bb�d (x, y) ≥ l + 2Δ} is FI–satisfiable. If Θ is not FI–satisfiable, or x
or y does not occur in the FI–formulas in Θ, the proof is trivial. Therefore,
assume that Θ is FI–satisfiable and contains both FI–formulas involving x
and FI–formulas involving y. If Θ ∪ {bb�d (x, y) ≥ l + Δ} is not FI–satisfiable,
then clearly Θ ∪ {bb�d (x, y) ≥ l + 2Δ} is not FI–satisfiable either. Hence, we
only need to show that if Θ ∪ {bb�d (x, y) ≥ l + 2Δ} is not FI–satisfiable,
Θ ∪ {bb�d (x, y) ≥ l + Δ} cannot be FI–satisfiable.

Let Ψ be the set of linear constraints corresponding to the FI–formulas in
Θ, and let I be a P–model of Ψ. The linear constraint corresponding to
bb�d (x, y) ≥ l + Δ is given by:

x−
l+Δ < y−

Δ − d ∨ x−
l+2Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1−l − d (A.4)

while the linear constraint corresponding to bb�d (x, y) ≥ l + 2Δ is given by

x−
l+2Δ < y−

Δ − d ∨ x−
l+3Δ < y−

2Δ − d ∨ · · · ∨ x−
1 < y−

1−l−Δ − d (A.5)

If Θ∪{bb�d (x, y) ≥ l+2Δ} is not FI–satisfiable, a forbidden cycle emerges when
adding an edge corresponding to any of the disjuncts of (A.5) to the graph
representation of Θ which corresponds with I. This means that any P–model of
Θ will correspond to a choice of disjuncts that leads to a graph representation
G of Θ in which there is a path from y−

Δ to x−
l+2Δ, a path from y−

2Δ to x−
l+3Δ,

etc. Moreover, the edge labels of the path from y−
(i+1)Δ to x−

l+(2+i)Δ sum up to

a value (di,≤) or (di, <) such that di + d ≥ 0 (i ∈ {0, 1, 2, . . . , 1−l
Δ

− 2}).

We now transform the graph G to a graph G′ by applying the transformation
from Lemma 4. The changing of edges in this transformation corresponds to
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choosing different disjuncts for the disjunctive linear constraints in Ψ. As this
transformation cannot introduce forbidden cycles, the graph G′ corresponds
to a P–model of Ψ. Therefore G′ contains a path from y−

(i+1)Δ to x−
l+(2+i)Δ for

every i in {0, 1, 2, . . . , 1−l
Δ

− 2}. Let y−
Δ = v0, v1, v2, . . . , vn = x−

l+2Δ be a path
from y−

Δ to x−
l+2Δ.

If this path contains no edges that correspond to an FI–formula of the form
bb�d′ (x

′, y′) ≥ l′, ee�d′ (x
′, y′) ≥ l′, be�d′ (x

′, y′) ≥ l′ or eb�d′ (x
′, y′) ≤ k′, we can

apply Lemma 3 to establish that there is a path in G′ from y−
Δ to x−

l+Δ, the
left neighbour of vn, and a path from y−

2Δ, the right neighbour of y−
Δ, to x−

l+2Δ.
As none of the edges in these paths are changed in the transformation from
G to G′, these paths also occur in G.

Next, assume that the path from v0 to vn contains at least one edge which
corresponds to an FI–formula of the form bb�d′ (x

′, y′) ≥ l′, ee�d′ (x
′, y′) ≥ l′,

be�d′ (x
′, y′) ≥ l′ or eb�d′ (x

′, y′) ≤ k′. Let (vs, vs+1) and (vr, vr+1) be the first and
last of these edges respectively. Then vs is either a white beginning node or
a black ending node, because of the nature of the transformation from G to
G′. The path between v0 and vs therefore satisfies the conditions of Lemma
3. Thus we find that G′ contains a path from y−

2Δ, the right neighbour of y−
Δ,

to x−
l+2Δ. Similarly, vr+1 is either a black beginning node, or a white ending

node. By Lemma 3 we find that G′ contains a path from y−
Δ to x−

l+Δ, the left
neighbour of vn.

In the same way, we find from the fact that G′ contains a path from y−
3Δ to

x−
l+4Δ that G′ also contains a path from y−

3Δ to x−
l+3Δ and from y4Δ to x−

l+4Δ, etc.
Adding an edge to G′ corresponding to any of the disjuncts in (A.4) therefore
leads to a forbidden cycle in G′. Using Lemma 4, we can conclude from this
that adding an edge to G corresponding to any of the disjuncts in (A.4) would
lead to a forbidden cycle as well. Hence, in any P–model of Θ, it holds that
neither x−

l+Δ < y−
Δ − d, x−

l+2Δ < y−
2Δ − d, . . . , or x−

1 < y−
1−l − d can be satisfied,

or, in other words, that Θ ∪ {bb�d (x, y) ≥ l + Δ} is not FI–satisfiable.

A.6 Proof of Lemma 6

As an example, we show that for k ∈ {4Δ, 6Δ, . . . , 1}, Θ∪{bb�d (x, y) ≤ k−Δ}
is FI–satisfiable iff Θ ∪ {bb�d (x, y) ≤ k − 2Δ} is FI–satisfiable. Clearly, if
Θ∪{bb�d (x, y) ≤ k− 2Δ} is FI–satisfiable, then also Θ∪{bb�d (x, y) ≤ k−Δ}
is FI–satisfiable. Conversely, we show that if Θ ∪ {bb�d (x, y) ≤ k − 2Δ} is not
FI–satisfiable, then also Θ ∪ {bb�d (x, y) ≥ k − Δ} is not FI–satisfiable.

Let Ψ be the set of linear constraints corresponding to Θ. The linear con-
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straints corresponding to bb�d (x, y) ≤ k − 2Δ are given by:

{y−
Δ ≤ x−

k−Δ + d, y−
2Δ ≤ x−

k + d, . . . , y−
1−k+2Δ ≤ x−

1 + d} (A.6)

while the linear constraints corresponding to bb�d (x, y) ≤ k − Δ are given by

{y−
Δ ≤ x−

k + d, y−
2Δ ≤ x−

k+Δ + d, . . . , y−
1−k+Δ ≤ x−

1 + d} (A.7)

Assume that Θ∪ {bb�d (x, y) ≤ k − 2Δ} is not FI–satisfiable. This means that
the graph G corresponding to the linear constraints in Ψ contains a path from
x−

k−Δ to y−
Δ, or a path from x−

k to y−
2Δ, or . . . , or a path from x−

1 to y−
1−k+2Δ.

Moreover, the edge labels in this path sum up to (<, d′) where d′ + d ≥ 0, or
(≤, d′′) where where d′′ + d > 0, i.e., adding the edges corresponding to (A.6)
would introduce a forbidden cycle in the graph. Note that there is only one
graph G corresponding to Ψ, as Ψ contains no disjunctive linear constraints.

Let v1, v2, . . . , vn be a path from x−
k+(i−1)Δ to y−

(1+i)Δ, for some i in {0, 1, . . . , 1+
1−k
Δ

}, where v1 and vn are both white beginning nodes or both black beginning
nodes. First assume that this path contains no edges corresponding to an
FI–formula of the form bb�d′ (x

′, y′) ≥ 1, ee�d′ (x
′, y′) ≥ 1, be�d′ (x

′, y′) ≥ 1 or
eb�d′ (x

′, y′) ≤ 0. Note that edges corresponding to FI–formulas of the form
ee�d (x, y) ≤ k, be�d (x, y) ≤ k, and eb�d (x, y) ≥ l always start at an ending
node. Hence, either the path from v1 to vn contains no edges of the form
ee�d (x, y) ≤ k, be�d (x, y) ≤ k, and eb�d (x, y) ≥ l, or this path contains at least
one edge corresponding to (46). In the former case, however, it is not possible
to obtain a path from a node a−

k1
to a node b−k2

if k1 > k2. Hence, since k > 2Δ,
the path from v1 to vn needs to contain at least one edge of the form (46).
Assume that v1 and vn are white beginning nodes, and let the edge from vi

to vi+1 be the last edge of the form (46). Then vi+1 is a white ending node,
and by Lemma 3 there exists a path from vi+1 to the left neighbour of vn.
Hence, there is a path from x−

k+(i−1)Δ to y−
iΔ. In particular, we obtain that

adding the edges corresponding to (A.7) would introduce a forbidden cycle,
in other words, that Θ ∪ {bb�d (x, y) ≥ k − Δ} cannot be FI–satisfiable. Next,
assume that v1 and vn are black beginning nodes and let the edge from vj

to vj+1 be the first edge of the form (46). Using Lemma 3, we now find that
there must exist a path from the right neighbour of v1 to vj, and again, that
Θ ∪ {bb�d (x, y) ≥ k − Δ} is not FI–satisfiable.

Finally, assume that the path from v1 to vn contains at least one edge cor-
responding to an FI–formula of the form bb�d′ (x

′, y′) ≥ 1, ee�d′ (x
′, y′) ≥ 1,

be�d′ (x
′, y′) ≥ 1 or eb�d′ (x

′, y′) ≤ 0. Let the edge from vi to vi+1 and the edge
from vj to vj+1 be the first and the last of these edges respectively. Then vj+1

is either a black beginning node or a white ending node and vi is either a white
beginning node or a black ending node. Using Lemma 3, we find that there
must exist a path from v1 to the left neighbour of vn if v1 and vn are white
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beginning nodes, and a path from the right neighbour of v1 to vn if v1 and
vn are black beginning nodes. In either case, we find that adding the edges
corresponding to (A.7) would introduce a forbidden cycle.
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[3] E. André, T. Rist, Coping with temporal constraints in multimedia presentation
planning, in: Proceedings of the Thirteenth National Conference on Artificial
Intelligence (AAAI-96), 1996.

[4] S. Badaloni, M. Giacomin, The algebra IAfuz: a framework for qualitative fuzzy
temporal reasoning, Artificial Intelligence 170 (10) (2006) 872–908.
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