Clustering Web Search Results
Using Fuzzy Ants

Steven Schockaert,* Martine De Cock,! Chris Cornelis,* Etienne E. Kerre$
Department of Applied Mathematics and Computer Science,

Ghent University, Fuzziness and Uncertainty Modelling Research Unit,
Krijgslaan 281 (S9), B-9000 Gent, Belgium

Algorithms for clustering Web search results have to be efficient and robust. Furthermore they
must be able to cluster a data set without using any kind of a priori information, such as the
required number of clusters. Clustering algorithms inspired by the behavior of real ants gener-
ally meet these requirements. In this article we propose a novel approach to ant-based cluster-
ing, based on fuzzy logic. We show that it improves existing approaches and illustrates how our
algorithm can be applied to the problem of Web search results clustering. © 2007 Wiley Peri-
odicals, Inc.

1. INTRODUCTION

Most existing Web search engines respond to a user’s query by returning an
ordered list of links to Web pages that are considered relevant. The majority of
these queries consist of only a few keywords, which are often ambiguous or too
general for accurately expressing the user’s information need. As a consequence,
typically only a small fraction of the search engine results are really relevant. In
this way, users are often forced to sift through a long list of search results to find
the information they are looking for. Algorithms for clustering Web search results
try to overcome this problem by converting the output of an existing search engine
to a list of labeled clusters. Well-known clustering algorithms such as k-means and
the more general fuzzy c-means depend on an initial estimation of the number of
clusters (i.e., k or ¢). Hence they are not very suitable in the context of search
results clustering where such a priori information is not at our disposal. Other
clustering algorithms such as agglomerative hierarchical clustering (AHC) are too
slow for online clustering of Web search results.

*Author to whom all correspondence should be addressed: e-mail: Steven.Schockaert@
UGent.be.

fe-mail: Martine.DeCock @UGent.be.

*e-mail: Chris.Cornelis@UGent.be.

Ye-mail: Etienne.Kerre @UGent.be.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 22, 455-474 (2007)

© 2007 Wiley Periodicals, Inc. Published online in Wiley InterScience
(www.interscience.wiley.com). e DOI 10.1002/int.20209

"""" * @WILEY .

<. InterScience’

DISCOVER SOMETHING GREAT

456 SCHOCKAERT ET AL.

Ant-based clustering algorithms are usually inspired by the clustering of dead
nestmates, as observed with several ant species under laboratory conditions.! With-
out negotiating about where to gather the corpses, ants manage to cluster all corpses
into one or two piles. The conceptual simplicity of this phenomenon together with
the lack of centralized control and a priori information are the main motivations
for designing a clustering algorithm inspired by this behavior. However, most ant-
based clustering algorithms are only suitable for a visual representation of the data
on a two-dimensional grid (e.g., Ref. 2) or require a hybridization with a classical
clustering algorithm such as k-means (e.g., Ref. 3) or AHC (e.g., Ref. 4).

Real ants are, because of their very limited brain capacity, often assumed to
reason only by means of rules of thumb.’ Inspired by this observation, we propose
a clustering method in which the desired behavior of artificial ants (and, more
precisely, their stimuli for picking up and dropping items) is expressed flexibly by
fuzzy IF-THEN rules. In this way, we obtain a genuine clustering algorithm in
which hybridization with a classical clustering algorithm becomes superfluous.
Moreover, because no a priori information on the number of clusters is needed,
our algorithm is a very suitable candidate for the task of clustering the results of a
search engine. Note that although we use fuzzy IF-THEN rules, the result of our
algorithm is a crisp clustering. This article is an extended version of Refs. 6 and 7.
As an extension of our previous work, in this article we compare results of our
algorithm with other clustering techniques and, most importantly, we show its appli-
cability for the clustering of Web documents.

The article is organized as follows: In Section 2, we review existing approaches
to ant-based clustering, in particular the algorithm of Monmarché, which served
as our main source of inspiration. In Section 3 we outline the structure of our
clustering algorithm and motivate its key design principles. A comparison of our
algorithm with other clustering methods is presented in Section 4. In Section 5, we
apply our algorithm to the clustering of Web search results. Finally, Section 6 offers
some concluding remarks.

2. RELATED WORK ON ANT-BASED CLUSTERING

Deneubourg et al.! proposed an agent-based model to explain the clustering
behavior of real ants. In this model, artificial ants (or agents) are moving ran-
domly on a square grid of cells on which some items are scattered. Each cell can
only contain a single item, and each ant can move the items on the grid by picking
up and dropping these items with a certain probability that depends on an estima-
tion of the density of items of the same type in the neighborhood. Lumer and
Faieta® extended the model of Deneubourg et al., using a dissimilarity-based eval-
uation of the local density to make it suitable for data clustering. Unfortunately,
the resulting number of clusters is often too high and convergence is slow. There-
fore, a number of modifications were proposed, by Lumer and Faieta themselves
as well as by others (e.g., Refs. 2 and 9).

Monmarché? proposed an algorithm called AntClass in which several items
are allowed to be on the same cell. Each cell with a nonzero number of items

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 457

corresponds to a cluster. Each (artificial) ant a is endowed with a certain capacity
c(a). Instead of carrying one item at a time, an ant a can carry a heap of c(a)
items. Let U = {x, x,...,x,} be the set of all objects to be clustered and d a
dissimilarity measure on U, that is, for x and y in U, d(x,y) expresses to what
extent x and y are dissimilar. Let H be an arbitrary heap, that is, a nonempty subset
of U, with center cy. We do not specify how to define the center of a heap at this
point, because this definition depends on the intended application. Concrete defi-
nitions will be given in Sections 4 and 5. We define

1
daz)g _2 2 d(xi’xj)

n= 1= j=n

dye = max d(x;,x;)

1=i,j=n

L 2 d(X,CH)

d(H
() |H|xEH

d*(H) = max d(x,cy)
xEH

where d,, 18 the average dissimilarity between the items in U, d,4, is the maximal
dissimilarity between the items in U, d(H) is the average dissimilarity between
the items of the heap H and the center of H, and d*(H) is the maximal dissimilar-
ity between the items of H and the center of H. When an unloaded ant comes to a
cell that contains a heap H with center cy, it will pick up this heap with a proba-
bility P,(H) defined by

(1 if | H| =1

- "
PH) = | min((?) ,1) if | H|=2

X (c?(H)+e
L - d*(H)+ e

ky
) otherwise

where € is a small positive real constant and k; is a positive integer. When an ant,
loaded with a heap L, comes to a cell with a heap H, it will drop the heap L onto
this cell with a probability P,(L, H) defined by

1 ifd(c;,cy) =d*(H)
P,(L,H) = d(c,,c;y)*2
al) 1 — 0.9 min <<%> ,1) otherwise

where k; is an integer constant, cy is the center of H, and ¢, is the center of L.
Monmarché proposed to apply this algorithm twice. The first time, the capacity of
all ants is 1, which results in a high number of tight clusters. Subsequently the

International Journal of Intelligent Systems DOI 10.1002/int

458 SCHOCKAERT ET AL.

algorithm is repeated with the clusters of the first pass as atomic objects and ants
with infinite capacity to obtain a smaller number of large clusters. After each pass,
k-means clustering is applied for handling small classification errors. In a similar
way, in Ref. 10, an ant-based clustering algorithm is combined with the fuzzy
c-means algorithm. Although some work has been done on combining fuzzy rules
with ant-based algorithms for optimization problems,'! to our knowledge until now,
fuzzy IF-THEN rules have not yet been used to control the behavior of artificial
ants in a clustering algorithm.

For completeness we also mention some approaches to ant-based clustering
that are not inspired by the clustering of dead nestmates. For example, in Ref. 12,
a clustering algorithm inspired by the chemical recognition system of ants is given,
Ref. 13 introduces a clustering algorithm inspired by the self-assembling behavior
of certain ant species, and in Ref. 14, a clustering algorithm is given that is inspired
by the way ants manage to find the shortest path to a food source.

3. FUZZY ANT-BASED CLUSTERING
3.1. Some Preliminaries from Fuzzy Set Theory

A major asset of humans is their flexibility in dealing with imprecise, granu-
lar information, that is, their ability to abstract from superfluous details and to
concentrate instead on more abstract concepts (represented by words from natural
language). One way to allow a machine to mimic such behavior is to construct an
explicit interface between the abstract symbolic level (i.e., linguistic terms like
“high,” “old,” etc.) and an underlying, numerical representation that allows for
efficient processing; this strategy lies at the heart of fuzzy set theory,'> which,
since its introduction in the 1960s, has rapidly acquired an immense popularity as
a formalism for the representation of vague, linguistic information, and which in
this article we exploit as a convenient vehicle for constructing commonsense rules
that guide the behavior of artificial ants in our clustering algorithm.

Let us recall some basic definitions. A fuzzy set A in a universe U is a map-
ping from U to the unit interval [0, 1]. For any u in U, the number A (u) is called
the membership degree of u to A; it expresses to what extent the element u exhibits
the property A. A fuzzy set R in U X V is also called a fuzzy relation from U to V.
Fuzzy relations embody the principle that elements may be related to each other to
a certain extent only. When U = V, R is also called a binary fuzzy relation in U.
Classical set theory is tightly linked to Boolean logic, in a sense that, for example,
the operations of set complement, intersection, and union are defined by means of
logical negation, conjunction, and disjunction, respectively. This link is also main-
tained under the generalization from {0,1} to [0, 1]. For instance, to extend Bool-
ean conjunction, a wide class of operators called t-norms is at our disposal: a t-norm
is any symmetric, associative, increasing [0,1]*> — [0,1] mapping T satisfying
T(1,x) = x for every x € [0,1]. Common t-norms include the minimum and the
product in [0, 1], but also the Lukasiewicz t-norm Ty, which has several desirable
properties (see, e.g., Ref. 16) and which is defined by, for x, y in [0,1],

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 459
Ty(x,y) = max(0,x +y — 1) (1

Another prominent contribution of fuzzy set theory is the ability to perform approx-
imate reasoning. In particular, we may summarize flexible, generic knowledge in
a fuzzy rulebase like

IFXisA; and Yis B; THEN Zis C,
IF Xis A, and Y is B, THEN Zis C,

IFXisA,and Yis B, THEN Zis C,

where X, Y, and Z are variables taking values in the respective universes U, V, and
W, and where foriin{l,...,n}, A; (resp. B; and C;) is a fuzzy set in U (resp. V and
W). Our aim is then to deduce a suitable conclusion about Z for every specific
input of X and Y. This can, of course, be generalized to an arbitrary number of
variables in the antecedent and the consequent. Numerous approaches exist to
implement this, with varying levels of sophistication; for our purposes, we use the
conceptually simple and very efficient Mamdani method.!”

3.2. OQOutline of the Algorithm

Our algorithm is in many ways inspired by the algorithm of Monmarché.* We
will consider however only one ant, because the use of multiple ants on a nonpar-
allel implementation has no advantages. Note, however, that the proposed changes
do not exclude the use of multiple ants.

Monmarché’s algorithm involves a pass in which ants can only pick up one
item as well as a pass during which ants can only pick up an entire heap. In our
algorithm the ants are “intelligent” in the sense that they decide for themselves
whether to pick up one item or an entire heap. This makes a separation of the
clustering in different passes superfluous, hence giving rise to a more elegant algo-
rithm. The underlying principle is a model of division of labor in social insects by
Bonabeau et al.'® In this model, a certain stimulus and a response threshold value
are associated with each task a (real) ant can perform. The response threshold
value is fixed, but the stimulus can change and represents the need for the ant to
perform the task. As will become clear later, we will calculate the values of the
stimuli by evaluating fuzzy IF-THEN rules. The probability that an ant starts per-
forming a task with stimulus s and response threshold value 6 is given by

n

T,(s;0) =

s"+ 6" @)

where n is a positive integer. In fact, this is a slight generalization that was also

used in Ref. 2; in Ref. 18 only the case where n = 2 is considered. We will assume
that s €[0,1] and 6 €]0,1].

Let us now apply this model to the problem at hand. A loaded ant can only

perform one task: dropping its load. Let s4,,, be the stimulus associated with this

International Journal of Intelligent Systems DOI 10.1002/int

460 SCHOCKAERT ET AL.

task and 6y,,,, the response threshold value. The probability of dropping the load is
then given by

Pdr()p = Tn,- (sdrop 5 Hdrop) (3)

where i € {1,2} and n;, n, are positive integers. When the ant is only carrying one
item n; is used; otherwise n, is used. An unloaded ant can perform two tasks:
picking up one item and picking up all the items. Let s,,,, and s, be the respective
stimuli and 6,,,,. and 6, the respective response threshold values. The probabilities
for picking up one item and picking up all the items are given by

s

one

Ppickup_one = + . Tml (Sone 5 eone) (4)
Sone Sall
Sall
Ppickup_all = . Tmz(sull 5 Gall) (5)
Sone + Sall

where m; and m, are positive integers.

We assume that the objects that have to be clustered belong to some set U,
and that E is a binary fuzzy relation in U, which is reflexive (i.e., E(u,u) = 1, for
all u in U) and Ty, -transitive (i.e., Ty (E(u,v), E(v,w)) =< E(u,w), for all u, v, and
win U). For u and v in U, E(u,v) denotes the degree of similarity between the
items u and v.

During the execution of the algorithm, we maintain a list of all heaps. Ini-
tially there is a heap, consisting of a single element, for every object in the data
set. Picking up an entire heap H corresponds to removing a heap from the list. At
each iteration our ant acts as follows:

o If the ant is unloaded, a heap H from the list is chosen at random.

— If H consists of a single item, this item is always picked up.

— If H consists of two items, a and b, both items are picked up with probability E(a, b)*:
and one of the two items is picked up with probability (1 — E(a, b))*.

— If H consists of more than two items, the probabilities for picking up a single element
and for picking up all elements are given by formulas (4)—(5).

o [f the ant is loaded, a new heap containing the load L is added to the list of heaps with a
fixed probability. Otherwise, a heap H from the list is chosen at random.

— If H consists of a single item @ and L consists of a single item b, L is dropped onto H
with probability E (b, a)*>.

— If H consists of a single item and L consists of more than one item, the ant does
nothing. The main reason for separating this special case is efficiency. Because the
average similarity avg(H) will always be 1 in this case, the only situation where it
would be desirable to merge H and L is when all the items in L are approximately
equal to the single element in H. But in this unlikely case, L and H would be merged
at a later iteration of the algorithm.

— If H consists of more than one item, the probability that L is dropped onto H is given
by formula (3).

In the above, k; and k, are small integer constants.

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 461
3.3. Computing the Stimuli

For a nonempty heap H C U with center ¢ in U, we define the average and
minimal similarity of H, respectively, by

avg(H) = |H\ hEHE(h ,C) min(H) = m1n E(h,c) (6)

Furthermore, let E*(H,, H,) be the similarity between the centers of the heap H,
and the heap H,.

Dropping items. The stimulus for a loaded ant to drop its load L on a cell that
already contains a heap H is based on the average similarity A = avg(H) and an
estimation of the average similarity between the center of H and items of L. This
estimation is calculated as B = Ty (E* (L, H),avg(L)), which is a lower bound due
to our assumption about the Ty -transitivity of E, because

2 E(L, CL))

IL| icx

Tw(E*(L,H),avg(L)) = Ty (E(CL’)T

= max (O E(cp,cy) + —

2 E(l,c,) —)

L] ier

= max

1
— 2 (E(CL’CH) + E(I’CL) - 1))

|L lEL

=

1
T 2 max (0, E(c;,cy) + E(l,c;) — 1)

1
=L IE Ty(E(cp,cy), E(Lc,))

|L| 7] 2 Ellen)

where ¢, (resp. cy) is the center of L (resp. ¢;). Moreover, B can be implemented
much more efficiently than the exact value. If B is smaller than A, the stimulus for
dropping the load should be low; if B is greater than A, the stimulus should be
high. Because heaps should be able to grow, we should also allow the load to be
dropped when A is approximately equal to B. Our ant will perceive the values of A
and B to be very high (VH), high (H), medium (M), low (L), or very low (VL).
The stimulus will be perceived as very very high (VVH), very high (VH), high
(H), rather high (RH), medium (M), rather low (RL), low (L), very low (VL), or
very very low (VVL). These linguistic terms can be represented by fuzzy sets in
[0,1]. For example, to represent the linguistic terms for the stimulus value, we
used the fuzzy sets in Figure 1. The rules for the stimulus for dropping the load L
onto an existing heap H are summarized in Table I.

International Journal of Intelligent Systems DOI 10.1002/int

462 SCHOCKAERT ET AL.

ery Low
Very High

0 0.25 0.3 0.75 1

Figure 1. Fuzzy sets in [0, 1] representing the linguistic terms for the stimulus value.

Picking up items. An unloaded ant should pick up the most dissimilar item
from a heap if the similarity between this item and the center of the heap is far less
than the average similarity of the heap. This means that by taking the item away,
the heap will become more homogeneous. An unloaded ant should only pick up an
entire heap, if the heap is already homogeneous. Thus, the stimulus for an unloaded
ant to pick up a single item from a heap H and the stimulus to pick up all items
from that heap are based on the average similarity A = avg(H) and the minimal
similarity M = min(H). The stimulus for picking up an entire heap can be inferred
using the fuzzy rules in Table II; the stimulus for picking up a single item can be
inferred using the fuzzy rules in Table III. Because the average similarity A will
always be higher than the minimal similarity M, elements above the main diagonal
in Tables II and IIT are empty. Although we can tolerate that an ant wrongly picks
up an item from a homogeneous heap once in a while, we should avoid that it
picks up a heterogeneous heap. Therefore, the rules in Table III are more strict
than those in Table II.

4. COMPARISON WITH OTHER CLUSTERING ALGORITHMS

Before applying our algorithm to the clustering of Web search results, we
compare it with other clustering techniques. More in particular we show that our
approach is not only more elegant than Monmarché’s (because it does not involve

Table I. Fuzzy rules to infer the stimulus for dropping the load.

A
B VH H M L VL
VH RH H VH VVH VVH
H L RH H VH VVH
M VVL L RH H VH
L VVL VVL L RH H
VL VVL VVL VVL L RH

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 463

Table II. Fuzzy rules to infer the stimulus for picking up a heap.

A
M VH H M L VL
VH VVH — — — —
H M VH — — —
M L RL H — —
L VVL VL L RH —
VL VVL VVL VVL VL M

passes or hybridization with other clustering techniques), but it is also able to gen-
erate improved results. As test cases for evaluating our algorithm, we use the same
artificial and real-world data sets as Monmarché. In these data sets the n objects to
be clustered are characterized by m numerical attributes, that is, U = {u,...,u,}
with u; € R™, i =1,...,n. We define the center of a heap H = {hy,h,,...,h,},
with h; = (b}, h?,...,h") for 1 =i < p, as the center of gravity cy, that is,

12 12 12
cw =\ =2 hi = 2 X!
P i=1 P i=1 P i=1
To compute the similarity between vectors, we use the fuzzy relation E in U defined
by, for u; and u; in U,
d(u;, uj)
d

max

E(unuj) =1- (7)
where d represents Euclidean distance and d,,,,, is (an estimation of) the maximal
distance between objects from U, that is, d,,,, = diam U. Note that we have to use
an approximation of d,,,,, because the calculation of the exact value requires a
number of steps that is quadratic in the size of the data set. Initially, this approxi-
mation is set to the maximal distance between n randomly chosen pairs of objects
from U. Every time a higher distance is calculated during the execution of the
algorithm, the approximation is adjusted. Note that E is indeed reflexive because d
is reflexive, and Tyy-transitive because for arbitrary a, b, and ¢ in [0, 1] we have

Table III. Fuzzy rules to infer the stimulus for picking up a single item.

A
M VH H M L VL
VH M — — — —
H H RH - — —
M VVH VH H — —
L VVH VVH VVH VH -
VL VVH VVH VVH VVH VVH

International Journal of Intelligent Systems DOI 10.1002/int

464 SCHOCKAERT ET AL.
Ty(E(a,b),E(b,c)) = max(0, E(a,b) + E(b,c) — 1)

d(a,b) d(b,c)
=max<0,1——+1———1
(d(a,b) +d(b,c)>
=max|0,] - ———
dmax
d(a,c
Smax(O,l— ()>
dmux
B d(a,c)
dmax
= E(a,c)

where we have used the triangle inequality d(a,b) + d(b,c) = d(a,c).

All response threshold values were set to 0.5, that is, the modal value of the
fuzzy set representing the linguistic term “medium.” The parameters k; and k&,
should be given a small integer value; we choose k; = k, = 5. Clearly, the most
important parameters are the parameters n;, ny, m;, and m,, which reflect the
degree of randomness of the algorithm. For very large values of these parameters,
the corresponding tasks are performed almost for certain when the stimulus value
is higher than 0.5. Because picking up an item or a heap has less drastic con-
sequences than dropping a heap or an item, we can tolerate more randomness
for m; and m, than for n; and n,. Moreover, because dropping an item has less
drastic consequences than dropping an entire heap, we can tolerate more random-
ness for n; than for n,. Therefore, we impose m; = m, < n; < n,; we will use
(my,my,n;,n,) =(5,5,10,20) in the remainder of this article.

To evaluate the algorithm, we compare the obtained clusters with the correct
classification of the objects. For u in U, let k(u) be the (unique) class that u belongs
to and c(u) the heap u was put in after algorithm execution. Following Mon-
marché,® we define the classification error F, by

1 2

F.= > > €; (8)

‘ |U|2 1=i,j=n v |U|(|U| - 1) 1=i<j=n

with
B {0 if (k(u;) = k(u;) and c(u;) = c(u;)) or (k(u;) # k(u;) and c(u;) # c(u;))
i~ 1 otherwise

)

As an important benefit, this evaluation criterion strongly penalizes a wrong num-
ber of clusters.?

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS

Table I'V. Artificial data sets.

Name

Structure

ART1

ART2
ART3

ART4
ARTS

ART6

(100;V(0.2,0.2), M(0.2,0.2)), (100;N(0.2,0.2), M(0.8,0.2)),
(100;/(0.8,0.2), N(0.2,0.2)), (100;,V(0.8,0.2), N(0.8,0.2))

(500;M(0.2,0.2), N(0.2,0.2)), (500;M(0.8,0.2), N(0.8,0.2))

(500;M(0.2,0.2), N(0.2,0.2)), (500;,N(0.8,0.2), M(0.8,0.2)),
(50;:(0.2,0.2),M(0.8,0.2)), (50;M/(0.8,0.2), N(0.8,0.2))

(100;U(—1,1),U(—10,10)), (100;4(2,3),U(—10,10))

(100;M(0.2,0.2),N(0.2,0.2)), (100;,N(0.8,0.2), M (0.2,0.2)),
(100;M(1.4,0.2),N(0.2,0.2)), (100;M(0.2,0.2), M (0.8,0.2)),
(100;M(0.8,0.2),//(0.8,0.2)), (100;//(1.4,0.2), N (0.8,0.2)),
(100;M(0.2,0.2), N(1.4,0.2)), (100; M (0.8,0.2), N (1.4,0.2)),
(100;M(1.4,0.2), N (1.4,0.2))

(100; A7(0.2,0.2), N(0.2,0.2), N(0.2,0.2), V/(0.2,0.2),
N(0.2,0.2), N(0.2,0.2), N(0.2,0.2), N(0.2,0.2)),
(100; A7(0.2,0.2), A(0.8,0.2), N(0.2,0.2), N(0.8,0.2),
N(0.2,0.2), N(0.8,0.2), A(0.2,0.2), N'(0.8,0.2)),
(100; A7(0.8,0.2), N(0.2,0.2), N(0.8,0.2), N'(0.2,0.2),
N(0.8,0.2), N(0.2,0.2), A(0.8,0.2), V'(0.2,0.2)),
(100; A7(0.8,0.2), N(0.8,0.2), N(0.8,0.2), A"(0.8,0.2),
N(0.8,0.2), /7(0.8,0.2), N'(0.8,0.2), N(0.8,0.2))

465

Let (m;N(ay,b,),U(as,b,), ..., N(a,,b,)) denote the structure of a class of
n objects that are represented as m-dimensional vectors. The first component of
this class has a Gaussian distribution with a mean value of a; and a standard devi-
ation of b, the second component is uniformly distributed in the interval [a,, b,],
and so forth. The structure of the artificial data sets ART is summarized in Table I'V.
In Table V we compare our algorithm with k-means, AHC (agglomerative hier-
archical clustering), and some other ant-based clustering algorithms: AntClass

Table V. Classification error F, for our fuzzy ant algorithm after 10° iterations and some
other clustering algorithms for artificial data sets.

ART]1 ART?2 ART3 ART4 ARTS5 ART6
Fuzzy ants 0.15 0.07 0.12 0.24 0.23 0.01
AntClass 0.15 0.41 0.35 0.29 0.08 0.11
AntClust 0.22 0.07 0.15 0.23 0.26 0.05
AntTree ocq 0.15 0.36 0.25 0.26 0.21 0.03
AntTreeg,cn 0.18 0.19 0.21 0.26 0.21 0.34
AntTreeN,,_T;,,esh,,ld 0.19 0.33 0.24 0.13 0.16 0.12
k-means 0.11 0.04 0.23 0.00 0.07 0.00
AHC 0.15 0.04 0.14 0.00 0.42 0.00

Note: Unlike the other algorithms, k-means is given the correct number of clusters and the best
possible initial partitioning.

International Journal of Intelligent Systems DOI 10.1002/int

466 SCHOCKAERT ET AL.
Table VI. Real-world data sets.

Wine Iris Glass Soybean Thyroid Pima
Number of classes 3 3 2/6 4 3 2
Number of attributes 12 4 9 35 5 8
Number of objects 178 150 214 47 215 768

(Monmarché’s algorithm), AntClust,'? and three different variants of the AntTree
algorithm.'® All results are averaged over 50 runs. The results for k-means and
Monmarché’s approach are those reported in Ref. 3. The initial partitioning of the
k-means algorithm corresponds to the correct classification of the data set. Although
the other algorithms do not know the number of clusters or an initial partitioning,
k-means is given the correct number of clusters and the best possible initial parti-
tioning. The results for AntClust are those reported in Ref. 12, and the results for
AntTree and AHC are those reported in Ref. 13. Because both AHC and AntTree
are hierarchical clustering algorithms, heuristics are necessary to obtain a flat clus-
tering; for more details we refer to Ref. 13.

For most of the data sets k-means and AHC give the best results. For ART3,
however, the fuzzy ants provide the best clustering. The results for our algorithm
are better than those of Monmarché’s algorithm, except for ARTS. For ARTS, some
of the nine clusters are taken together by our algorithm. Given the structure of this
data set, this seems to us as a valid alternative clustering, rather than a mistake.
Moreover, for most of the data sets the results of our algorithm are better than the
results of AntClust and AntTree.

As real-world data sets, we took the “Wine,” “Iris,” “Glass,” “Soybean,” “Thy-
roid,” and “Pima” data sets from the UCI Machine Learning Repository.'® The
main characteristics of these data sets are shown in Table VI. The results are pre-
sented in Table VII. For the “Glass” data set, the classification error was computed
with respect to all six classes. The classification error with respect to the two main

Table VII. Classification error F, for our fuzzy ant algorithm after 10° iterations and some
other clustering algorithms for real-world data sets.

Wine Iris Glass Soybean Thyroid Pima
Fuzzy ants 0.13 0.16 0.36 0.11 0.18 0.44
AntClass 0.51 0.19 0.40 0.54 0.22 0.47
AntClust n.a. 0.22 0.36 0.46 0.07 0.16
AntTree ocq 0.18 0.18 0.33 0.12 0.40 0.50
AntTreegcn 0.32 0.25 0.42 0.07 0.25 0.43
AntTreeN,,_T;,,esh,,ld 0.32 0.17 0.26 0.02 0.45 0.51
k-means 0.28 0.13 0.32 0.00 0.18 0.44
AHC 0.07 0.22 0.40 0.00 0.16 0.48

Note: Unlike the other algorithms, k-means is given the correct number of clusters and the best
possible initial partitioning.

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 467

classes for our algorithm is 0.12, which shows that our algorithm discovers the
two main clusters rather than all six subclusters. Clearly, the results for our algo-
rithm are an improvement over Monmarché’s algorithm. Moreover, our results are
comparable with AHC and the ideal results for k-means. Recall that the computa-
tional complexity of AHC is too high for most real-world applications and k-means
was given the correct number of clusters.

5. CLUSTERING WEB SEARCH RESULTS

Cutting et al.2° introduced the idea to use a document clustering algorithm as
a tool for representing search results in an organized way. Because it is unlikely
that a user is prepared to wait more than a few seconds, algorithms for clustering
Web search results must rely solely on the short summaries that are returned by
the search engine. Zamir and Etzioni?' showed that using only the snippets returned
by a search engine, instead of using full documents, results in a small decrease in
performance only. A fast linear-time document clustering algorithm called STC-
clustering is given. This algorithm, however, cannot discover the number of clus-
ters in a reliable way. Instead, the algorithm returns a fixed number of clusters. An
algorithm for visualizing search engine results on a topic map using an ant-based
clustering algorithm was suggested in Ref. 9. In Ref. 22, a similar ant-based clus-
tering algorithm for visualizing a collection of documents is given. Because these
algorithms have to use some kind of grid representation to present the results, they
are not suitable for large document collections. In Ref. 13, the AntTree algorithm
is applied to the automatic generation of portal sites. However, only the clustering
of full documents is considered.

5.1. Similarity of Snippets

Each snippet returned by a search engine can be treated as a small document.
As a consequence, standard document similarity measures can be used to calculate
the similarity of two search results. Let R be a fuzzy relation from the (finite)
universe D of documents to the (finite) universe 7 of terms. For d in D and ¢ in 7,
R(d, t) denotes the importance of term 7 in document d. The importance of a term
tin a document d can be calculated in a lot of different ways, most of which incor-
porate the frequency of occurrence of ¢ in d, and the inverse of the document fre-
quency, that is, the number of documents that contain t. We will, however, use a
binary weighting scheme, in which R(d,t) = 1 if d contains 7, and R(d,t) = 0
otherwise. Indeed, using the frequency of occurrence of a term does not make
much sense in this context, due to the very small size of the documents; penalizing
terms that occur in many documents does not make much sense either, because we
are trying to discover the most important topics in the document collection. We
will assume that no documents in D are empty, that is, for all d in D, there exists a
term 7 in 7 such that R(d, t) > 0. Furthermore, we will assume that every term is
contained in at least one document. To improve performance, the Porter stemmer
(http://www.tartarus.org/~martin/PorterStemmer/) is used to remove some com-
mon morphological and inflectional endings from terms. Moreover, we use a list

International Journal of Intelligent Systems DOI 10.1002/int

468 SCHOCKAERT ET AL.

of stopwords to discard some very common words (e.g., he, and, have, etc.) and
discard terms that occur in only one or two snippets.

Although standard similarity measures, such as the cosine similarity and
weighted Jaccard similarity, have proven effective for document clustering, they
are not suitable for our purpose because of the small size of the documents. The
snippets of two very similar documents may contain entirely different terms. To
overcome this limitation we propose an alternative measure, inspired by the notion
of upper approximation from fuzzy rough set theory.>® The idea is that before com-
paring two documents, we first add all terms that are more specific (to some degree)
than terms that already occur in the documents. First we define the binary fuzzy
narrower than relation N7 in the universe of terms 7:

> min(R(d, 1,),R(d,1,))

deD

NT(t]’ t2) =
2 R(d’ tl)

deD

for all ¢, and 1, in 7. The underlying idea is that term ¢, is more specific than term
1, in the degree to which documents that contain 7 also contain 7,. Next we extend
the original document—term relation R to obtain a new fuzzy relation R:

R(d,t) = sup min(R(d,1'),N7(1,1"))

t'eT

for all d in D and ¢ in 7. For the comparison of snippets d; and d, we use

E min(k(dl’ t),k(dz’ t))
teT

N”(d,,d,) = (10)
E I/é(dl’ t)

€T

Note that Equation (10) is an inclusion measure, rather than a similarity measure,
in the sense that two documents will be clustered together if they are similar or if
one of them is more specific than the other. Another alternative is given by

> min(R(d,, 1), R(d,, 1))
€T

ED(d]’d2) = R R an
> max(R(d,,1),R(d,, 1))

€T

In fact, Equation (11) is the weighted Jaccard similarity, which is known to be
Ty -transitive,?* calculated with respect to the extended document—term relation.
In practice, however, we found that Equation (10) resulted in a better overall per-
formance than its symmetrical, Ty -transitive counterpart. This is in accordance

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 469

with the observations made in Ref. 25, where the use of asymmetrical measures,
instead of symmetrical measures for document and term clustering is advocated.
We conclude this section with a small example to illustrate the usefulness of our
measure. For experimental results we refer to Section 5.3.

Example. Consider the following five snippets:

Rem Koolhaas - Great Buildings Online
Rem Koolhaas oma, netherlands architect in the Great Buildings Online.

1999 Laureate Announcement
Rem Koolhaas of The Netherlands Is the Pritzker Architecture Prize ... Los Angeles,
CA—Rem Koolhaas, a 56 year old architect from the Netherlands, ...

Who Is Rem Koolhaas
The controversial Dutch architect Rem Koolhaas has won the presitigious Pritzker Prize,
but who is he? Join us on a virtual tour of his life and works, ...

Rem Koolhaas [en]
Information on Rem Koolhaas and his Office for Metropolitan Architecture (OMA)
archived at the ArchINFORM database.

Faculty Profile
... Rem Koolhaas is Professor in Practice of Architecture and Urban Design. ... In
1975, Rem Koolhaas founded the Office for Metropolitan Architecture with . ..

Removing stopwords, query terms (“Rem Koolhaas”), and terms that occur only
once, we obtain

d, = {oma, netherlands, architect}

d, = {netherlands, pritzker, architecture, prize, architect}
d; = {architect, pritzker, prize}

d, = {office, metropolitan, architecture, oma}

ds = {architecture, office, metropolitan}

For the simplicity of this example, we did not apply stemming. Also, we did not
discard terms that occur only twice. Using traditional similarity measures sim such
as the cosine similarity, sim(d;,ds) = 0 because d; and ds do not have a single
term in common. However, all five documents are related to Rem Koolhaas. The
extended document—term relation R is shown in Table VIII; using Equation (10)
we obtain

N”(d,.ds) = 0.578

International Journal of Intelligent Systems DOI 10.1002/int

470 SCHOCKAERT ET AL.

Table VIII. An example of the extended document—term relation R.

t

d oma netherlands architect pritzker prize architecture office metropolitan
d, 1 1 1 1 1 0.33 0.5 0.5

dy 0.5 1 1 1 1 1 1 1

ds 0.5 1 1 1 1 0.33 0 0

dy 1 0.5 0.33 0.5 0.5 1 1 1

ds 0.5 0.5 0.33 0.5 0.5 1 1 1

5.2. Center of a Heap

We want to choose the most general document of a heap H as the center of
this heap. A straightforward approach is to choose the document d for which

> NP(d'.d)

d'€H

is maximal. Unfortunately, this approach leads to an overall execution time of the
algorithm that is at least quadratic in the number of search results to be clustered.
Therefore, we propose another definition of the center, inspired by the notion of
leader value.” For 7 in 7, we define the leader value [7(¢) of 7 as

17(t) = X N7(t',1)

t'eT

17(¢) reflects the generality of term ¢ in the document collection. The leader value
[P(d) of a document d is defined as

1P(d) = D R(d,1)-17(1)

t€T

As the center of a heap, we choose the document for which the leader value is
maximal, that is, the document that contains the most general terms.

5.3. Experimental Results

We have implemented our approach to Web search results clustering as a part
of the Carrot® framework. Carrot” is an open source Web search results clustering
framework, developed by Dawid Weiss at the university of Poznan. We refer read-
ers to the project of Carrot? (http://carrot2.sourceforge.net/) for the source code
and an online demonstration of our algorithm.

To allow a hierarchical clustering, we apply our algorithm recursively to all
clusters. To assign a label to a cluster C, we determine the most representative
term ¢ of the snippets in the cluster, that is, the term 7 in 7 for which

> R(d,1) (12)

decC

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 471

is maximal. Moreover, we add extra terms to the right (resp. left) if these terms
occur at the right (resp. left) of 7 in at least 75% of the occurrences of 7. To obtain
the experimental results in Tables V and VII, we have used a fixed number of
iterations. In practice, however, the ideal number of iterations will be dependent
on both the nature and size of the data set. Experimental results have indicated that
c-nis a good estimation of the number of iterations that is required, where n is the
size of the data set and c is a parameter that is dependent on the nature of the data
set. For clustering Web search results, we used ¢ = 5000.

In Figure 2 the resulting cluster structure of our algorithm for some sample
queries is shown. For each query, the first 500 snippets returned by Google (http://
www.google.com) were clustered. For the query “rem” among others, three clusters
are found concerning the rock band REM (“music,” “rock,” and “lyrics”), two
clusters concerning the rem-statement that is found in many programming lan-
guages (“syntax rem” and “program”), one cluster concerning the rem sleep, and

"~ All groups (208) " All groups (202)
8 ¥ music (303) g3 welcome to (30)
a b syntax rem (11) E‘ dance (343)
B b rock 36) S Pleam (19
§ bpn--ut:gp-an-n (10) il : clubs (29)

b rem sleep (108) ¥ latin (78)

.' lyrics (57) i P news 27)

b management (34) : hot (8)

?’ rem koolhaas (122) P news (23)

F other... (28) ¥ news (17)

- [translate this page | (145)
i P other... (15)
rem

i december (5)
P mexican (12)
P dlick here (26)

All groups {(242)

| P the shortest (23)
P other... (18)

kil ¥ tra\'elling salesman problem (115) P dick (17)

g tsp (52) ¥ recipes (165)

o | Pregram (23) i ¥ hot (90)

2 i P simulated annealing (17) i | ¥ mango salsa (34)

jalapeno salsa (33)
» homemade (21)

: time (54) b index ()
¥ your browser (87) i P avocado salsa (13)
¥ indonesia (342) L ¥ add (6)
P guide (178) i P eoetilla (5)
sumatra (146) b fresh (26)
H ’ adventure travel (26) b world (8)
P antry (9) . ! other... (9)
¥ hotels (26) b fresh €)
F Other... (9) ¥ other... (36)
Travelling to Java salsa

Figure 2. Cluster structure for some sample queries.

International Journal of Intelligent Systems DOI 10.1002/int

472 SCHOCKAERT ET AL.

one cluster about a famous architect called Rem Koolhaas. The query “Travelling
to Java” results in two important types of search results: results concerning imple-
mentations of the Traveling Salesman Problem in the programming language Java
and results concerning travelling information about the island of Java in Indone-
sia. The query “Salsa” can refer to salsa cooking and salsa dancing.

The execution time for the query “Salsa” as a function of the number of snip-
pets to be clustered is shown in Figure 3. This test was performed on a Pentium 4,
1.4-GHz PC with 512 MB of internal memory. From this we can see that our algo-
rithm is scalable to large data sets and sufficiently fast for online clustering. Sim-
ilar results were found for other queries.

6. CONCLUSIONS

We have presented a clustering algorithm, inspired by the behavior of real
ants simulated by means of fuzzy IF-THEN rules. Like all ant-based clustering
algorithms, no initial partitioning of the data is needed, nor should the number of
clusters be known in advance. The machinery of approximate reasoning from fuzzy
set theory endows the ants with some intelligence. As a result, throughout the whole
clustering process, they are capable of deciding for themselves to pick up either
one item or a heap. Hence the two phases of Monmarché’s original idea are
smoothly merged into one, and k-means clustering becomes superfluous. To apply
our algorithm to the problem of Web search results clustering, we introduced an
appropriate measure to assess the relationship between two documents, inspired
by the notion of upper approximation from fuzzy rough set theory and a definition
of the center of a heap that can be calculated in an efficient way. The usefulness of
clustering Web search results in the presence of ambiguity was illustrated by some
sample queries.

60000 7

40000 4

20000 1

L] 200 400 GO 00

Figure 3. Execution time for the query “salsa” for a nonrecursive version of the algorithm
(FA-1) and for a recursive version with depth limit 3 (FA-3).

International Journal of Intelligent Systems DOI 10.1002/int

FUZZY ANTS CLUSTERING WEB SEARCH RESULTS 473

Acknowledgments

Steven Schockaert and Chris Cornelis would like to thank the Research Foundation—

Flanders for funding their research.

10.

11.

12.

13.

14.

15.

16.

17.

References

Deneubourg JL, Goss S, Franks N, Sendova-Franks A, Detrain C, Chrétien L. The dynam-
ics of collective sorting robot-like ants and ant-like robots. In: From Animals to Animats:
Proc First Int Conf on Simulation of Adaptive Behaviour, Paris, 1990. Cambridge, MA:
MIT Press; 1991. pp 356-363.

Ramos V, Muge F, Pina P. Self-organized data and image retrieval as a consequence of
inter-dynamic synergistic relationships in artificial ant colonies. In: Abraham A, Ruis-del-
Solar J, Koppen M, editors. Soft computing systems: Design, management and applica-
tions. Amsterdam: IOS Press; 2002. pp 500-509.

Monmarché N. Algorithmes de Fourmis Artificielles: Applications a la Classification et a
I’Optimisation. Ph.D. thesis. Tours, France: Université Francois Rabelais; 2000.

Handl J. Ant-based methods for tasks of clustering and topographic mapping: Extensions,
analysis and comparison with alternative techniques. Master thesis. Nuremberg, Ger-
many: University of Erlangen—Nuremberg; 2003.

Holldobler B, Wilson EO. The ants. Heidelberg: Springer-Verlag; 1990.

Schockaert S, De Cock M, Cornelis C, Kerre EE. Efficient clustering with fuzzy ants. In:
Ruan D, D’Hondt P, De Cock M, Nachtegael M, Kerre EE, editors. Applied computational
intelligence. Singapore: World Scientific; 2004. pp 195-200.

Schockaert S, De Cock M, Cornelis C, Kerre EE. Fuzzy ant based clustering. 4th Int Work-
shop on Ant Colony Optimization and Swarm Intelligence, Brussels, Belgium. Lecture
Notes in Computer Science 3172. Berlin, Heidelberg, Germany: Springer-Verlag; 2004.
pp 342-349.

Lumer ED, Faieta B. Diversity and adaptation in populations of clustering ants. In: From
animals to animats 3: Proc Third Int Conf on the Simulation of Adaptive Behaviour, Brigh-
ton, UK, 1994. Cambridge, MA: MIT Press; 1994. pp 501-508.

Handl J, Meyer B. Improved ant-based clustering and sorting in a document retrieval inter-
face. In: Merelo JJ, Adamidis P, Beyer H-G, editors. Proc Seventh Int Conf on Parallel
Problem Solving from Nature, Granada, Spain. Lecture Notes in Computer Science 2723.
Berlin, Heidelberg, Germany: Springer-Verlag; 2002. pp 913-923.

Kanade PM, Hall LO. Fuzzy ants as a clustering concept. In: Proc 22nd Int Conf of the
North American Fuzzy Information Processing Society, Chicago, IL; 2003. pp 227-232.
Luci¢ P. Modelling transportation systems using concepts of swarm intelligence and soft
computing. Ph.D. thesis. Blacksburg, VA: Virginia Polytechnic Institute and State Univer-
sity; 2002.

Labroche N, Monarché N, Venturini G. AntClust: Ant clustering and web usage mining.
In: Proc Genetic and Evolutionary Computation Conf, Chicago, IL. Lecture Notes in Com-
puter Science 2723. Berlin, Heidelberg, Germany: Springer-Verlag; 2003. pp 25-36.
Azzag H, Venturini G, Oliver A, Guinot C. A hierarchical ant based clustering algorithm
and its use in three real-world applications. Eur J Oper Res 2007;179:906-922.

Tsai C-F, Wu H-C, Tsai C-W. A new data clustering approach for data mining in large
databases. In: Proc Int Symp on Parallel Architectures, Algorithms and Networks, Makati
City, Metro Manila, Philippines; 2002. pp 315-320.

Zadeh LA. Fuzzy sets. Inform Control 1965;8:338-353.

Klement EP, Mesiar R, Pap E. Triangular norms. Dordrecht: Kluwer Academic Publishers;
2002.

Mamdani EH, Assilian S. An experiment in linguistic synthesis with a fuzzy logic control-
ler. Int J Man Mach Stud 1975;7:1-13.

International Journal of Intelligent Systems DOI 10.1002/int

474
18.

20.

21.

22.

23.
24.

25.

SCHOCKAERT ET AL.

Bonabeau E, Sobkowski A, Theraulaz G, Deneubourg JL. Adaptive task allocation inspired
by a model of division of labor in social insects. Working paper 98-01-004; 1998. Avail-
able at http://ideas.repec.org/p/wop/safiwp/98-01-004.html.

Blake CL, Merz CJ. UCI repository of machine learning databases. University of Califor-
nia; 1998. Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html.

Cutting DR, Karger DR, Pedersen JO, Tukey JW. Scatter/gather: A cluster-based approach
to browsing large document collections. In: Proc 15th Annual Int ACM SIGIR Conf on
Research and Development in Information Retrieval, Copenhagen, Denmark; 1992.
pp 318-329.

Zamir O, Etzioni O. Web document clustering: A feasibility demonstration. In: Proc 21st
Annual Int ACM SIGIR Conf on Research and Development in Information Retrieval,
Melbourne, Australia; 1998. pp 46-54.

Bin W, Yi Z, Shaohui L, Zhongzhi S. CSIM: A document clustering algorithm based
on swarm intelligence. In: Proc 2002 Congress on Evolutionary Computation, Honolulu,
Hawaii; 2002. pp 477-482.

Radzikowska AM, Kerre EE. A comparative study of fuzzy rough sets. Fuzzy Set Syst
2002;126:137-156.

De Baets B, De Meyer H. The Frank t-norm family in fuzzy similarity measurement. In:
Proc Second EUSFLAT Conf, Leicester, UK; 2001. pp 249-252.

Krishna K, Krishnapuram R. A clustering algorithm for asymmetrically related data with
applications to text mining. In: Proc 10th Int Conf on Information and Knowledge Man-
agement, Atlanta, GA; 2001. pp 571-573.

International Journal of Intelligent Systems DOI 10.1002/int

