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Abstract— Various intelligent systems rely heavily on for-
malisms for spatial representation and reasoning. However,
it is widely recognized that real-world regions are seldom
characterized by a precisely defined boundary. This paper
proposes a generalization of the Region Connection Calcu-
lus (RCC) which allows to define spatial relations between
vague regions. To this end, spatial relations are modelled as
fuzzy relations. To support spatial reasoning based on these
relations, we give some important properties and a transi-
tivity table. Furthermore, we show how imprecise spatial
information can be modelled in our approach when vague
regions are represented as fuzzy sets.

Index Terms— Spatial Reasoning, Region Connection Cal-
culus, Fuzzy Relation, Approximate Equality.

I. Introduction

Spatial relations play a fundamental role in various ap-
plication areas, ranging from GIS systems to robotics and
image understanding. Although spatial relations are of-
ten modelled in a quantitative way, in some cases a more
qualitative approach is desirable. This may be because a
fully quantitative (numeric) representation is computation-
ally too expensive, or because our knowledge of a spatial
scene is incomplete, (e.g. based on a description in natural
language). Both the Region Connection Calculus (RCC)
[1] and the 9-intersection model [2] provide a formal char-
acterization of qualitative spatial relations; we will focus
on the former.

The definitions of the spatial relations in the RCC rely on
a primitive two-valued relation C which is assumed (axiom-
atized) to be reflexive and symmetric. Intuitively, C(a, b)
means that regions a and b are connected. The other re-
lations of the RCC are defined as in Table I, where the
quantifications range over the universe U of regions.

It is often assumed that regions are regularly closed sets
of points. That is, for P a universe of points equiped with
a topology, a region a in P is a subset of P for which
cl(i(a)) = a, where cl and i denote the topological closure
and interior respectively. Then the intended interpretation
of C is that for two regions a and b, C(a, b) holds iff a and
b share a common point. The intended interpretation of
DR (discrete from), PO (partially overlaps with), EC (ex-
ternally connects with), TPP (tangential proper part of)
and NTPP (non-tangential proper part of) is illustrated
in Figure 1. For two regions a and b, the intended inter-
pretation of O (overlaps with) is that O(a, b) holds iff the
interiors of a and b share a common point.

Various properties between the spatial relations of the
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Fig. 2. Subsumption hierarchy of the RCC relations [1]

RCC are summarized in Figure 2: a relation holds iff at
least one of the relations mentioned in its child nodes
holds [1]. For instance, if PP (a, b) then TPP (a, b) or
NTPP (a, b), if P (a, b) then PP (a, b) or EQ(a, b); if
PP (a, b) then P (a, b), if O(a, b) then C(a, b), etc. It can
also be shown that the relations DC, EQ, EC, PO, TPP ,
NTPP , TPP−1 and NTPP−1 are jointly exclusive and
pairwise disjoint (JEPD). The RCC restricted to these
eight relations is called the RCC-8. Similarly, the relations
DR, EQ, PO, PP , PP−1 are a set of JEPD relations,
which constitute the RCC-5.

One major limitation of the RCC as such is that its spa-
tial relations are crisp: either they hold or they do not hold.
In this paper we extend the RCC by providing generalized
definitions of the spatial relations as fuzzy relations. This
allows to express the degree to which a particular spatial
relation between two regions holds. In accordance with the
RCC, our spatial relations are defined w.r.t. an arbitrary re-
flexive and symmetric fuzzy relation C. As a consequence,
the new definitions can still be used regardless of whether
the regions are vague or not, and regardless of how the
regions are represented. Yet, in the particular case where
(vague) regions are represented by (fuzzy) sets of points,
and C is based on “nearness” between the points of the
regions, we are able to represent imprecise spatial relations
between regions such as “a is located in the heart of b”,
which cannot be modelled in the RCC, not even when a
and b are crisp regions.

The paper is structured as follows: in Section II, we re-
call some basic notions from fuzzy set theory and fuzzy
relational calculus, while Section III reviews related work
on spatial relations between vague regions. Then, in Sec-
tion IV we introduce the definitions of our fuzzy spatial
relations. We also show that generalized versions of the
RCC properties can be maintained for our definitions, and
that they support spatial reasoning. Next, in Section V,
we focus on the specific case where crisp regions are rep-
resented as sets of points, vague regions as fuzzy sets of



TABLE I

Definition of the spatial relations of the RCC. a and b are regions. Quantifications range over the universe U of regions.

Name Definition

disconnected from DC(a, b) ≡ ¬C(a, b)

part of P (a, b) ≡ (∀c ∈ U)(C(c, a) ⇒ C(c, b))

proper part of PP (a, b) ≡ P (a, b) ∧ ¬P (b, a)

coincides with EQ(a, b) ≡ P (a, b) ∧ P (b, a)

overlaps with O(a, b) ≡ (∃c ∈ U)(P (c, a) ∧ P (c, b))

discrete from DR(a, b) ≡ ¬O(a, b)

partially overlaps with PO(a, b) ≡ O(a, b) ∧ ¬P (a, b) ∧ ¬P (b, a)

externally connects with EC(a, b) ≡ C(a, b) ∧ ¬O(a, b)

tangential proper part of TPP (a, b) ≡ PP (a, b) ∧ (∃c ∈ U)(EC(c, a) ∧ EC(c, b))

non-tangential proper part of NTPP (a, b) ≡ PP (a, b) ∧ ¬(∃c ∈ U)(EC(c, a) ∧ EC(c, b))

(a)DR (b)PO (c)EC (d)TPP (e)NTPP

Fig. 1. Intended meaning of some of the spatial relations

points, and the fuzzy relation C is based on a particular
measure of approximate equality. Finally, in Section VI we
round up the paper by outlining future work.

II. Preliminaries

A fuzzy set [3] A in a universe X is defined as a mapping
from X to the unit interval [0, 1]. For x in X, A(x) is called
the membership degree of x in A. If there exists x in X
such that A(x) = 1, A is called normalised.

A fuzzy set R in X ×X is called a fuzzy relation in X.
R is called reflexive iff R(x, x) = 1 for all x in X, and
irreflexive iff R(x, x) = 0 for all x in X. It is symmetric
iff R(x, y) = R(y, x) for all x and y in X. The inverse
of a fuzzy relation R in X is the fuzzy relation R−1 in X
defined for all x and y in X by R−1(y, x) = R(x, y).

Classical set theory is linked to binary logic in the sense
that set operators such as intersection and union are usu-
ally defined in terms of logical connectives. In the same
way, fuzzy set theory is linked with a generalization of bi-
nary logic in which the logical operators are defined on
the unit interval. To generalize the logical conjunction to
the unit interval [0, 1], we have a large class of [0, 1]2− [0, 1]
mappings called t-norms at our disposal. A t-norm T is de-
fined as a symmetric, associative, increasing [0, 1]2 − [0, 1]
mapping satisfying the boundary condition T (x, 1) = x for
all x in [0, 1]. Some common t-norms are the minimum TM ,
the product TP and the  Lukasiewicz t-norm TW , defined

by

TM (x, y) = min(x, y) (1)
TP (x, y) = x · y (2)
TW (x, y) = max(0, x + y − 1) (3)

for all x and y in [0, 1]. In the same way, logical dis-
junction can be generalized by t-conorms, i.e. symmetric,
associative, increasing [0, 1]2 − [0, 1] mappings S satisfy-
ing S(0, x) = x for all x in [0, 1]. Common t-conorms
are the maximum SM , the probabilistic sum SP , and the
 Lukasiewicz t-conorm SW , defined by

SM (x, y) = max(x, y) (4)
SP (x, y) = x + y − xy (5)
SW (x, y) = min(1, x + y) (6)

for all x and y in [0, 1]. Next, the negation of an ele-
ment x in [0, 1] is commonly defined by 1 − x. Finally,
a [0, 1]2 − [0, 1] mapping I which is decreasing in the first
and increasing in the second argument and which satisfies
I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0 is called an
implicator; implicators generalize the logical implication to
the unit interval. There exist several ways to obtain impli-
cators. For instance, let S be an arbitrary t-conorm; it can
be shown that the mapping IS , defined for x and y in [0, 1]
by

IS(x, y) = S(1− x, y) (7)

is an implicator, which is called the strong implicator of S.
For example, the strong implicator corresponding to SM is
defined by

ISM
(x, y) = max(1− x, y) (8)



for all x and y in [0, 1]. On the other hand, let T be an
arbitrary t-norm; it can be shown that the mapping IT ,
defined for x and y in [0, 1] by

IT (x, y) = sup{λ|λ ∈ [0, 1] and T (x, λ) ≤ y} (9)

is an implicator, which is called the residual implicator of
T . For example, the residual implicator corresponding to
the  Lukasiewicz t-norm TW is defined by

ITW
(x, y) = min(1, 1− x + y) (10)

for all x and y in [0, 1]. For convenience, we will write IW

instead of ITW
in the remainder of this paper.

Next we recall some important constructs from fuzzy re-
lational calculus. The direct image A ↑T R (w.r.t. a t-norm
T ) and the superdirect image A ↓I R (w.r.t. an implicator
I) of a fuzzy set A in X under a fuzzy relation R in X are
the fuzzy sets R ↑T A and R ↓T A in X defined by

(R ↑T A)(y) = sup
x∈X

T (R(x, y), A(x)) (11)

(R ↓I A)(y) = inf
x∈X

I(R(x, y), A(x)) (12)

for all y in X. When there is no cause for confusion, we will
usually omit the subscripts in (11) and (12). For notational
convenience, we introduce the following abbreviations:

R ↑T ↑T A = R ↑T (R ↑T A) (13)
R ↓I↓I A = R ↓I (R ↓I A) (14)
R ↑T ↓I A = R ↑T (R ↓I A) (15)
R ↓I↑T A = R ↓I (R ↑T A) (16)

A fuzzy set A is called R-closed iff R ↓I↑T A = A.
The degree of overlap overl(A,B) between two fuzzy sets

A and B in X is defined as

overl(A,B) = sup
x∈X

T (A(x), B(x)) (17)

where T is a t-norm; (17) expresses the degree to which
there exists an element of X that is both contained in A and
in B. In the same way, the degree of inclusion incl(A,B)
of A in B is defined as

incl(A,B) = inf
x∈X

I(A(x), B(x)) (18)

where I is an implicator; (18) expresses the degree to which
all elements of X that are contained in A, are also contained
in B. The degree of overlap and the degree of inclusion
both express some (fuzzy) relationship between two fuzzy
sets. Relatedness measures [4] are a more general notion
which have (17) and (18) as special cases. In this paper we
will use

A ◦T R ◦T B = sup
x∈X

T (A(x), sup
y∈X

T (B(x), R(x, y))) (19)

where A and B are fuzzy sets in X, R is a fuzzy relation
in X and T is a t-norm; (19) expresses the degree to which
there is an element of A that is in relationship (w.r.t. R)
with an element of B.

III. Related work

It has been widely recognized that in the real world, ge-
ographic regions tend to be vague (e.g. [5],[6],[7],[8]). How
vague geographic regions should be modelled, however, has
not been entirely uncontroversial.

Most definitions of spatial relations between vague re-
gions extend either the RCC or the 9-intersection model by
treating a vague region a as being composed of two crisp
regions: one region a which consists of the points that are
definitely in the vague region, and one region a whose com-
plement consists of the points that are definitely not in the
vague region. The region defined by a \ a (provided a is a
proper part of a) consists of the points for which it is hard
to tell whether they are in the vague region or not.

A well-known example is the egg-yolk calculus [9] which
is based on the RCC. In [10], a similar approach, based
on the notion of a thick boundary, is proposed which is an
extension of the 9-intersection model. Both models cause a
significant increase in the number of possible relations: 46
and 44 relations respectively. For example, instead of spec-
ifying that two regions a and b overlap, we may specify that
a and b overlap (but not a and b), or that a and b overlap,
or that a and b overlap, etc. where a and a (respectively b
and b) represent the yolk and the egg of a (respectively b).

Another possibility, which is adopted in [11], is to stay
with the 8 or 5 spatial relations of the RCC-8 or RCC-
5 respectively, but to use three-valued relations instead of
classical two-valued relations. Taking this idea one step fur-
ther, we can generalize the RCC relations to many-valued,
and fuzzy, relations.

In [5] and [8], the use of supervaluation semantics for the
representation of vague regions is advocated. As pointed
out in [5], it is useful to distinguish between conceptual
vagueness and Sorites vagueness. Conceptual vagueness is
closely related to ambiguity. A prototypical example is the
definition of a forest [5]: should a forest be self-connected or
can it consist of several disjoint parts; are roads and paths
going through a forest parts of the forest? Sorites vague-
ness on the other hand occurs when the threshold used to
decide whether an object exhibits a certain property is ill-
defined: for example, how many trees are needed to make
up a forest? Other prototypical examples of sorites vague-
ness are properties such as ‘old’, ‘tall’, ‘warm’, . . . While we
agree with [5] and [8] that supervaluation semantics may
be a suitable formalism to handle conceptual vagueness, we
adopt the view from [7] that sorites vagueness should be
modelled by using fuzzy set theory. Since most geographic
objects and relations are indeed susceptible to the sorites
paradox (i.e. affected by sorites vagueness), we will typi-
cally represent vague regions by fuzzy sets and imprecise
spatial relations by fuzzy relations.

A straightforward fuzzification of the definitions of the
RCC-8 is given in [12]. The starting point is an arbitrary
symmetric fuzzy relation C in U , satisfying a weak reflexiv-
ity property, namely C(a, a) > 0.5 for every region a from
U . The fuzzy relation P (part of) for example is defined



by
P (a, b) = inf

c∈U
ISM

(C(c, a), C(c, b)) (20)

where a and b are regions in U . However, many of the prop-
erties of the original RCC-8 relations are lost in this ap-
proach. For example, as seen also in Figure 1, from C(a, b)
and P (b, c) we conclude that C(a, c) holds. When fuzzi-
fying the RCC-8 relations, it would be desirable that, for
a particular t-norm T , T (C(a, b), P (b, c)) ≤ C(a, c) holds,
which is a generalization of the aforementioned property.
Using (20), no such property can be guaranteed, due to
the poor choice of logical operators. Moreover, it is not
clear how the definitions proposed in [12] should be ap-
plied to calculate the values of the fuzzy spatial relations
between two given vague regions, e.g. represented as fuzzy
sets, for particular definitions of C, as these definitions in-
clude infima and suprema ranging over U , which contains
a potentially infinite amount of regions.

In [13], a generalization of the 9-intersection model based
on α-levels of fuzzy sets is suggested. However, the result-
ing membership degree of a given fuzzy spatial relation re-
flects the probability that this spatial relation holds, rather
than a degree of compatibility. Moreover, the approach
given in [13] is not suitable for spatial reasoning.

In [14], crisp spatial relations, based on the RCC, are
defined between vague regions represented by fuzzy sets.
This approach can only be used when the membership val-
ues of the fuzzy sets are taken from a finite universe. As
for the egg-yolk calculus, this leads to a significant increase
of the number of relations, since the exact number of re-
lations is dependent on the cardinality of the finite set of
membership values.

In [15], a generalization of the 9-intersection model is
introduced using concepts from fuzzy topology; again an
excessive amount (44) of crisp spatial relations between
fuzzy sets are defined.

Apart from these generalizations of the RCC and 9-
intersection model, imprecise spatial relations between
points have also been extensively studied. For example,
[16] is concerned with spatial relations such as “x is lo-
cated about 5 miles from y in a northeasterly direction”.
Similarly, in [17] spatial relations such as “x is close to
y” are considered. Analogously, imprecise spatial relations
between (vague) regions have also been considered. For
example, [18] is concerned with expressing spatial relations
between fuzzy regions, such as “a is near b” and “a is lo-
cated east of b”. To this end, the direction and distance
between two fuzzy sets are represented as fuzzy numbers
instead of scalars.

However, to our knowledge, a general approach to im-
precise qualitative spatial relations between regions, such
as in the context of the RCC or the 9-intersection model,
has not yet been considered.

IV. Fuzzy spatial relations

A. Definition

Henceforth, let T denote a left-continuous t-norm and IT

its residual implicator. Let C be a reflexive and symmetric

fuzzy relation. Table II proposes our generalization of the
spatial relations of the RCC; note that NTP (a, b) is intro-
duced here merely as a shorthand for technical purposes
(see below).

Most of these expressions are straightforward generaliza-
tions of the definitions in Table I. Note that the conjunc-
tion ’∧’ is sometimes modelled by min (e.g. in EQ(a, b))
and sometimes by T (e.g. in O(a, b)). This is because in
the former case, the joint satisfaction of two independent
constraints is evaluated, hence idempotency is required (re-
call that min is the only idempotent t-norm). The use of
particular choices of T other than min in the latter case
guarantees, as we shall see, the preservation of several im-
portant properties.

To obtain the specific form of TPP (a, b) and
NTPP (a, b), first note that in the RCC, it holds that

P (a, b) ∧ ¬(∃c ∈ U)(EC(c, a) ∧ EC(c, b))
≡ (∀c ∈ U)(C(c, a) ⇒ O(c, b))
≡ NTP (a, b) (21)

As a consequence, when C is a crisp relation our definitions
coincide with the original definitions of the RCC. Note that
these definitions do not impose a restriction on how vague
regions have to modelled, although we will typically use
them when vague regions are modelled as fuzzy sets.

B. Properties

Below, we summarize some important properties con-
cerning our fuzzy spatial relations with SW the  Lukasiewicz
t-conorm. These properties are valid when C is an arbi-
trary reflexive and symmetric fuzzy relation in an arbitrary
universe of regions U , and a and b are elements of U .

Proposition 1:

SW (TPP (a, b), NTPP (a, b)) ≥ PP (a, b) (22)
SW (PP (a, b), EQ(a, b)) ≥ P (a, b) (23)

SW (PO(a, b), P (a, b), PP−1(a, b)) ≥ O(a, b) (24)
SW (O(a, b), EC(a, b)) ≥ C(a, b) (25)

SW (EC(a, b), DC(a, b)) ≥ DR(a, b) (26)
SW (C(a, b), DR(a, b)) = 1 (27)

Proposition 2:

PO(a, b) ≤ O(a, b) (28)
TPP (a, b) ≤ PP (a, b) (29)

NTPP (a, b) ≤ PP (a, b) (30)
PP (a, b) ≤ P (a, b) (31)
EQ(a, b) ≤ P (a, b) (32)

P (a, b) ≤ O(a, b) (33)
O(a, b) ≤ C(a, b) (34)

EC(a, b) ≤ C(a, b) (35)
EC(a, b) ≤ DR(a, b) (36)
DC(a, b) ≤ DR(a, b) (37)



TABLE II

Fuzzy spatial relations. a and b are regions. Quantifications range over the universe U of regions.

Name Definition

disconnected from DC(a, b) = 1− C(a, b)

part of P (a, b) = infc∈U IT (C(c, a), C(c, b))

proper part of PP (a, b) = min(P (a, b), 1− P (b, a))

coincides with EQ(a, b) = min(P (a, b), P (b, a))

overlaps with O(a, b) = supc∈U T (P (c, a), P (c, b))

discrete from DR(a, b) = 1−O(a, b)

partially overlaps with PO(a, b) = min(O(a, b), 1− P (a, b), 1− P (b, a))

externally connects with EC(a, b) = min(C(a, b), 1−O(a, b))

non-tangential part of NTP (a, b) = infc∈U IT (C(c, a), O(c, b))

tangential proper part of TPP (a, b) = min(PP (a, b), 1−NTP (a, b))

non-tangential proper part of NTPP (a, b) = min(1− P (b, a), NTP (a, b))

These properties clearly extend the subsumption hierar-
chy in Figure 2. As we have mentioned, the relations of the
RCC-8 and of the RCC-5 are jointly exclusive and pairwise
disjoint sets of relations. Again we can generalize this for
our definitions.

Proposition 3: Let R and Q be two of the fuzzy relations
DC, EQ, EC, PO, TPP , NTPP , TPP−1 and NTPP−1.
It holds that

TW (R(a, b), Q(a, b)) = 0 (38)

Proposition 4:

SW (DC(a, b), EQ(a, b), EC(a, b), PO(a, b),
TPP (a, b), NTPP (a, b), TPP−1(a, b),

NTPP−1(a, b)) = 1 (39)

Proposition 5: Let R and Q be two of the fuzzy relations
DR, EQ, PO, PP and PP−1. It holds that

TW (R(a, b), Q(a, b)) = 0 (40)

Proposition 6:

SW (DR(a, b), EQ(a, b), PO(a, b),
PP (a, b), PP−1(a, b)) = 1 (41)

Proposition 7: The fuzzy relations P , O and EQ are re-
flexive, while the fuzzy relations DC, PP , DR, PO, EC,
TPP and NTPP are irreflexive.

C. Spatial Reasoning

To facilitate spatial reasoning (that is, the inference of
new information from given spatial relations) with the
RCC-8 relations, in [19] a transitivity table (or composition
table) has been introduced. The purpose of such a table is

to specify, for each pair R,Q of spatial relations from the
RCC-8, the disjunction of all relations A such that A(a, c)
holds if R(a, b) and Q(b, c) for arbitrary regions a, b and c.

For example, from DC(a, b) ∧ EC(b, c) follows that
DR(a, c) ∨ PO(a, c) ∨ PP (a, c). It holds that

DR(a, c) ∨ PO(a, c) ∨ PP (a, c) ≡ ¬P−1(a, c) (42)

Similarly, all disjunctions in the transitivity table given in
[19] are equivalent to conjunctions of C, P , P−1, O, NTP ,
NTP−1, ¬C, ¬P , ¬P−1, ¬O, ¬NTP and ¬NTP−1. Using
our definitions, when C is a fuzzy relation (generalizations
of) these equivalences do not longer hold. However, we still
have

1− P−1(a, c) ≤ SW (DR(a, c), PO(a, c), PP (a, c)) (43)

Hence 1 − P−1(a, c) is a stronger conclusion (that is, a
lower bound for the disjunction). Table III is a generalized
transitivity table for our definitions, which is because of
this observation formulated in terms of C, 1 − C,P, 1 − P ,
. . . instead of disjunctions. For example, the entry on the
second row, first column should be interpreted as

TW (1− C(a, b), C(b, c)) ≤ 1− P−1(a, c) (44)

Furthermore, our generalized definitions of the RCC-8 re-
lations are formulated in terms of the minimum of some
of the fuzzy relations from Table III. To support spatial
reasoning with RCC-8 relations, we can make use of the
following lemma.

Lemma 1: For an arbitrary t-norm T and x, y and z in
[0, 1], it holds that

T (min(x, y), z) ≤ min(T (x, z), T (y, z)) (45)

For example, using this lemma we obtain, for regions a, b



TABLE III

Transitivity table

C 1− C P P−1 1− P 1− P−1

C 1 1− P C 1 1 1

1− C 1− P−1 1 1− P−1 1− C 1 1

P 1 1− C P 1 1 1− P−1

P−1 C 1− P O P−1 1− P 1

1− P 1 1 1 1− P 1 1

1− P−1 1 1 1− P−1 1 1 1

O 1 1− P O 1 1 1

1−O 1−NTP−1 1 1− P−1 1−O 1 1

NTP 1 1− C NTP 1 1 1− P−1

NTP−1 O 1− P O NTP−1 1− P 1

1−NTP 1 1 1 1−NTP 1 1

1−NTP−1 1 1 1−NTP−1 1 1 1

O 1−O NTP NTP−1 1−NTP 1−NTP−1

C 1 1−NTP O 1 1 1

1− C 1− P−1 1 1− P−1 1− C 1 1

P 1 1−O NTP 1 1 1−NTP−1

P−1 O 1− P O NTP−1 1−NTP 1

1− P 1 1 1 1− P 1 1

1− P−1 1 1 1− P−1 1 1 1

O 1 1− P O 1 1 1

1−O 1− P−1 1 1− P−1 1− C 1 1

NTP 1 1− C NTP 1 1 1− P−1

NTP−1 O 1− P O NTP−1 1− P 1

1−NTP 1 1 1 1− P 1 1

1−NTP−1 1 1 1− P−1 1 1 1

and c in U ,

TW (DC(a, b), EC(b, c))
= TW (1− C(a, b), min(C(b, c), 1−O(b, c)))
≤ min(TW (1− C(a, b), C(b, c)),

TW (1− C(a, b), 1−O(b, c)))

From Table III we have

≤ min(1− P−1(a, c), 1)
= 1− P−1(a, c)
= 1− P (c, a)

Hence from a disconnected from b and b externally con-
nected with c, we concluded that c is not a part of a. In
general, we can apply the following algorithm:
1. Assume two fuzzy spatial relations R and Q are given

that can be written as

R = min(r1, . . . , rn)
Q = min(q1, . . . , qm)

where ri and qj (1 ≤ i ≤ n, 1 ≤ j ≤ m) are C, 1 − C, P ,
P−1, 1− P , 1− P−1, O, 1−O, NTP , NTP−1, 1−NTP
or 1 −NTP−1. This applies, among others, to all RCC–8
and RCC–5 relations.
2. Repeatedly applying Lemma 1 yields

TW (R(a, b), Q(b, c))

= TW (
n

min
i=1

ri(a, b),
m

min
j=1

qj(b, c))

≤
n

min
i=1

m
min
j=1

TW (ri(a, b), qj(b, c))

3. For each i and each j, use Table III to obtain a conclu-



sion of the form

TW (ri(a, b), qj(b, c)) ≤ tij(a, c) (46)

Hence we obtain

TW (R(a, b), Q(b, c)) ≤
n

min
i=1

m
min
j=1

tij(a, c) (47)

4. Use Proposition 2 to obtain a minimal subset A of
{tij(a, c)|1 ≤ i ≤ n, 1 ≤ j ≤ m} for which it holds that

n
min
i=1

m
min
j=1

tij(a, c) = min
t∈A

t(a, c) (48)

5. We conclude

TW (R(a, b), Q(b, c)) ≤ min
t∈A

t(a, c) (49)

It can be shown that if C is a crisp relation, the deduc-
tions made for the RCC-8 relations using this algorithm are
equivalent to the deductions made using the transitivity
table introduced in [19], hence our spatial reasoning algo-
rithm is a sound generalization of spatial reasoning within
the RCC-8.

V. Fuzzy Spatial Relations between Fuzzy
Regions

In this section, we provide a concrete definition for the
fuzzy spatial relations from Table II for a particular choice
of C and a particular representation of a vague region.

Since we want to model imprecise spatial relations, we
need a way to model the concept of nearness. Due to the
fuzzy nature of this concept, we will represent nearness as
a fuzzy relation, by expressing that two objects are near to
each other to the degree that their locations are approx-
imately equal. We first consider approximate equality of
point locations; afterwards we will show how such a mea-
sure for approximate equality of point locations can be used
to define imprecise spatial relations between regions.

Recall that a fuzzy T -equivalence relation in X is a re-
flexive, symmetric fuzzy relation R in X that satisfies T -
transitivity, that is

T (R(x, y), R(y, z)) ≤ R(x, z) (50)

for all x, y and z in X. Clearly, if R is a crisp rela-
tion, then R is an equivalence relation in X. Hence fuzzy
T -equivalence relations seem to be an ideal candidate to
model approximate equality, and thus nearness. However,
as pointed out in [20], in some contexts we want to express
that, for xi in X, i = {1, . . . , n}, x1 and x2 are approx-
imately equal to degree 1, x2 and x3 are approximately
equal to degree 1, . . . , xn−1 and xn are approximately
equal to degree 1, but x1 and xn are not approximately
equal at all. Using fuzzy T -equivalence relations this is
impossible, because of their T -transitivity. Therefore, to
model approximate equality, the notion of a resemblance
relation has been introduced in [20] and [21]. Recall that
d is a pseudometric on X if d(x, x) = 0, d(x, y) = d(y, x)

and d(x, y) + d(y, z) ≥ d(x, z) for all x, y and z in X. A
fuzzy relation E in X is called a resemblance relation w.r.t.
a pseudometric d on X if for all x, y, z and u in X

E(x, x) = 1 (51)
d(x, y) ≤ d(z, u) ⇒ E(x, y) ≥ E(z, u) (52)

As a consequence of (52), any resemblance relation is also
symmetric. For example, let P = R2 and let d be the
Euclidean metric. It can be shown that the fuzzy relation
E in R defined for all a and b in R as

E(a, b) =


1 if d(a, b) < 5
0 if d(a, b) > 10
10−d(a,b)

5 otherwise
(53)

is a resemblance relation w.r.t. d.
A straightforward generalization of the intended mean-

ing of C in the RCC is to express, for A and B fuzzy sets in
the universe P of points, the degree to which there exists
a point in A which is approximately equal to a point in B,
i.e.

C(A,B) = A ◦TW
E ◦TW

B (54)

Now if we represent a region as a normalised fuzzy set in
P, we have the following important result.

Proposition 8: If U is the set of all normalised fuzzy sets
in a universe P, and C is defined by (54) for all fuzzy sets
A and B in P, then it holds that

P (A,B) = incl(E ↓IW
↑TW

A,E ↓IW
↑TW

B) (55)
O(A,B) = overl(E ↓IW

↑TW
A,E ↓IW

↑TW
B) (56)

NTP (A,B) = incl(E ↑TW
A,E ↓IW

↑TW
B) (57)

In particular, when A and B are E-closed normalised fuzzy
sets in P, we obtain

P (A,B) = incl(A,B) (58)
O(A,B) = overl(A,B) (59)

NTP (A,B) = incl(E ↑TW
A,B) (60)

In other words, if A and B are E-closed, the fuzzy relations
P and O correspond to the classical definitions of inclusion
and overlap of fuzzy sets.

Proposition 9: Under the same assumptions as in Propo-
sition 8, if additionally E is TW -transitive (i.e. E is a TW -
equivalence relation), it holds that

C(A,B) = O(A,B) (61)

for all fuzzy sets A and B in U .
As a consequence, also NTPP (A,B) = PP (A,B). Hence,
when we use a TW -equivalence relation, we can only dis-
tinguish between the five relations of the RCC-5!



VI. Future Work and Conclusion

We intend to apply the ideas presented in this paper to
build a focused geographical information retrieval system
in which users may express their information need in nat-
ural language. Like in question answering systems, and in
contrast with traditional search engines, the system should
return exactly the information that was requested, instead
of a list of possibly relevant documents. The reasoning part
of such a geographical IR system boils down to determin-
ing the qualitative relation that holds between two entities.
For example to answer the query “give me addresses and
opening hours of bookshops in London’s West End”, we
need to ascertain whether or not PP holds between a par-
ticular bookshop and London’s West End.

Most of the relevant information on the Web is of a qual-
itative nature. We may find documents stating that the
West End is located in the centre of London, that it is ad-
jacent to the City of London, or that it contains Leicester
Square, Covent Garden, Oxford Street, etc. For example,
consider the following snippets:
1. Waterstone’s (Located on Piccadilly) 203-206 Pic-
cadilly, W1J, (Books) Close by. The biggest bookshop in
Europe, Waterstone’s huge floorspace in an ... 1

2. And praise is also due to those far-sighted anarchists
who strolled up Piccadilly and other West End avenues,
taking thousands of demonstrators away from ... 2

This can be represented as PP (Waterstone’s,Piccadilly)
and PP (Piccadilly,West End), from which we can deduce,
using the RCC, that PP (Waterstone’s,West End) holds.

Another possibility to determine if a bookshop is located
in the West End, is to use geocoding techniques to map the
address of the bookshop to latitude-longitude coordinates.
This requires a suitable representation of the extent of the
West End. For some regions or districts, such a represen-
tation can be obtained using a technique described in [22].
Since regions or districts such as the West End tend to
be vague, their extent can be represented by a fuzzy set.
The characterizations in Proposition 8 can then be used to
calculate the degree to which a particular spatial relation
holds between two regions, or between a point and a region.

In practice, it is likely that we will need to combine both
techniques, i.e. extracting qualitative relations and geocod-
ing, because for many regions or districts we may find too
little information to construct an accurate representation.
Whenever this is the case we need to draw inferences based
on vague qualitative information such as “PP (Paddington,
West End) holds at least to degree 0.6”, which can be done
using the inequalities of Table III.

In conclusion, the fuzzy spatial relations introduced in
this paper provide a sound, and workable, generalization of
the RCC that lends itself ideally to representing, and rea-
soning with, imprecise qualitative relations between vague
regions.

1http://www.londontown.com/LondonStreets/piccadilly 1e1.
html, accessed December 4, 2005

2http://www.londonclasswar.org/london calling 2003.htm, ac-
cessed December 4, 2005
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