
Towards Fuzzy Spatial Reasoning in
Geographic IR Systems

Steven Schockaert
∗

, Martine De Cock, Etienne E. Kerre
Department of Applied Mathematics and Computer Science
Ghent University, Krijgslaan 281 – S9, 9000 Gent, Belgium

{Steven.Schockaert,Martine.DeCock,Etienne.Kerre}@UGent.be

ABSTRACT
Vague spatial information such as “x is located at walking
distance of y” is abundant on the web. In this contribution,
we propose a framework to represent such spatial informa-
tion, and show how new spatial relations may be deduced.
Furthermore, we illustrate how this framework can be use-
ful to increase the coverage of focused spatial information
retrieval systems.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods

General Terms
Fuzzy spatial reasoning

1. INTRODUCTION AND MOTIVATION
There is an increasing interest in information retrieval (IR)
systems that are capable of finding instances on the web
of hotels, restaurants, etc. that satisfy a given spatial re-
striction. The need for such systems is witnessed by recent
implementations by most major search engine companies:
Google Maps1, Yahoo! local2 and MSN search local3. One
of the main drawbacks of these existing systems is their lim-
ited coverage.

Consider a user who is interested in hotels near the Univer-
sity of Washington Campus in Seattle. One way to tackle
this problem is to construct, offline, lists of instances of ho-
tels and landmarks, together with their geographical coor-
dinates, which can be obtained by geocoding their address
or from an external gazetteer. Standard information extrac-
tion techniques can be used to obtain the address of a hotel
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or landmark from the web. Finding hotels that satisfy the
user’s need is then simply a matter of comparing the co-
ordinates of the university campus with those of the hotels
in the knowledge base. There are at least two scenarios in
which this approach fails, resulting in a limited coverage:
we may not be able to extract a correct address for some
hotels or landmarks, and the geocoding of the address may
go astray. Web pages of hotels, however, typically contain
sentences like “The hotel is conveniently located at walking
distance from the Space Needle”. Such information gives us
a rough idea of the distance between the hotel under con-
sideration and the Space Needle. Furthermore, considering
the fact that the Experience Music Project is located near
the Space Needle, we find that the hotel must be somewhat
near to the Experience Music Project as well.

In this contribution, we propose a new technique to increase
the coverage of geographic IR systems, based on relevant
spatial information deduced from natural language descrip-
tions on web pages. To support reasoning of this kind, sev-
eral challenges need to be addressed. The main obstacle,
however, is vagueness, which may occur both at the level
of the relations expressed (e.g., at walking distance from,
at the doorstep of, . . . ) and at the level of the regions in-
volved (e.g., downtown Seattle, the Port of Seattle, . . . ). We
introduce a framework for representing such vague spatial
knowledge, and discuss how this framework can be used in
geographical IR systems. A transitivity table is introduced
to support efficient reasoning.

2. FUZZY SPATIAL RELATIONS
The fuzzy footprint of a vague region is a mapping A from
R2 to [0, 1] such that A(u, v) = 1 (at least) for some (u, v)
in R2. For convenience, we will use the same notation A to
refer both to this R2−[0, 1] mapping and to the region repre-
sented by it. For (u, v) in R2, A(u, v) = 1 if (u, v) definitely
belongs to the region A and A(u, v) = 0 if (u, v) definitely
not belongs to A. If the region is vague, A(u, v) ∈]0, 1[
will hold for some points (u, v), corresponding to borderline
cases that belong more or less to A.

Closeness between points can be modelled as a general re-
semblance relation [2]. For example, for each α ∈ R and
β ≥ 0, we define the resemblance relation R(α,β) in R2 ×R2



as4

R(α,β)(p, q) =

8><
>:

1 if d(p, q) ≤ α

0 if d(p, q) > α + β
α+β−d(p,q)

β
otherwise (β > 0)

(1)

for every p and q in R2; d is a suitable metric, e.g., the euclid-
ean distance. Closeness between regions can be expressed
through the closeness of the points that they contain. To this
end we use the fuzzy logical conjunction and the fuzzy logical
implication, respectively defined as TW (a, b) = max(0, a +
b − 1) and IW (a, b) = min(1, 1 − a + b) for all a and b in
[0, 1]. For example, for fuzzy footprints A and B,

CR(A, B) = sup
p∈R2

TW (A(p), sup
q∈R2

TW (B(q), R(p, q)))

where R = R(α,β) for some α in R and β ≥ 0, expresses the
highest degree to which there exist close points p and q, such
that p belongs to A and q belongs to B. This is interpreted
as the degree to which A is close to B. Furthermore,

P (A, B) = inf
p∈R2

IW (A(p), B(p))

expresses the degree to which every point in A is also in B,
i.e., the degree to which A is located in B. Finally,

NTPR(A, B) = inf
p∈R2

IW (A(p), inf
q∈R2

IW (R(p, q), B(q)))

expresses the degree to which every point that is close to A
is also close to B, i.e., the degree to which A is located in the
centre of B. The correspondence of the fuzzy relations CR,
P and NTPR with the RCC–8 calculus [3] is shown in [4];
the abbreviations used here originate from that framework.

Assume that we know that A is close to B w.r.t. R(α1,β1),
and that B is close to C w.r.t R(α2,β2). From this, we would
like to establish some knowledge about the closeness of A to
C. To compose resemblance relations, we use operators that
are well known in fuzzy relation calculus. In particular, for
resemblance relations R and S in R2, R ◦ S and R � S are
defined for all p and q in R2 by [1]:

(R ◦ S)(p, q) = sup
r∈R2

TW (R(p, r), S(r, q))

(R � S)(p, q) = inf
r∈R2

IW (R(p, r), S(r, q))

An important advantage of using resemblance relations as
in (1), is that we can prove a useful characterization to ef-
ficiently evaluate R(α1,β1) ◦R(α2,β2) and R(α1,β1) � R(α2,β2)

(α1, α2 ∈ R and β1, β2 ∈ [0, 1]). If α1 ≥ 0 and α2 ≥ 0, it
holds that

R(α1,β1) ◦R(α2,β2) = R(α1+α2,max(β1,β2)) (2)

R(α1,β1) � R(α2,β2) = R(α2−α1+max(0,β1−β2),max(β1,β2)) (3)

Similar characterizations can be shown for the case where
α1 < 0 or α2 < 0; we omit the details. In the next section
we explain how these compositions can be used to derive
information on the closeness of A to C, based on the close-
ness of each of them to B. However, if B is allowed to be
arbitrarily large, nothing about the degree of closeness can
be concluded. Therefore, we also need the degree to which
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B is small, i.e., the degree to which every point of B is close
to every other point of B w.r.t. R:

smallR(B) = inf
p∈R2

IW (B(p), inf
q∈R2

IW (B(q), R(p, q)))

where R = R(α,β) for some α in R and β ≥ 0.

3. GEOGRAPHIC IR
As in the introduction, we assume to have a list of hotels and
landmarks with geographical coordinates. In addition how-
ever, we construct a list of regions, such as city districts, to-
gether with fuzzy footprints representing their extent [5]. To
represent spatial descriptions in the framework introduced
in the previous section, we first convert natural language
sentences to triplets (x, y, r) where x and y are the name of
regions, hotels, landmarks, etc., and r is a spatial relation
expressed in natural language (e.g., “at the doorstep of”).
Initial experimental results with a statistical Named Entity
tagger5 suggest that this can be accomplished very accu-
rately, due to the rather uniform language use. Next, we try
to find the class to which x and y belong (e.g., hotel, mu-
seum, district, . . . ), using heuristics — the name of a hotel
often begins or ends with “Hotel” — or a gazetteer. Finally,
we convert the triplet (x, y, r) to the following 3 assertions
(assuming r expresses closeness):

smallR(α1,β1)(x) ≥ λ1

smallR(α2,β2)(y) ≥ λ2

CR(α3,β3)(x, y) ≥ λ3

To find suitable values for α1, α2, α3, β1, β2, β3, a data–driven
approach can be used. Assume, for example, that we have
a large list of pairs (xi, yi) (1 ≤ i ≤ n) for which we find on
the web that “xi lies at the doorstep of yi”, and for which we
have the exact distance between xi and yi at our disposal.
Given a fixed confidence level c in ]0, 1] (e.g., c = 0.7), the
values of α3 and β3 might be chosen as the smallest values
for which

|{i|1 ≤ i ≤ n and d(xi, yi) ≤ α3}|
n

≥ c

|{i|1 ≤ i ≤ n and d(xi, yi) ≤ α3 + β3
2
}|

n
= 1

To find suitable values for λ1, λ2, λ3, we first assume that
λ1 = λ2 = λ3 = 1, i.e., that x and y fully satisfy the relation
expressed by r, and that their size corresponds to that of
a typical instance of the class to which they belong. The
interpretations of λ1, λ2 and λ3 are revised when it turns
out that they lead to inconsistency; we omit the details.

The following proposition effectively allows us to deduce
knowledge that is only implicitly contained in an initial
set of assertions of the form CR(x, y) ≥ λ, P (x, y) ≥ λ,
NTPR(x, y) ≥ λ or smallR(x) ≥ λ, where λ ∈]0, 1], R =
R(α,β) for some α ∈ R and β ≥ 0.

Proposition 1. Let M be the fuzzy spatial relation in the
entry of Table 1 on the row corresponding to the fuzzy spatial
relation K and the column corresponding to the fuzzy spatial
relation L. Furthermore, let Sa = R(αa,βa), Sb = R(αb,βb),

5We used Lingpipe, available at http://www.alias-i.com/
lingpipe/



Table 1: Transitivity table for fuzzy spatial relations
H

HHHHK
L

CR2 P P−1 NTPR2 NTP−1
R2

CR1 CR1◦Sb◦R2 CR1 CR1◦Sb NTPSa�(R1�R2) C(R2�Sb)◦R1

P CSb◦R2 P CSb NTPR2 CR2�Sb

P−1 CR2 CR(0,0) P−1 NTPSa�R2 NTP−1
R2

NTPR1 C(R1�Sb)◦R2 NTPR1 CR1�Sb NTPR1◦R2 CR2�(R1�Sb)

NTP−1
R1

NTP−1
Sc�(R2�R1) NTP−1

Sc�R1
NTP−1

R1
NTPSa�R2 NTP−1

R1◦R2

Sc = R(αc,βc), R1 = R(α1,β1) and R2 = R(α2,β2) for some
αa, αb, αc, α1, α2 in R, and some βa, βb, βc, β1, β2 ≥ 0. For
fuzzy footprints A, B and C, it holds that6

M(A, C) ≥ TW (smallSa(A), smallSb(B), smallSc(C),

K(A, B), L(B, C))

For example, using Proposition 1, from

CR(α1,β1)(x, y) ≥ λ1

smallR(αs,βs)(y) ≥ λs

CR(α2,β2)(y, z) ≥ λ2

we can deduce

CR(α1,β1)◦R(αs,βs)◦R(α2,β2)(x, z) ≥ TW (λ1, λs, λ2)

or using (2), and assuming α1 ≥ 0, αs ≥ 0 and α2 ≥ 0

CR(α1+αs+α2,max(β1,βs,β2))(x, z) ≥ TW (λ1, λs, λ2)

This formula expresses information on the proximity of x
and z, interpreted in terms of the derived resemblance rela-
tion.

4. CONCLUSIONS
We have introduced a framework to represent vague spatial
information, and provided a transitivity table to support
reasoning. Furthermore, we have sketched how this formal-
ism can be used to increase the coverage of a focused IR
system, relying on natural language descriptions of spatial
constraints when address extraction or geocoding fails.

5. REFERENCES
[1] W. Bandler and L. J. Kohout. Fuzzy relational

products as a tool for analysis and synthesis of the
behaviour of complex natural and artificial systems. In
S. K. Wang and P. P. Chang, editors, Fuzzy Sets:
Theory and Application to Policy Analysis and
Information Systems, pages 341–367. Plenum Press,
New York and London, 1980.

[2] M. De Cock and E. E. Kerre. On (un)suitable fuzzy
relations to model approximate equality. Fuzzy Sets and
Systems, 133:137–153, 2003.

[3] D. A. Randell, Z. Cui, and A. G. Cohn. A spatial logic
based on regions and connection. In Proceedings of the
3rd International Conference on Knowledge
Representation and Reasoning, pages 165–176, 1992.

6We write TW (a, b, c) as an abbreviation for TW (a, TW (b, c))
or TW (TW (a, b), c). Note that this is not ambiguous, since
for all a, b and c in [0, 1], it holds that TW (a, TW (b, c)) =
TW (TW (a, b), c).

[4] S. Schockaert, C. Cornelis, M. De Cock, and E. E.
Kerre. Fuzzy spatial relations between vague regions. In
Proceedings of the 3rd IEEE Conference on Intelligent
Systems, to appear.

[5] S. Schockaert, M. De Cock, and E. E. Kerre. Automatic
acquisition of fuzzy footprints. In Proceedings of
SeBGIS 2005, LNCS 3762, pages 1077–1086, 2005.


