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Abstract
The temporal boundaries of many real–world
events are inherently vague. In this paper, we dis-
cuss the problem of qualitative temporal reasoning
about such vague events. We show that several in-
teresting reasoning tasks, such as checking satis-
fiability, checking entailment, and calculating the
best truth value bound, can be reduced to reasoning
tasks in a well–known point algebra with disjunc-
tions. Furthermore, we identify a maximal tractable
subset of qualitative relations to support efficient
reasoning.

1 Introduction
A substantial part of the work on temporal reasoning is
concerned with qualitative time information. In many ap-
plication domains — typically in the realm of natural lan-
guage processing (NLP) and understanding — we may not
know when events took place, while interesting conclusions
could still be drawn from the available qualitative informa-
tion. Other applications use qualitative temporal information
to constrain possible scenarios, specifying for example that
some task should only start after another task has been com-
pleted.

In [Allen, 1983], Allen introduced a framework for rep-
resenting qualitative relations between intervals, which has
been adopted in the majority of the work on qualitative tem-
poral reasoning ever since. Unfortunately, most interest-
ing reasoning tasks in this framework are NP–complete [Vi-
lain et al., 1989]. Therefore, a lot of work has been done
to identify maximal subsets of the 213 interval relations in-
troduced by Allen, for which reasoning is tractable [Drak-
engren and Jonsson, 1997a; 1997b; Krokhin et al., 2003;
Nebel and Bürckert, 1995]. Another highly relevant line of
research is the characterization of tractable problem instances
for constraint satisfaction problems [Gottlob et al., 2000], and
in particular the design of efficient solution techniques for
disjunctive temporal reasoning problems [Bosch et al., 2002;
Stergiou and Koubarakis, 2000; Tsamardinos and Pollack,
2003].

One assumption that is implicitly made in all but a few ap-
proaches to qualitative temporal reasoning is that the tempo-
ral boundaries of events are always well–defined, i.e., that for

Figure 1: Fuzzy set representing the time span of the Dotcom
Bubble

every event there exist precise time instants corresponding to
its beginning and ending. On the other hand, it is well–known
that real–world events often have vague temporal boundaries
[Varzi, 2002]. This is particularly true for historical events,
e.g., the Cold War, the Great Depression, the Russian Rev-
olution, the Dotcom Bubble, . . . This observation is signifi-
cant for qualitative temporal reasoning, because qualitative
relations between events with vague temporal boundaries, are
vague as well.

A popular technique to address the vagueness of events is
to represent their time span as a fuzzy set [Zadeh, 1965] in
R, i.e., as a mapping A from the real line R to the unit inter-
val [0, 1]. In this approach, time instants are represented as
real numbers; for every d in R, A(d) is called the member-
ship degree of d in A, and represents the degree to which the
event corresponding with A was happening at instant d. For
example, in Figure 1, a possible representation of the time
span of the Dotcom Bubble is shown. According to this rep-
resentation, the Dotcom Bubble definitely encompasses the
time instants between 1999 and 2001, hence their member-
ship degree is 1. Similarly, time instants before 1996 and af-
ter 2002 are definitely not during the Dotcom Bubble, hence
their membership degree is 0. The remaining time instants
can be seen as borderline cases, which neither belong fully to
the temporal extension nor to the temporal anti–extension of
the Dotcom Bubble.

In this paper we show how the problem of reasoning with
qualitative relations between fuzzy time intervals can be re-
duced to reasoning in a point algebra with disjunctions [Brox-
vall and Jonsson, 2003]. In this way, efficient techniques that
have been developed in the context of disjunctive temporal



reasoning, can be used to decide, for example, the satisfia-
bility of a set of qualitative relations between fuzzy time in-
tervals. Furthermore, we show how entailment checking and
calculating the best truth value bound can be reduced to sat-
isfiability checking. To the best of our knowledge, this is the
first paper in which complete procedures for qualitative tem-
poral reasoning about vague events are provided. Finally, we
show that deciding satisfiability is NP–complete, and provide
a maximal tractable subset of qualitative relations1.

2 Related work

Vagueness has many faces, requiring different techniques in
different contexts. Most work on vague temporal knowledge
deals with situations where events have precise boundaries,
but where our knowledge about them is vague, e.g., “A started
in the early summer of 2004”, or “A happened about 3 hours
after B”. This kind of vagueness, which is purely epistemic,
is usually modelled in the framework of possibility theory
[Dubois and Prade, 1989; Godo and Vila, 1995]. In [Dubois
et al., 2003], an extension of Allen’s interval algebra is intro-
duced to cope with statements like “A happened long before
B”. To support reasoning, a composition table is introduced,
but, unfortunately, reasoning with this composition table is
not shown to be complete. In [Badaloni and Giacomin, 2006],
fuzzy sets of basic Allen relations, i.e. mappings from the
13 basic interval relations to the unit interval [0,1], are con-
sidered to represent preferences. Interestingly, all main rea-
soning tasks are shown to be NP–complete, and a maximal
tractable subalgebra is identified. Fuzzy sets of basic Allen
relations have also been considered in [Guesgen et al., 1994].

However, in all these approaches, it is assumed that events
have precise, albeit unknown, temporal boundaries. As ex-
plained in the introduction, even in the face of complete
knowledge, our temporal knowledge about events may be
affected by vagueness. Several generalizations of Allen’s
interval relations to represent qualitative relations between
fuzzy time intervals have already been proposed [Nagypál
and Motik, 2003; Ohlbach, 2004; Schockaert et al., 2006b],
similar in spirit to measures for comparing and ranking fuzzy
numbers [Dubois and Prade, 1983; Bodenhofer, 1999]. More-
over, the necessity of dealing with vague events and time pe-
riods has been pointed out in various contexts, including se-
mantic web reasoning [Bry et al., 2003], representing histori-
cal information in ontologies [Nagypál and Motik, 2003], in-
terpreting temporal expressions in business news documents
[Kalczynski and Chou, 2005], and temporal question answer-
ing [Schockaert et al., 2006a]. The issue of reasoning with
qualitative relations between fuzzy time intervals has only
been addressed in [Schockaert et al., 2006a], where a sound
but incomplete algorithm is introduced to find consequences
of a given, limited set of assertions. In this paper, we pro-
vide a general framework for qualitative temporal reasoning
about vague events, provide complete reasoning procedures,
and identify a maximal tractable subset of qualitative tempo-
ral relations.

1Throughout this paper, we assume P 6= NP.

3 Preliminaries
3.1 Fuzzy temporal constraints
We will represent the time span of an event as a fuzzy set in
R, i.e., as a mapping A from R to [0, 1]. For clarity, traditional
sets are sometimes called crisp sets in the context of fuzzy set
theory. For every α in ]0, 1], we let Aα denote the subset of
R defined by

Aα = {x|x ∈ R ∧A(x) ≥ α}
Aα is called the α–level set of the fuzzy set A. In particu-
lar, A1 is the set of instants (real numbers) that fully belong
to the time span of the event under consideration. To ade-
quately generalize the notion of a time interval, some natural
restrictions on the the α–level sets are typically imposed.
Definition 1 (Fuzzy time interval) [Schockaert et al.,
2006b] A fuzzy (time) interval is a mapping A from R to
[0, 1], such that for every α in ]0, 1], Aα is a (non–degenerate)
closed interval.
For a fuzzy interval A and α ∈]0, 1], we let A−α and A+

α de-
note the beginning and ending of the interval Aα.

When the time spans of events are vague, then also the
qualitative temporal relations between them are a matter of
degree. Traditionally, qualitative relations between time in-
tervals are defined by means of constraints on the boundary
points of these intervals. For fuzzy time intervals, a different
approach must be adopted. However, note that for crisp inter-
vals [a−, a+] and [b−, b+], we have that a− < b− is equiva-
lent to:

(∃x)(x ∈ [a−, a+] ∧ (∀y)(y ∈ [b−, b+] ⇒ x < y)) (1)
Let A and B be fuzzy time intervals. The degree bb�(A,B)
to which the beginning of A is before the beginning of B can
be expressed as [Schockaert et al., 2006b]:

bb�(A,B) = sup
x∈R

TW (A(x), inf
y∈R

IW (B(y), L�(x, y)))

where TW and IW are defined for every a and b in [0, 1] by
TW (a, b) = max(0, a + b− 1)
IW (a, b) = min(1, 1− a + b)

and L� is the characteristic mapping of <, i.e., L�(x, y) =
1 if x < y and L�(x, y) = 0 otherwise. Note that the defi-
nition of bb� is a generalization of (1), where ∀ and ∃ have
been generalized by the infimum and supremum. To gen-
eralize logical conjunction and implication, large classes of
[0, 1]2−[0, 1] mappings, called t–norms and implicators resp.,
may be used. However, it has been shown in [Schockaert et
al., 2006b] that the particular choice of TW and IW leads to
many interesting properties. In the same way, we can express
the degree ee�(A,B) to which the end of A is before the end
of B, the degree be�(A,B) to which the beginning of A is
before the end of B and the degree eb�(A,B) to which the
end of A is before the beginning of B as:

ee�(A,B) = sup
y∈R

TW (B(y), inf
x∈R

IW (A(x), L�(x, y)))

be�(A,B) = sup
x∈R

TW (A(x), sup
y∈R

TW (B(y), L�(x, y)))

eb�(A,B) = inf
x∈R

IW (A(x), inf
y∈R

IW (B(y), L�(x, y)))



Finally, the degree bb4(A,B) to which the beginning of A is
before or at the same time as the beginning of B is defined by

bb4(A,B) = 1− bb�(B,A)

and analogously for ee4(A,B), be4(A,B) and eb4(A,B).

3.2 A point algebra with disjunctions
In [Broxvall and Jonsson, 2003], a point algebra extended
with disjunctions is introduced, in which formulas like

(< ∨ ≤ ∨ =)(x1, x2, x3, x4, x5, x6) (2)
can be expressed. Formulas such as (2) are used to express
constraints on (unknown) time instants. In general, we define
a P–formula over a set of variables X as an expression of
the form (r1 ∨ r2 ∨ · · · ∨ rn)(x1, x2, . . . , x2n) where ri (i ∈
{1, 2, . . . , n}) is either <,≤,= or 6=, and x1, x2, . . . , xn ∈
X . We will call an expression of the form r1 ∨ r2 ∨ · · · ∨ rn

a P–relation. Furthermore, we will refer to a P–interpretation
over X as a mapping from X to R. A P–interpretation I over
X satisfies (<)(x, y) iff I(x) < I(y), satisfies (≤)(x, y) iff
I(x) ≤ I(y), etc. Furthermore, I satisfies a P–formula like
(2) iff I satisfies (<)(x1, x2), or I satisfies (≤)(x3, x4), or
I satisfies (=)(x5, x6). A set Ψ of P–formulas over a set
of variables X is said to be P–satisfiable if there exists a P–
interpretation over X that satisfies every P–formula in Ψ. A
P–interpretation meeting this requirement is called a P–model
of Ψ.

4 A motivating example
In many NLP tasks, an ordering of events occurring in doc-
uments has to be identified. Such an ordering is useful, for
example, for automatic text summarization, or to support
question answering. As a motivating example, we consider
the task of summarizing a set of documents related to recent
trends in economy, in particular the Dotcom Bubble2 and the
British Property Bubble3 (a recent real estate bubble in Great
Britain). From these documents, we learn that the British
Property Bubble has existed since 1998 and that the Dotcom
Bubble ended around 2001. Let [x−dc, x

+
dc] denote the time

span of the Dotcom Bubble, and [x−bpb, x
+
bpb] the time span of

the British Property Bubble, then we can establish from these
facts the following P–formula:

(<)(x−bpb, x
+
dc)

On the other hand, the document about the British Property
Bubble also states as one of its reasons:

A falling stock market, especially after the dot-com
bubble, feeding into a general lack of confidence in
the stock market.

Let [x−fsm, x+
fsm] be the time span of the fall of the stock

market, then we can represent this as
(≤)(x+

fsm, x−bpb)

(<)(x+
dc, x

+
fsm)

2http://en.wikipedia.org/wiki/Dotcom bubble,
accessed June 16, 2006

3http://en.wikipedia.org/wiki/British
property bubble, accessed June 16, 2006

However, this set of P–formulas is inconsistent, because it
allows to deduce the following cycle:

x−bpb < x+
dc < x+

fsm < x−bpb

In the traditional framework, where the temporal boundaries
of events are assumed to be crisp, the only way out seems to
be to reject some of the information, such that the remaining
set of P–formulas is consistent.

However, it is clear that the real cause of this inconsistency
is not the presence of false information, but the vagueness of
the events involved. Rather than modelling the time spans of
these events as intervals, we should acknowledge that these
time spans may be fuzzy. The knowledge extracted from the
documents may then be represented by stating that the fuzzy
time intervals Xdc, Xbpb and Xfsm, whatever their exact de-
finition is, should satisfy

be�(Xbpb, Xdc) = 1

eb4(Xfsm, Xbpb) ≥ α

ee�(Xdc, Xfsm) ≥ β

where α, β ∈]0, 1]. Initially, we may assume that α = β = 1,
i.e., we assume that the fall of the stock market was fully
before the British Property Bubble, and that the end of the
Dotcom Bubble was fully before the end of the fall of the
stock market. Since this again leads to inconsistency, we
may weaken these interpretations by lowering the value of
α and/or β. It is of interest to find maximal values for α and
β that lead to a consistent representation, in the same way that
traditionally, we are interested in maximal consistent subsets
of assertions.

5 Temporal reasoning about vague events
5.1 Temporal relations between vague events
We will define qualitative relations between fuzzy intervals
as upper and lower bounds for the measures bb�, bb4, ee�,
ee4, be�, be4, eb� and eb4 introduced in Section 3.1. In
the remainder of this paper, we will assume that all these
upper and lower bounds are taken from a fixed set M =
{0,∆, 2∆, . . . , 1}, where ∆ = 1

ρ for some ρ ∈ N \ {0}.
For convenience, we will write M0 for M \ {0} and M1 for
M \ {1}.
Definition 2 (Basic FI–relation) A basic FI–relation is an
expression of the form bb�≤k, bb�≥l, bb4

≤k, bb4
≥l, ee�≤k, ee�≥l,

ee4
≤k, ee4

≥l, be�≤k, be�≥l, be4
≤k, be4

≥l, eb�≤k, eb�≥l, eb4
≤k or

eb4
≥l, where k ∈ M1 and l ∈ M0.

Definition 3 (FI–relation) A FI–relation is an expression of
the form

r1 ∨ r2 ∨ · · · ∨ rn

where r1, r2, . . . , rn are basic FI–relations; n is called the
complexity of the FI–relation. The set of all FI–relations is
denoted by F .
Definition 4 (FI–formula) A FI–formula over a set of vari-
ables X is an expression of the form

r(x1, x2, . . . , x2n)



where r is an FI–relation of complexity n, and
x1, x2, . . . , x2n are variables from X .

Definition 5 (FI–interpretation) A FI–interpretation over a
set of variables X is a mapping that assigns a fuzzy interval
to each variable in X . An FIM –interpretation over X is an
FI–interpretation that maps every variable from X to a fuzzy
interval that takes only membership degrees from M .

A FI–interpretation I over X satisfies the temporal formula
bb�≥l(x, y) (x, y ∈ X , l ∈ M0) iff bb�(I(x), I(y)) ≥ l,
and analogously for other types of basic temporal formulas.
Furthermore, I satisfies (r1 ∨ r2 ∨ · · · ∨ rn)(x1, x2, . . . , x2n)
iff I satisfies r1(x1, x2) or I satisfies r2(x3, x4) or . . . or I
satisfies rn(x2n−1, x2n).

Definition 6 (FI–satisfiable) A set Θ of FI–formulas over a
set of variables X is said to be FI–satisfiable if there exists an
FI–interpretation I over X that satisfies every FI–formula in
Θ. A FI–interpretation I meeting this requirement is called
an FI–model of Θ. If there exists an FIM –interpretation over
X that satisfies every FI–formula in Θ, Θ is called FIM –
satisfiable.

5.2 FI–satisfiability
To decide if a set of FI–formulas Θ is FI–satisfiable, we will
reduce this problem to the satisfiability problem in the point
algebra with disjunctions described in Section 3.2. This re-
duction is made possible by virtue of the following propo-
sition, stating that if the upper and lower bounds in a set of
formulas are taken from the set M , as defined above, then we
can restrict ourselves to fuzzy intervals that only take mem-
bership degrees from M .

Proposition 1 Let Θ be a set of FI–formulas over X . It holds
that Θ is FI–satisfiable iff Θ is FIM –satisfiable.

The following proposition provides a correspondence be-
tween FI–relations and P–relations that will be fundamental
in reducing FI–satisfiability to P–satisfiability

Proposition 2 Let A and B be fuzzy intervals that only take
membership degrees from M , k ∈ M1 and l ∈ M0. It holds
that:

bb�(A,B) ≥ l ⇔ A−l < B−
∆ ∨A−l+∆ < B−

2∆

∨ · · · ∨A−1 < B−
1−l+∆

bb�(A,B) ≤ k ⇔ B−
∆ ≤ A−k+∆ ∧B−

2∆ ≤ A−k+2∆

∧ · · · ∧B−
1−k ≤ A−1

ee�(A,B) ≥ l ⇔ A+
∆ < B+

l ∨A+
2∆ < B+

l+∆

∨ · · · ∨A+
1−l+∆ < B+

1

ee�(A,B) ≤ k ⇔ B+
k+∆ ≤ A+

∆ ∧B+
k+2∆ ≤ A+

2∆

∧ · · · ∧B+
1 ≤ A+

1−k

be�(A,B) ≥ l ⇔ A−l < B+
1 ∨A−l+∆ < B+

1−∆

∨ · · · ∨A−1 < B+
l

be�(A,B) ≤ k ⇔ B+
1 ≤ A−k+∆ ∧B+

1−∆ ≤ A−k+2∆

∧ · · · ∧B+
k+∆ ≤ A−1

eb�(A,B) ≥ l ⇔ A+
1 < B−

1−l+∆ ∧A+
1−∆ < B−

1−l+2∆

∧ · · · ∧A+
1−l+∆ < B−

1

eb�(A,B) ≤ k ⇔ B−
1−k ≤ A+

1 ∨B−
1−k+∆ ≤ A+

1−∆

∨ · · · ∨B−
1 ≤ A+

1−k

Let Θ be a set of FI–formulas over a set of variables X . From
this, we will construct a set of variables X ′ and a set of P–
formulas Ψ over X ′ such that Θ is FI–satisfiable iff Ψ is P–
satisfiable. From Proposition 1, we know that we can restrict
ourselves to fuzzy intervals that only take membership de-
grees from M . The intuition behind the reduction process
is that such a fuzzy interval A is completely characterized
by the set of intervals {A∆, A2∆, . . . , A1}, which is in turn
completely characterized by the set of instants (real numbers)
{A−∆, A−2∆, . . . , A−1 , A+

1 , . . . , A+
2∆, A+

∆}.
Let X ′ and Ψ initially be the empty set. For

each variable x in X , we add the new variables
x−∆, x−2∆, . . . , x−1 , x+

1 , . . . , x+
2∆ and x+

∆ to X ′, and add the P–
formula (<)(x−1 , x+

1 ) to Ψ. Furthermore, for each k in M1,
we add the following P–formulas to Ψ:

(≤)(x−k , x−k+∆)

(≤)(x+
k+∆, x+

k )

This ensures that for every P–interpretation I ′ over X ′ that
satisfies Ψ, there exists a (unique) FI–interpretation I over X
defined for every x in X by

(I(x))l = [I ′(x−l ), I ′(x+
l )] (3)

for every l in M0. Conversely, for every FI–interpretation I
over X , (3) defines a (unique) P–interpretation I ′ over X ′

that satisfies Ψ.
Finally, for each FI–formula in Θ, we add a correspond-

ing set of P–formulas to Ψ, based on the equivalences of
Proposition 2. For example, assume that Θ contains the FI–
formula (bb4

≤k)(x, y) (k ∈ M1, x, y ∈ X). Since for all
fuzzy intervals A and B, it holds that bb4(A,B) ≤ k ⇔
1 − bb�(B,A) ≤ k ⇔ bb�(B,A) ≥ 1 − k, we have
that any FI–interpretation satisfies (bb4

≤k)(x, y) iff it satisfies
(bb�≥1−k)(y, x). From Proposition 2, it follows that any FI–
interpretation I of X will satisfy (bb�≥1−k)(y, x) iff the cor-
responding P–interpretation I ′ satisfies the P–formula

(< ∨ < ∨ · · · ∨ <)(y−1−k, x−∆, y−1−k+∆, x−2∆, . . . , y−1 , x−k+∆)
(4)

Therefore, (4) is added to Ψ. For other FI–formulas, we ob-
tain P–formulas in a similar way. Thus we can reduce the
problem of deciding FI–satisfiability of Θ to the problem
of deciding P–satisfiability of Ψ in a polynomial amount of
time. The following proposition expresses that this reduction
is sound and complete.

Proposition 3 Let Θ be a set of FI–formulas over X , and let
Ψ be the corresponding set of P–formulas, obtained by the
procedure outlined above. It holds that Θ is FI–satisfiable iff
Ψ is P–satisfiable.



5.3 Computational complexity
Let A be a subset of F , the set of all FI–relations. We
call FISAT(A) the problem of deciding whether a set of
FI–formulas involving only FI–relations from A, is FI–
satisfiable. Deciding the satisfiability of a set of P–formulas
is NP–complete [Broxvall and Jonsson, 2003], hence, since
deciding FI–satisfiability can be polynomially reduced to de-
ciding P–satisfiability, FISAT(A) is in NP for every A ⊆ F .
As will become clear below, FISAT(F) is also NP–hard, and
thus NP–complete. However, deciding the satisfiability of a
set of P–formulas without disjunctions is tractable [Vilain et
al., 1989]. From Proposition 2, it follows that a significant
subset of the FI–relations corresponds to P–relations without
disjunctions. We will refer to this subset as Ft. It holds that

Ft = {bb4
≥l|l ∈ M0} ∪ {bb�≤k|k ∈ M1} ∪ {ee4

≥l|l ∈ M0}

∪ {ee�≤k|k ∈ M1} ∪ {be4
≤k|k ∈ M1} ∪ {be�≤k|k ∈ M1}

∪ {eb4
≥l|l ∈ M0} ∪ {eb�≥l|l ∈ M0}

∪ {bb4
≤0, bb

�
≥1, ee

4
≤0, ee

�
≥1, be

4
≥1, be

�
≥1, eb

4
≤0, eb

�
≤0}

From the tractability of the satisfiability of P–formulas with-
out disjunctions, we immediately obtain that FISAT(Ft) is
tractable. To show that Ft is a maximal tractable subset
of F , it is sufficient to prove that for any FI–relation r in
F \ Ft, FISAT(Ft ∪ {r}) is NP–hard. For every r in F \ Ft,
we can show that 3SAT can be polynomially reduced to
FISAT(Ft ∪ {r}), obtaining the following proposition.
Proposition 4 Ft is a maximal tractable subset of F , i.e.,
FISAT(Ft) is tractable, and for any r in F \ Ft, FISAT(Ft ∪
{r}) is NP–complete.

5.4 Entailment and BTVB
Let Θ be a set of FI–formulas over X , and γ an FI–formula
over X . We say that Θ entails γ, written Θ |= γ, iff every
FI–model of Θ is also an FI–model of {γ}. The notion of
entailment is important for applications, because it allows to
draw conclusions that are not explicitly contained in an initial
set of assertions. We will restrict ourselves to the case where
only FI–relations from Ft are used, and, in particular, show
that the tractability of Ft w.r.t. satisfiability checking carries
over to entailment checking. To show how entailment for a
particular Θ and a basic FI–relation r can be reduced to de-
ciding FI–satisfiability, we first define a mapping neg from
basic FI–relations to basic FI–relations, defined as (k ∈ M1,
l ∈ M0)

neg(bb4
≤k) = bb4

≥k+∆ neg(bb�≤k) = bb�≥k+∆

neg(bb4
≥l) = bb4

≤l−∆ neg(bb�≥l) = bb�≤l−∆

and analogous for the other basic FI–relations.
Proposition 5 Let Θ be a set of FI–formulas over X , involv-
ing only FI–relations from Ft, and r a basic FI–relation. It
holds that Θ |= r(x, y) iff Θ ∪ {neg(r)(x, y)} is not FI–
satisfiable.

Corollary 1 Deciding whether Θ |= r(x, y) holds for a ba-
sic FI–relation r and a set Θ of FI–formulas involving only
FI–relations from Ft, is tractable.

Another reasoning task that is of interest to practical applica-
tions is finding the Best Truth Value Bound (BTVB), a notion
we borrow from fuzzy description logics [Straccia, 2001].
In the following discussion, we will restrict ourselves to the
measure bb4; for bb�, ee4, ee�, be4, be�, eb4 and eb� en-
tirely analogous results can be obtained.

The idea is that we want to find the best upper and lower
bound for bb4(I(x), I(y)) over all FI–models I of a set of
FI–formulas Θ. In other words, if x and y represent the (un-
known) time span of the events ex and ey , then we want to es-
tablish the strongest possible bounds on the degree to which
the beginning of ex is before or at the same time as the begin-
ning of ey , given that the temporal relations in Θ are satisfied.
Formally, we want to obtain the value of lubbb4((x, y);Θ)
and glbbb4((x, y);Θ), defined by

lubbb4((x, y);Θ) = sup{bb4(I(x), I(y))|I ∈ mod(Θ)}
glbbb4((x, y);Θ) = inf{bb4(I(x), I(y))|I ∈ mod(Θ)}

where mod(Θ) is the set of all FI–models of Θ. The fol-
lowing proposition enables us to solve the BTVB problem by
checking a constant number of entailments.
Proposition 6 Let Θ be a set of FI–formulas over X , in-
volving only FI–relations from Ft, and x, y ∈ X . It holds
that the supremum in lubbb4((x, y);Θ) and the infimum in
glbbb4((x, y);Θ) are attained for some m in M .
Hence, given the conditions from Proposition 6, we obtain

lubbb4((x, y);Θ) = max{k|k ∈ M1 and Θ |= bb4
≤k(x, y)}

glbbb4((x, y);Θ) = min{l|l ∈ M0 and Θ |= bb4
≥l(x, y)}

Corollary 2 Calculating the best truth value bound w.r.t. a
set Θ of FI–formulas involving only FI–relations from Ft, is
tractable.

6 Concluding remarks
We have shown how qualitative reasoning about vague events
can be reduced to reasoning in a well–known point algebra
with disjuntions, thus obtaining sound and complete proce-
dures for several interesting reasoning tasks. Reasoning about
vague events is shown to be NP–complete. An important
advantage of our approach is that we can draw upon well–
established results for solving disjunctive temporal reason-
ing problems. For example, in [Tsamardinos and Pollack,
2003], techniques such as conflict–directed backjumping and
no–good search are used to solve disjunctive temporal reason-
ing problems more efficiently. These techniques can easily be
adapted to solve the reasoning tasks discussed in this paper.

To support tractable reasoning, we have identified a max-
imal tractable subset of qualitative relations. This is an im-
portant result, as we believe that the relations in this subset
are sufficient for many applications. An interesting direc-
tion for future work, however, is to identify particular classes
of tractable problem instances, e.g., based on decomposition
methods for constraint satisfaction problems (e.g., [Gottlob
et al., 2000]). Such classes may involve relations that are not
contained in the maximal tractable subset identified in this
paper, by imposing restrictions on the variables the relations
can be applied to.
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