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Abstract— Fuzzy temporal interval relations have been de-
fined to support temporal knowledge representation and rea-
soning in the presence of vagueness. The most important imped-
iment to use these fuzzy relations in real–world applications is
the lack of a characterization that is both easy to implement and
computationally efficient. In this paper, we provide such a char-
acterization for the important class of piecewise linear fuzzy
time intervals, which covers all types of fuzzy time intervals
that we are likely to encounter in applications. Furthermore,
we discuss a more elegant characterization for the special case
of trapezoidally shaped fuzzy intervals.

I. INTRODUCTION

Very often the temporal information that is at our disposal
is of a qualitative nature. A typical example is temporal
information that is extracted from natural language (e.g. [1]).
Allen [2] has proposed a set of 13 jointly exhaustive and
mutual exclusive qualitative relations between intervals of the
real line to reason with this kind of information. For example,
if we know that A happened before B, and C happened
during B, we may deduce that A happened before C. The
underlying assumption is that the time span of events can
be modelled as an interval. In practice however, this is not
always true, as temporal information is sometimes pervaded
with uncertainty and vagueness.

In [3], Dubois and Prade discuss how Allen’s definitions of
the qualitative interval relations can be generalized when the
endpoints of the intervals are uncertain. For example, assume
that we know that event A lasted from just before 10.15 am
to a little over 1.00 pm, and B lasted from around 10.00
am till the early evening. In the approach taken in [3], the
endpoints of the time spans of A and B are represented as
possibility distributions, which allows to express for example
the possibility that event A happened during B. In [4]
Badaloni and Giacomin propose a framework for qualitative
reasoning with uncertain temporal relations, which allows to
deduce, for example, the possibility that A happened before
C when we only know that the possibility that A happened
before B is 0.6 and the possibility that B happened during
C is 0.8.

On the other hand, temporal information can also be
affected by vagueness, in at least two different ways. First
of all, the qualitative relations may be vague, expressing for
example that A and B began at approximately the same
time, or that A happened long before B. As shown in [5],
this can be modelled by making use of a graded inequality
relation. Secondly, the time span of events may be vague. For
example historical events tend to have a gradual beginning
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and/or ending (e.g. the Cold War, the Great Depression, the
Russian Revolution, ...). In [6] it was suggested to represent
the time span of such vague events as fuzzy sets, which we
call fuzzy intervals in this context, and generalized definitions
of the qualitative interval relations were given. Alternative
definitions of the interval relations which cope to some extent
with vague temporal relations as well, were given in [7]. As
pointed out in [5], approaches for ranking fuzzy numbers
may also be suitable for this purpose (e.g. [8]). It seems
however that in all of these approaches, important properties
of the original interval relations are lost, which makes them
unsuitable as a basis for qualitative reasoning. Therefore in
[9], we have proposed alternative definitions, based on the
notion of relatedness measures for fuzzy sets [10].

One of the most important limitations of these definitions
for practical applications is that the fuzzy temporal relations
are computationally rather expensive to evaluate. In this pa-
per we introduce a computationally efficient characterization
of these fuzzy temporal relations for an important class of
fuzzy intervals. In Section II, we first recall the definitions
of the fuzzy temporal interval relations that were introduced
in [9], and generalized in [11]. Next, in Section III we
provide a characterization of these fuzzy temporal interval
relations for arbitrary piecewise linear fuzzy intervals. This
gives us a method to process fuzzy temporal information
in an efficient way, as in real–world applications the time
spans of vague events will likely be represented by piecewise
linear fuzzy intervals. Moreover, every fuzzy interval can
be approximated by a piecewise linear fuzzy interval with
an arbitrary high precision. In Section IV we discuss a
special class of piecewise linear fuzzy intervals, namely
trapezoidally shaped fuzzy intervals. Although the resulting
characterization is less general, it is more elegant, and thus
more apt to be used in theoretical arguments. Finally, Section
V concludes the paper.

II. FUZZY TEMPORAL RELATIONS

A. Crisp time intervals

Qualitative relations between time intervals are usually
defined as constraints on the boundary points of these in-
tervals [2]. For example, we say that A = [a−, a+] is before
B = [b−, b+] iff a+ < b−, and that A happened during B
iff b− < a− and a+ < b+. Vague temporal relations like A
happened long before B can be represented by using a fuzzy
relation that expresses the degree to which one time point is
long before another [5]. In the following, we use the fuzzy
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for a fixed value a ∈ R

relations L�(α,β) and L4
(α,β) defined for a and b in R as

L�(α,β)(a, b) =


1 if b− a > α + β
0 if b− a ≤ α

b−a−α
β otherwise (β > 0)

expressing the degree to which a is long before b, and

L4
(α,β)(a, b) =


1 if b− a ≥ −α
0 if b− a < −α− β

b−a+α+β
β otherwise (β > 0)

expressing the degree to which a is before or at approxi-
mately the same time as b. The role of α and β is illustrated
in Figure 1. In both cases we assume β ≥ 0 and α ∈ R.
Our interpretation of the concepts long before and before
or at approximately the same time as depends largely on
the values of the parameters α and β. If α = β = 0, then
L�(α,β) degenerates to <, and L4

(α,β) degenerates to ≤. On the
other hand, when β > 0 we have a gradual (linear) transition
between satisfying and not satisfying these concepts.

It is easy to see that

L4
(α,β)(a, b) = 1− L�(α,β)(b, a) (1)

Recall that the (sup–T ) composition R ◦T S of a fuzzy
relation R from R to R and a fuzzy relation S from R to R
is defined for a and c in R as

(R ◦T S)(a, c) = sup
b∈R

T (R(a, b), S(b, c))

where T is an arbitrary t–norm. In the following, we will
use the Łukasiewicz t–norm Tw, and its dual t–conorm Sw,
defined for all a and b in [0, 1] as

Tw(a, b) = max(0, a + b− 1)
Sw(a, b) = min(1, a + b)

For convenience, we write R ◦ S instead of R ◦Tw
S in

the remainder of this paper. We can prove the following
characterizations of the compositions of L�(α,β) and L4

(α,β).

Proposition 1 (Composition): [11] Let α1, α2 ∈ R and
β1, β2 ≥ 0; it holds that

L�(α1,β1)
◦ L�(α2,β2)

= L�(α1+α2+min(β1,β2),max(β1,β2))

L4
(α1,β1)

◦ L4
(α2,β2)

= L4
(α1+α2,max(β1,β2))

L4
(α1,β1)

◦ L�(α2,β2)
= L�(α2−α1+min(β1,β2)−β1,max(β1,β2))

L�(α1,β1)
◦ L4

(α2,β2)
= L�(α1−α2+min(β1,β2)−β2,max(β1,β2))

Note that in particular when α1 = α2 = β1 = β2 = 0, this
proposition corresponds to the transitivity rules for the crisp
relations < and ≤.

B. Fuzzy time intervals

We represent the time span of vague events as convex and
upper semicontinuous normalised fuzzy sets in R, which we
call fuzzy (time) intervals. Recall that a fuzzy set A in R with
a bounded support is convex and upper semicontinuous iff
for each α in ]0, 1] the α–level set {x|A(x) ≥ α} is a closed
interval. If A and B are fuzzy time intervals, we cannot
make use of boundary points to define (vague) temporal
relations, since the boundaries of fuzzy time intervals may
be imprecise. Instead we propose the definitions that are
shown in the second column of Table I, where Iw denotes
the Łukasiewicz implicator, defined for a and b in [0, 1] by

Iw(a, b) = min(1, 1− a + b)

and Tw is the Łukasiewicz t–norm as defined above. For
example bb�(α,β)(A,B) expresses the degree to which the
beginning of A is long before the beginning of B, while
eb4

(α,β)(A,B) expresses the degree to which the end of A is
before or at approximately the same time as the beginning of
B. If there is no cause for confusion, we sometimes omit the
subscript (α, β). It can be shown that if A and B are crisp
intervals and α = β = 0, these definitions coincide with the
corresponding definitions for crisp intervals, which are shown
in the first column of Table I. Furthermore, (generalizations
of) the transitivity properties of the crisp interval relations
hold for these generalized definitions [11].

Consider for example the fuzzy time intervals A and B
that are depicted in Figure 2. Table II shows the degree to
which the eight fuzzy temporal relations from Table I are
satisfied for different values of the parameters α and β. In
general, we have that increasing the values of α and β causes
an increase (resp. a decrease) in the degree to which the fuzzy
relations involving L4 (resp. L�) are satisfied.

The main problem with the definitions of the fuzzy tem-
poral relations is that it is unclear how to evaluate them in
practice as they involve suprema and infima ranging over the
real line. The most obvious solution is to apply discretization
techniques, but these are computationally expensive. Assume



TABLE I
DEFINITION OF THE QUALITATIVE TEMPORAL RELATIONS BETWEEN FUZZY TIME INTERVALS A AND B, AND THEIR CORRESPONDENCE WITH THE

CLASSICAL DEFINITIONS WHEN A = [a−, a+] AND B = [b−, b+] ARE CRISP INTERVALS.

Crisp intervals Fuzzy time intervals

a− < b− ⇔ (∃x)(x ∈ A ∧ (∀y)(y ∈ B ⇒ x < y)) bb�
(α,β)

(A, B) = supx Tw(A(x), infy Iw(B(y), L�
(α,β)

(x, y)))

a− ≤ b− ⇔ (∀y)(y ∈ B ⇒ (∃x)(x ∈ A ∧ x ≤ y)) bb4
(α,β)

(A, B) = infy Iw(B(y), supx Tw(A(x), L4
(α,β)

(x, y)))

a+ < b+ ⇔ (∃y)(y ∈ B ∧ (∀x)(x ∈ A ⇒ x < y)) ee�
(α,β)

(A, B) = supy Tw(B(y), infx Iw(A(x), L�
(α,β)

(x, y)))

a+ ≤ b+ ⇔ (∀x)(x ∈ A ⇒ (∃y)(y ∈ B ∧ x ≤ y)) ee4
(α,β)

(A, B) = infx Iw(A(x), supy Tw(B(y), L4
(α,β)

(x, y)))

a+ < b− ⇔ (∀x)(∀y)(x ∈ A ∧ y ∈ B ⇒ x < y) eb�
(α,β)

(A, B) = infx Iw(A(x), infy Iw(B(y), L�
(α,β)

(x, y)))

a+ ≤ b− ⇔ (∀x)(∀y)(x ∈ A ∧ y ∈ B ⇒ x ≤ y) eb4
(α,β)

(A, B) = infx Iw(A(x), infy Iw(B(y), L4
(α,β)

(x, y)))

a− < b+ ⇔ (∃x)(∃y)(x ∈ A ∧ y ∈ B ∧ x < y) be�
(α,β)

(A, B) = supx Tw(A(x), supy Tw(B(y), L�
(α,β)

(x, y)))

a− ≤ b+ ⇔ (∃x)(∃y)(x ∈ A ∧ y ∈ B ∧ x ≤ y) be4
(α,β)

(A, B) = supx Tw(A(x), supy Tw(B(y), L4
(α,β)

(x, y)))

Fig. 2. Two fuzzy time intervals A and B

for example that we choose somehow n points xi and n
points yj (1 ≤ i, j ≤ n) such that

n
max
i=1

Tw(A(xi),
n

max
j=1

Tw(B(yj), L4(xi, xj))) (2)

is a reasonable approximation of be4(A,B). Evaluating
(2) still requires Θ(n2) basic arithmetic operations. In the
next section we provide an efficient characterization of the
fuzzy temporal relations that is exact for piecewise linear
fuzzy intervals. Moreover, this characterization can be used
to approximate the fuzzy temporal relations for arbitrary
fuzzy time intervals in a way that is much more efficient
(i.e. kwadratic in the number of line segments that are used
to approximate the fuzzy time intervals).

TABLE II
EVALUATION OF THE FUZZY TEMPORAL RELATIONS FOR THE FUZZY

INTERVALS A AND B FROM FIGURE 2 FOR DIFFERENT VALUES OF THE

PARAMETERS (α, β)

(α, β) (0,0) (0,20) (20,0) (20,20) (40,0) (40,20)

bb�(A, B) 1 1 0.58 0.57 0 0

bb4(A, B) 1 1 1 1 1 1

ee�(A, B) 0.45 0.45 0.09 0.09 0 0

ee4(A, B) 0.73 0.81 1 1 1 1

eb�(A, B) 0.18 0.18 0 0 0 0

eb4(A, B) 0.18 0.55 0.55 0.91 0.91 1

be�(A, B) 1 1 1 1 1 0.75

be4(A, B) 1 1 1 1 1 1

III. A CHARACTERIZATION FOR PIECEWISE LINEAR
FUZZY INTERVALS

A. Piecewise linear fuzzy intervals

In the following, we use A = ((a0/λ0), (a1/λ1)), where
a0 ≤ a1 and λ0, λ1 in [0, 1], to denote a linear fuzzy set in
R, i.e. for each x in R, we have

A(x) =


λ0 + (x− a0)λ1−λ0

a1−a0
if a0 ≤ x < a1

λ1 if x = a1

0 otherwise

Note that when a0 = a1 and λ1 > 0, A degenerates to a
fuzzy singleton and the value λ0 is ignored. Every piecewise
linear fuzzy interval A is equal to the union of a finite set
of linear fuzzy sets, where the union of two fuzzy sets A
and B in R is defined as (A ∪ B)(x) = max(A(x), B(x))
for all x in R. Due to the following two propositions, we
only need to provide a characterization for linear fuzzy sets.

Proposition 2: Let A =
⋃n

i=1 Ai, B =
⋃m

j=1 Bj , Ai =
((ai

0/λi
0), (a

i
1/λi

1)) and Bj = ((bj
0/δj

0), (b
j
1/δj

1)) for 1 ≤
i ≤ n and 1 ≤ j ≤ m. It holds that

eb�(A,B) =
n

min
i=1

m
min
j=1

eb�(Ai, Bj)

eb4(A,B) =
n

min
i=1

m
min
j=1

eb4(Ai, Bj)

be�(A,B) =
n

max
i=1

m
max
j=1

be�(Ai, Bj)

be4(A,B) =
n

max
i=1

m
max
j=1

be4(Ai, Bj)

Proof: As an example we prove the first equality. We
have that

eb�(A,B)
= inf

x
Iw(A(x), inf

y
Iw(B(y), L�(x, y)))

= inf
x

Iw(
n

max
i=1

Ai(x), inf
y

Iw(
m

max
j=1

Bj(y), L�(x, y)))

= inf
x

n
min
i=1

Iw(Ai(x), inf
y

m
min
j=1

Iw(Bj(y), L�(x, y)))

=
n

min
i=1

inf
x

Iw(Ai(x),
m

min
j=1

inf
y

Iw(Bj(y), L�(x, y)))



=
n

min
i=1

m
min
j=1

inf
x

Iw(Ai(x), inf
y

Iw(Bj(y), L�(x, y)))

=
n

min
i=1

m
min
j=1

eb�(Ai, Bj)

Note that the proof of Proposition 2 is independent of the fact
that the relations L� and L4 are used, e.g. for an arbitrary
fuzzy relation S in R we also have that

inf
x

Iw(A(x), inf
y

Iw(B(y), S(x, y)))

=
n

min
i=1

m
min
j=1

inf
x

Iw(Ai(x), inf
y

Iw(Bj(y), S(x, y)))

Unfortunately, a similar characterization for bb�(A,B),
bb4(A,B), ee�(A,B), and ee4(A,B) is not valid. Note
that a proof analogous to the proof of Proposition 2 is not
possible, since in general

inf
i

max(xi, yi) 6= max(inf
i

xi, inf
i

yi)

sup
i

min(xi, yi) 6= min(sup
i

xi, sup
i

yi)

To obtain characterizations of the remaining fuzzy temporal
relations, we will use the following lemma.

Lemma 1: Let A = ((a0/λ0), (a1/λ1)), and a0 < a1. Let
C(y) = supx Tw(A(x), L4

(α,β)(x, y)) for all y in R. Then C
is a piecewise linear fuzzy set. Furthermore, if λ0 < λ1, for
all y in R it holds that

sup
x

Tw(A(x), L4
(α,β)(x, y))

=


0 if y + α < a0 − λ0β
y−a0+α+λ0β

β if a0 − λ0β ≤ y + α < a0

A(y + α) if a0 ≤ y + α < a1

λ1 if a1 ≤ y + α

provided a1−a0
λ1−λ0

≥ β, and

sup
x

Tw(A(x), L4
(α,β)(x, y))

=


0 if y + α < a1 − λ1β
y−a1+α+λ1β

β if a1 − λ1β ≤ y + α < a1

λ1 if a1 ≤ y + α

provided a1−a0
λ1−λ0

≤ β. Moreover, if λ0 ≥ λ1, for all y in R
it holds that

sup
x

Tw(A(x), L4
(α,β)(x, y))

=


0 if y + α < a0 − λ0β
y−a0+α+λ0β

β if a0 − λ0β ≤ y + α < a0

λ0 if a0 ≤ y + α

Example 1: Consider the linear fuzzy set A1 in Figure
3(a). The corresponding piecewise linear fuzzy set C1 defined
for all y in R by

C1(y) = sup
x

Tw(A(x), L4
(20,20)(x, y))

is shown in Figure 3(b).
Proposition 3: Let A =

⋃n
i=1 Ai, B =

⋃m
j=1 Bj , Ai =

((ai
0/λi

0), (a
i
1/λi

1)) and Bj = ((bj
0/δj

0), (b
j
1/δj

1)) for 1 ≤
i ≤ n and 1 ≤ j ≤ m. We can always find linear fuzzy sets
A′

k and B′
l (1 ≤ k ≤ n′, 1 ≤ l ≤ m′, n′ ≥ n and m′ ≥ m)

such that A =
⋃n′

k=1 A′
k, B =

⋃m′

l=1 B′
l and

bb�(A,B) =
n′

max
k=1

m
min
j=1

bb�(A′
k, Bj)

bb4(A,B) =
m′

min
l=1

n
max
i=1

bb4(Ai, B
′
l)

ee�(A,B) =
m′

max
l=1

n
min
i=1

ee�(Ai, B
′
l)

ee4(A,B) =
n′

min
k=1

m
max
j=1

ee4(A′
k, Bj)

Proof: As an example, we prove the second equality.
The definition of bb4(A,B) contains the formula

sup
x

Tw(A(x), L4
(α,β)(x, y)) (3)

which we abbreviate as C(y) for all y in R. From Lemma 1
we know that C is a piecewise linear fuzzy set. Furthermore,
since A =

⋃n
i=1 Ai, (3) equals

n
max
i=1

sup
x

Tw(Ai(x), L4
(α,β)(x, y)) (4)

According to Lemma 1, for all i in {1, . . . , n}, the fuzzy sets
Ci defined as

Ci(y) = sup
x

Tw(Ai(x), L4
(α,β)(x, y))

are all piecewise linear fuzzy sets. From (3) equals (4) we
derive that C is the union of all Ci’s (i = 1, . . . , n). We
now decompose each of the original linear fuzzy sets Bj

in one or more linear fuzzy sets B′
l of the form B′

l =
((b′l0/δ′

l
0), (b

′l
1/δ′

l
1)). The parameters b′

l
0 and b′

l
1 are chosen

such that there exists an il in {1, 2, . . . , n} with

C(y) = Cil
(y)

for all y in [b′l0, b
′l
1]. Furthermore they are restricted by the

fact that the line segment defining B′
l is a subsegment of the

line segment that defines Bj . Obviously δ′
l
0 = B(b′l0) and

δ′
l
1 = B(b′l1). We obtain

bb4(A,B)

= inf
y

Iw(B(y), sup
x

Tw(A(x), L4(x, y)))

= inf
y

Iw(
m′

max
l=1

B′
l(y), sup

x
Tw(A(x), L4(x, y)))

= inf
y

m′

min
l=1

Iw(B′
l(y), sup

x
Tw(A(x), L4(x, y)))

=
m′

min
l=1

inf
y

Iw(B′
l(y), sup

x
Tw(A(x), L4(x, y)))

For y /∈ [b′l0, b
′l
1], we have that B′

l(y) = 0, and as a
consequence

Iw(B′
l(y), sup

x
Tw(A(x), L4(x, y))) = 1



hence we obtain for certain Ail
’s

bb4(A,B)

=
m′

min
l=1

inf
y

Iw(B′
l(y), sup

x
Tw(A(x), L4(x, y)))

=
m′

min
l=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y), sup

x
Tw(A(x), L4(x, y)))

=
m′

min
l=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y), sup

x
Tw(Ail

(x), L4(x, y)))

≤
m′

min
l=1

n
max
i=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y), sup

x
Tw(Ai(x), L4(x, y)))

Hence

bb4(A,B)

≤
m′

min
l=1

n
max
i=1

inf
y

Iw(B′
l(y), sup

x
Tw(Ai(x), L4(x, y)))

=
m′

min
l=1

n
max
i=1

bb4(Ai, B
′
l)

Conversely we find

m′

min
l=1

n
max
i=1

bb4(Ai, B
′
l)

=
m′

min
l=1

n
max
i=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y),

sup
x

Tw(Ai(x), L4(x, y)))

≤
m′

min
l=1

n
max
i=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y),

sup
x

Tw(
n

max
i′=1

Ai′(x), L4(x, y)))

=
m′

min
l=1

n
max
i=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y),

sup
x

Tw(A(x), L4(x, y)))

=
m′

min
l=1

n
max
i=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y),

sup
x

Tw(Ail
(x), L4(x, y)))

=
m′

min
l=1

inf
y∈[b′l

0,b′l
1]

Iw(B′
l(y), sup

x
Tw(Ail

(x), L4(x, y)))

= bb4(A,B)

Example 2: Consider the piecewise linear fuzzy inter-
vals in figure 3(a), and assume that we want to evaluate
bb4

(20,20)(A,B) using Proposition 3. To find out how the
linear fuzzy sets B1, B2 and B3 should be decomposed we
apply Lemma 1 to obtain a representation as a piecewise

(a) Initial decomposition of A and B into linear fuzzy sets

(b) supx Tw(Ai(x), L4
(α,β)

(x, y))

(c) New decompostion of B into linear fuzzy sets

Fig. 3. Obtaining new line segments for B to apply Proposition 3.

linear fuzzy set for

C1(y) = sup
x

Tw(A1(x), L4
(20,20)(x, y)) (5)

C2(y) = sup
x

Tw(A2(x), L4
(20,20)(x, y)) (6)

C3(y) = sup
x

Tw(A3(x), L4
(20,20)(x, y)) (7)

C4(y) = sup
x

Tw(A4(x), L4
(20,20)(x, y)) (8)

C1 and C2 are depicted in Figure 3(b). Furthermore, it holds
that C3(y) = C2(y) and C4(y) = C3(y − 25) ≤ C3(y) for
all y ∈ R. We have that

sup
x

Tw(A(x), L4
(20,20)(x, y)) =

{
C1(y) for all y ≤ 1000

21

C2(y) for all y ≥ 1000
21

From this we can deduce that the line segment defining
B1 should not be divided into subsegments, as for all
y ∈ [10, 30], it holds that C(y) = C1(y). Neither should
the line segment defining B3 be divided into subsegments,
as for all y ∈ [70, 120] it holds that C(y) = C2(y).
However, B2 should be decomposed into the linear fuzzy sets
B′

2 = ((30/0), ( 1000
21 / 8

21 )) and B′
3 = (( 1000

21 / 8
21 ), (70/1)),



Fig. 4. If A = ((a0/λ0), (a1/λ1)) and λ0 < λ1 it holds that A(x) =

L4
(0,∆a)

(a∗, x), for x ∈ [a0, a1]

as C(y) = C1(y) for y ∈ [30, 1000
21 ], and C(y) = C2(y) for

y ∈ [ 100021 , 70].

B. Linear fuzzy intervals

Because of Proposition 2 and Proposition 3, the problem
of finding a characterization for piecewise linear fuzzy time
intervals is reduced to finding a characterization for linear
fuzzy time intervals. In the remainder of this section, we will
show how be4(A,B) can be evaluated when A and B are
linear fuzzy intervals. Similar results can be obtained for the
other fuzzy temporal relations from Table I. Due to limited
space, we omit these results here.

Proposition 4: Let A = ((a0/λ0), (a1/λ1)), λ0, λ1 ∈
[0, 1], a0 < a1, B = ((b0/δ0), (b1/δ1)), δ0, δ1 ∈ [0, 1],
b0 < b1. Furthermore let ∆a and ∆b be defined as follows:

∆a =

{
a1−a0
λ1−λ0

if λ1 > λ0

0 otherwise

∆b =

{
b1−b0
δ0−δ1

if δ0 > δ1

0 otherwise

The characterization of be4(A,B) depends on the relative
ordering of ∆a, ∆b and β. The results are summarized in
Table III.

Proof: (sketch) First assume that λ0 < λ1 and δ0 > δ1.
It then holds that A(x) = L4

(0,∆a)(a
∗, x) for all x ∈ [a0, a1],

where

a∗ = a1 +
(1− λ1)(a1 − a0)

λ1 − λ0

This is illustrated in Figure 4. In the same way we have that
B(y) = L4

(0,∆b)
(y, b∗) for all y ∈ [b0, b1], where

b∗ = b0 −
(1− δ0)(b1 − b0)

δ0 − δ1

Thus we obtain that

be4(A,B)

= sup
x

Tw(A(x), sup
y

Tw(B(y), L4
(α,β)(x, y)))

= sup
x∈[a0,a1]

Tw(L4
(0,∆a)(a

∗, x),

sup
y∈[b0,b1]

Tw(L4
(0,∆b)

(y, b∗), L4
(α,β)(x, y)))

(9)

It can be shown that in general (y0 ≤ y1)

sup
y∈[y0,y1]

Tw(L4
(α1,β1)

(x, y), L4
(α2,β2)

(y, z))

= Tw(L4
(α1,β1)

(x, min(y1,max(y0, z + α2))),

L4
(α2,β2)

(y0, z)) (10)

provided β1 ≥ β2, and

sup
y∈[y0,y1]

Tw(L4
(α1,β1)

(x, y), L4
(α2,β2)

(y, z))

= Tw(L4
(α1,β1)

(x, y1),

L4
(α2,β2)

(min(y1,max(y0, x− α1)), z))
(11)

provided β1 ≤ β2. To complete the proof, we can apply (10)
and (11) to (9). This last part of the proof is more or less
straightforward, but tedious as it involves a case analysis on
the relative ordering of ∆a, ∆b and β, as well as on the
relative ordering of a0, a1, b0 + α, and b1.

Now assume that λ0 ≥ λ1 and δ0 > δ1. It holds that

be4(A,B)

= sup
x

Tw(A(x), sup
y

Tw(B(y), L4
(α,β)(x, y)))

= Tw(λ0, sup
y

Tw(B(y), L4
(α,β)(a0, y)))

= Tw(λ0, sup
y∈[b0,b1]

Tw(L4
(0,∆b)

(y, b∗), L4
(α,β)(a0, y)))

and again we can apply (10) or (11). The proof for δ0 ≤ δ1

is analogous.
Although the characterization in Table III is more long-
winded than the corresponding definition in Table I, it makes
implementing the fuzzy temporal relations very straightfor-
ward. Moreover, the time complexity of evaluating the fuzzy
temporal relations for linear fuzzy intervals is constant. Be-
cause of Proposition 2 and Proposition 3, the time complexity
of evaluating the fuzzy temporal relations for two piecewise
linear fuzzy sets A and B is kwadratic in the number of
line segments that are used to define A and B. Note that in
practice it is unlikely that more than a few line segments are
used to define a fuzzy time interval.

IV. A CHARACTERIZATION FOR TRAPEZOIDALLY SHAPED
FUZZY SETS

In this section we discuss the behaviour of a special class
of piecewise linear fuzzy intervals, namely trapezoidally
shaped fuzzy sets. In particular, we will show that a more



TABLE III
CHARACTERIZATION OF THE FUZZY TEMPORAL RELATION be4 FOR LINEAR FUZZY TIME INTERVALS A AND B

Sufficient condition Characterization

β < ∆b ≤ ∆a be4(A, B) = Tw(λ1, δ0, L4
(0,∆a)

(a1, max(b0 + α, a0)), L4
(0,∆b)

(a0, max(b0 + α, a0 − b1 + b0)), L4
(α,β)

(a0, b1))

β < ∆a ≤ ∆b be4(A, B) = Tw(λ1, δ0, L4
(0,∆b)

(min(a1 − α, b1), b0), L4
(0,∆a)

(min(a1 − α, b1 + a1 − a0), b1), L4
(α,β)

(a0, b1))

0 < ∆b ≤ β ≤ ∆a be4(A, B) = Tw(λ1, δ0, L4
(0,∆a)

(a1, max(b0 + α, a0)), L4
(α,β)

(a0, b0))

0 < ∆a ≤ β ≤ ∆b be4(A, B) = Tw(λ1, δ0, L4
(0,∆b)

(min(a1 − α, b1), b0), L4
(α,β)

(a1, b1))

0 < ∆a ≤ ∆b ≤ β be4(A, B) = Tw(λ1, δ0, L4
(α,β)

(a1, b0))

0 < ∆b ≤ ∆a ≤ β be4(A, B) = Tw(λ1, δ0, L4
(α,β)

(a1, b0))

0 = ∆a ≤ β ≤ ∆b be4(A, B) = Tw(λ0, δ0, L4
(0,∆b)

(min(a0 − α, b1), b0), L4
(α,β)

(a0, b1))

0 = ∆b ≤ β ≤ ∆a be4(A, B) = Tw(λ1, δ1, L4
(0,∆a)

(a1, max(b1 + α, a0)), L4
(α,β)

(a0, b1))

0 = ∆a < ∆b ≤ β be4(A, B) = Tw(λ0, δ0, L4
(α,β)

(a0, b0))

0 = ∆b < ∆a ≤ β be4(A, B) = Tw(λ1, δ1, L4
(α,β)

(a1, b1))

0 = ∆a = ∆b ≤ β be4(A, B) = Tw(λ0, δ1, L4
(α,β)

(a0, b1))

Fig. 5. The fuzzy set A = [a0, a1, a2, a3; λ]

elegant characterization can be obtained for this special class
of piecewise linear fuzzy intervals. In the following, we will
write A = [a0, a1, a2, a3;λ] to denote the fuzzy set in R that
is defined for all x in R as

A(x) =


x−a0
a1−a0

if a0 < x < a∗1
λ if a∗1 ≤ x ≤ a∗2
a3−x
a3−a2

if a∗2 < x < a3

0 otherwise

where a∗1 = a0 + (a1 − a0)λ and a∗2 = a3 − (a3 − a2)λ.
Furthermore, we impose a0 ≤ a∗1 ≤ a∗2 ≤ a3 and λ ∈ [0, 1].
The fuzzy set A is illustrated in Figure 5. In proving prop-
erties of such trapezoidally shaped fuzzy sets, the following
lemma is often very useful.

Lemma 2: Let A = [a0, a1, a2, a3;λ]. For each x in R it
holds that

A(x) = min(λ, L4
(0,a1−a0)

(a1, x), L4
(0,a3−a2)

(x, a2))
In the remainder of this paper we will sometimes write
L�(α,β;λ)(x, y) as a shorthand for min(λ, L�(α,β)(x, y)), and
L4

(α,β;λ)(x, y) as a shorthand for min(λ, L4
(α,β)(x, y)). To

obtain the characterization for trapezoidally shaped fuzzy
intervals, we use the following generalization of Proposition
1.

Proposition 5:

L�(α1,β1;λ1)
◦ L�(α2,β2;λ2)

= L�(α,max(β1,β2);Tw(λ1,λ2))

L4
(α1,β1;λ1)

◦ L4
(α2,β2;λ2)

= L4
(α′,max(β1,β2);Tw(λ1,λ2))

L4
(α1,β1;λ1)

◦ L�(α2,β2;λ2)
= L�(α′′,max(β1,β2);Tw(λ1,λ2))

L�(α1,β1;λ1)
◦ L4

(α2,β2;λ2)
= L�(α′′′,max(β1,β2);Tw(λ1,λ2))

where

α = α1 + α2 + β1λ1 + β2λ2 −max(β1, β2)Tw(λ1, λ2)
α′ = α1 + α2 + min(β1, β2)− λ1β1 − λ2β2

+ max(β1, β2)Tw(λ1, λ2)
α′′ = −α1 + α2 + β1λ1 + β2λ2 − β1

−max(β1, β2)Tw(λ1, λ2)
α′′′ = α1 − α2 + β1λ1 + β2λ2 − β2

−max(β1, β2)Tw(λ1, λ2)
Note that for λ1 = λ2 = 1, Proposition 5 is equivalent
to Proposition 1. The following proposition provides a
characterization for trapezoidally shaped fuzzy intervals.

Proposition 6: Let A = [a0, a1, a2, a3;λ1] and B =
[b0, b1, b2, b3;λ2]. Furthermore, let sL

a = a1 − a0, sR
a =

a3 − a2, sL
b = b1 − b0 and sR

b = b3 − b2. It holds that

bb�(A,B) = max(Tw(λ1, 1− λ2),
min(λ1, L

�
(α1,max(β,sL

a ,sL
b ))

(a1, b1)))

bb4(A,B) = min(Iw(λ2, λ1),

max(1− λ2, L
4
(α2,max(β,sL

a ,sL
b ))

(a1, b1)))

ee�(A,B) = max(Tw(λ2, 1− λ1),
min(λ2, L

�
(α3,max(β,sR

a ,sR
b ))

(a2, b2)))

ee4(A,B) = min(Iw(λ1, λ2),

max(1− λ1, L
4
(α4,max(β,sR

a ,sR
b ))

(a2, b2)))

eb�(A,B) = max(Sw(1− λ1, 1− λ2),
L�

(α5,max(β,sR
a ,sL

b )
(a2, b1))



eb4(A,B) = max(Sw(1− λ1, 1− λ2),

L4
(α6,max(β,sR

a ,sL
b ))

(a2, b1))

be�(A,B) = min(Tw(λ1, λ2), L�(α7,max(β,sL
a ,sR

b ))
(a1, b2))

be4(A,B) = min(Tw(λ1, λ2), L
4
(α8,max(β,sL

a ,sR
b ))

(a1, b2))

where

α1 = α + min(0, sL
b − β)(1− λ2) + max(β, sL

b )(1− λ1)

− sL
a + λ1 min(max(β, sL

b ), sL
a )

α2 = α + min(0, sL
a − β)(1− λ1) + max(β, sL

a )(1− λ2)

− sL
b + λ2 min(max(β, sL

a ), sL
b )

α3 = α + min(0, sR
a − β)(1− λ1) + max(β, sR

a )(1− λ2)

− sR
b + λ2 min(max(β, sR

a ), sR
b )

α4 = α + min(0, sR
b − β)(1− λ2) + max(β, sR

b )(1− λ1)

− sR
a + λ1 min(max(β, sR

b ), sR
a )

α5 = α + min(0, sL
b − β)(1− λ2) + min(max(β, sL

b ), sR
a )

− λ2 max(β, sL
b )− sR

a λ1

+ max(β, sL
b , sR

a )Tw(λ1, λ2)

α6 = α + min(β − sL
b , (β − sL

b )(1− λ2)) + max(β, sL
b )λ2

+ sR
a λ1 − sR

a −max(β, sR
a , sL

b )Tw(λ1, λ2)

α7 = α + min(β − sR
b , (β − sR

b )(1− λ2)) + sL
a λ1

+ max(β, sR
b )λ2 − sL

a −max(β, sL
a , sR

b )Tw(λ1, λ2)

α8 = α + min(0, sR
b − β)(1− λ2) + min(max(β, sR

b ), sL
a )

− λ1s
L
a − λ2 max(β, sR

b )

+ max(β, sL
a , sR

b )Tw(λ1, λ2)
Proof: (sketch) As an example, we sketch how the

characterization for bb�(A,B) can be proven. We have

bb�(A,B) = sup
x

Tw(A(x), inf
y

Iw(B(y), L�(α,β)(x, y)))

Using Lemma 2 we can show that

sup
x

Tw(A(x), inf
y

Iw(B(y), L�(α,β)(x, y)))

= sup
x

Tw(L4
(0,a1−a0;λ1)

(a1, x),

inf
y

Iw(L4
(0,b1−b0;λ2)

(b1, y), L�(α,β)(x, y)))

Using the fact that 1−Tw(a, b) = Iw(a, 1−b) and (1) we find
from Proposition 5 (using the notations of this Proposition)
that

inf
y

Iw(L4
(α1,β1;λ1)

(x, y), L�(α2,β2;λ2)
(z, y))

= L�(α′,max(β1,β2);Tw(λ1,λ2))
(z, x) (12)

Using (12), and once more Proposition 5 completes the proof.

Note that while we have defined fuzzy intervals as nor-
malised fuzzy sets, in this section we also consider trape-
zoidally fuzzy sets A for which hgtA = supx A(x) = λ < 1.
This is useful when we consider unions and intersections of

trapezoidally shaped fuzzy sets. For example, it is easy to
see that

be�(A ∪B,C ∪D)
= max(be�(A,C), be�(A,D), be�(B,C), be�(B,D))

where A, B, C, and D are arbitrary fuzzy sets in R.
Moreover, sufficient conditions can be derived under which

be�(A ∩B,C ∩D)
= min(be�(A,C), be�(A,D), be�(B,C), be�(B,D))

However, a detailed discussion of this kind of interactions
with union and intersection is outside the scope of this paper.

V. CONCLUSION

We have shown how the evaluation of the fuzzy temporal
interval relations for piecewise linear fuzzy intervals boils
down to the evaluation for linear fuzzy intervals. Further-
more, we have provided a characterization for linear fuzzy
intervals that is both efficient to evaluate and easy to imple-
ment. Finally, we have provided more elegant definitions for
the special case of trapezoidally shaped fuzzy sets.
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