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Abstract

Comparison measures to assess similarity, inclusion, and overlap of

fuzzy sets are well known and widely used. This paper goes one step

further by bootstrapping a more general concept of relatedness of fuzzy

sets based on the relatedness of their elements. We study properties of

6 relatedness measures of this kind, and we illustrate their use in inter-

esting applications such as information retrieval, temporal reasoning and

recommender systems.

1 Introduction

Fuzzy relations have proven to be very useful tools for the representation of

relatedness, which is more often than not a matter of degree. An abundance
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of applications based on this principle is described in the literature. As a well

known example from information retrieval (see e.g. [4]), we recall that a fuzzy

relation Q between a set of documents D and a set of terms T can be used

to represent the importance Q(d, t) of term t for document d. Likewise a fuzzy

relation R in T is often used such that R(t1, t2) denotes the degree of relatedness

of terms t1 and t2, e.g. synonymy.

On the other hand, comparison measures to assess the similarity, inclusion

and overlap of fuzzy sets have been around for many years now. Formally they

are fuzzy relations over universes of fuzzy sets. The overlap of fuzzy sets A and

B in T can for instance be measured by

sup
t∈T

T (A(t), B(t)) (1)

in which T is a triangular norm. If A corresponds to a weighted query q of

keywords and B to a document d such that B(t) = Q(d, t) for all t in T , then

(1) can be used as a score to rank d in the retrieval results for q. This score

measures the extent to which document d has at least one keyword in common

with the query q. Documents that do not contain any of the query keywords get

a score of 0, even if they contain content that might be relevant to the query. A

helpful solution to this problem might be query expansion, the process of adding

related terms. This gives rise to the following, alternative scoring formula

sup
t′∈T

sup
t∈T

T (A(t′), T (R(t′, t), B(t))) (2)

which is a direct fuzzification of

(∃t′ ∈ T )(∃t ∈ T )(t′ ∈ A ∧ (t′, t) ∈ R ∧ t ∈ B) (3)
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Formula (2) constructs a relatedness measure between fuzzy sets based on the

relatedness of their elements. As such it offers a more nuanced view than (1)

where the membership value B(t) is compared only to the membership value

A(t) of t in A; in (2) it is compared to the membership values of every element t′

of A that is related to some degree R(t′, t) to t. The resulting formula is slightly

more complicated but offers many advantages in applications.

The aim of this paper is to introduce a new class of relatedness measures in

the spirit of (2). Formally, we will start from 3 different kinds of compositions

of fuzzy relations. After recalling these compositions as well as the necessary

background on triangular norms and their residual implicators in Section 2, we

introduce 6 relatedness measures for fuzzy sets in Section 3. We show how they

are ordered (namely which is the most strict and the most loose measure, and

how the others fit in between). We show that they exhibit transitive behaviour,

which allows to deduct information about the degree of relatedness of A and C

from the relatedness of A and B and B and C respectively. In this context, fuzzy

sets A, B and C can belong to different universes, which makes our measures

clearly more general than traditional ones such as (1). Finally we illustrate their

practical relevance for temporal reasoning and recommender systems in Section

4.
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2 Preliminaries

Throughout this paper, let T denote a left–continuous triangular norm (t-norm

for short). Recall that by definition a t-norm is an increasing [0, 1]2 − [0, 1]

mapping that satisfies the following conditions, for all a, b and c in [0, 1]

T (1, a) = a (4)

T (a, b) = T (b, a) (5)

T (T (a, b), c) = T (a, T (b, c)) (6)

Furthermore let I denote its residual implicator, which is defined as

I(a, b) = sup{λ|λ ∈ [0, 1] and T (a, λ) ≤ b} (7)

I is decreasing in the first and increasing in the second argument. Furthermore

I(1, b) = b (8)

for all b in [0, 1], and I(0, 0) = I(0, 1) = 1. T and I satisfy the residuation

principle, i.e. for all a, b and c in [0, 1] it holds that

T (a, b) ≤ c ⇔ a ≤ I(b, c) (9)
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In other words, T and I form a Galois connection. It can be shown that for all

a, b, c and d in [0, 1] it holds that (see e.g. [6])

a ≤ b ⇔ I(a, b) = 1 (10)

T (I(a, b), c) ≤ I(a, T (b, c)) (11)

T (a, I(a, b)) ≤ b (12)

I(T (a, b), c) = I(a, I(b, c)) (13)

I(a, I(b, c)) = I(b, I(a, c)) (14)

T (I(a, b), I(c, d)) ≤ I(T (a, c), T (b, d)) (15)

If J is an arbitrary index set and if (aj)j∈J and (bj)j∈J are families in [0, 1], it

holds that

T (sup
j∈J

aj , b) = sup
j∈J

T (aj , b) (16)

I(sup
j∈J

aj , b) = inf
j∈J

I(aj , b) (17)

I(a, inf
j∈J

bj) = inf
j∈J

I(a, bj) (18)

T (inf
j∈J

aj , b) ≤ inf
j∈J

T (aj , b) (19)

I(inf
j∈J

aj , b) ≥ sup
j∈J

I(aj , b) (20)

I(a, sup
j∈J

bj) ≥ sup
j∈J

I(a, bj) (21)

Let R be a fuzzy relation from U to V (i.e. a fuzzy set in U × V ) and S a

fuzzy relation from V to W . The well known sup-T -composition of R and S is

the fuzzy relation R ◦T S from U to W defined by, for all u in U and w in W ,

R ◦T S(u, w) = sup
v∈V

T (R(u, v), S(v, w)) (22)
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The subproduct R ⊳I S and the superproduct R ⊲I S of R and S are defined by

[2]

R ⊳I S(u, w) = inf
v∈V

I(R(u, v), S(v, w)) (23)

R ⊲I S(u, w) = inf
v∈V

I(S(v, w), R(u, v)) (24)

A fuzzy relation R from U to U (also called a fuzzy relation in U) is said to be

reflexive iff R(u, u) = 1 for all u in U ; R is called irreflexive iff R(u, u) = 0 for

all u in U ; R is called symmetric iff R(u, v) = R(v, u) for all u and v in U . R is

called T - transitive iff

T (R(u, v), R(v, w)) ≤ R(u, w) (25)

for all u, v and w in U .

3 Relatedness Measures

Let A be a fuzzy set in U , R a fuzzy relation from U to V and B a fuzzy set in

V . We would like to express the degree to which A and B are related w.r.t. R.

Formally we will first transform A and B into fuzzy relations and then compose

them with R. The left extension
←

A of A is the fuzzy relation in U defined for

all u1 and u2 in U by

←

A (u1, u2) = A(u2) (26)

Likewise, the right extension
→

B of B is the fuzzy relation in V defined for all v1

and v2 in V by

→

B (v1, v2) = B(v1) (27)
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Since
←

A is a fuzzy relation from U to U , the composition
←

A ◦TR is a fuzzy

relation from U to V . Moreover, since
→

B is a fuzzy relation from V to V , the

composition (
←

A ◦TR)◦T
→

B is a fuzzy relation from U to V . It is easy to see that

(
←

A ◦T R)◦T
→

B is a constant mapping whose value in an arbitrary point (u, v)

expresses the degree to which there exists an element of B which is related to

an element of A. In [3] (
←

A ◦T R)◦T
→

B is called the (fuzzy relational) double

image of A and B. For convenience, we will denote the value of the mapping

(
←

A ◦T R)◦T
→

B in an arbitrary point (u, v) of U ×V by (A ◦T R) ◦T B. By using

other compositions than sup-T –composition, we obtain alternative relatedness

measures. In this paper, we will focus on the following measures:

- The degree to which an element of B is related to an element of A:

(A ◦T R) ◦T B = sup
v∈V

T (sup
u∈U

T (A(u), R(u, v)), B(v))

- The degree to which an element of A is related to an element of B:

A ◦T (R ◦T B) = sup
u∈U

T (A(u), sup
v∈V

T (R(u, v), B(v)))

- The degree to which every element of B is related to every element of A:

(A ⊳I R) ⊲I B = inf
v∈V

I(B(v), inf
u∈U

I(A(u), R(u, v)))

- The degree to which every element of A is related to every element of B:

A ⊳I (R ⊲I B) = inf
u∈U

I(A(u), inf
v∈V

I(B(v), R(u, v)))

- The degree to which an element of B is related to every element of A:

(A ⊳I R) ◦T B = sup
v∈V

T ( inf
u∈U

I(A(u), R(u, v)), B(v))
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- The degree to which every element of A is related to an element of B:

A ⊳I (R ◦T B) = inf
u∈U

I(A(u), sup
v∈V

T (R(u, v), B(v)))

- The degree to which every element of B is related to an element of A:

(A ◦T R) ⊲I B = inf
v∈V

I(B(v), sup
u∈U

T (A(u), R(u, v)))

- The degree to which an element of A is related to every element of B:

A ◦T (R ⊲I B) = sup
u∈U

T (A(u), inf
v∈V

I(B(v), R(u, v)))

Proposition 1 (Coincidence).

(A ◦T R) ◦T B = A ◦T (R ◦T B) (28)

(A ⊳I R) ⊲I B = A ⊳I (R ⊲I B) (29)

Proof. A proof for (28) follows from (16) and the associativity of T , i.e. (6).

Likewise a proof for (29) follows from (18) and (14).

As a consequence of Proposition 1, we will omit the parentheses and write

A ◦T R ◦T B and A ⊳I R ⊲I B. Computing the relatedness with the empty set

using the measures above can lead to results that are not very intuitive, though

mathematically correct. This phenomenon is related to the fact that quantifi-

cation over the empty set always evaluates to true. It becomes apparent when

computing e.g. the degree to which every element of ∅ is related to every element

of B, namely ∅ ⊳I R⊲IB = 1. To avoid this case, in the remainder of this paper

we will assume that the fuzzy sets under consideration are normalized, i.e. that

they contain at least one element to membership degree 1. This requirement is

usually easy to satisfy in applications.
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Figure 1: Ordering of relatedness measures

Proposition 2. The relatedness measures obey the ordering displayed in Figure

1 i.e.

A ⊳I (R ◦T B) ≤ A ◦T R ◦T B (30)

(A ◦T R) ⊲I B ≤ A ◦T R ◦T B (31)

A ⊳I R ⊲I B ≤ (A ⊳I R) ◦T B (32)

A ⊳I R ⊲I B ≤ A ◦T (R ⊲I B) (33)

(A ⊳I R) ◦T B ≤ A ⊳I (R ◦T B) (34)

A ◦T (R ⊲I B) ≤ (A ◦T R) ⊲I B (35)

Proof. Since A is normalized there exists an m in U such that A(m) = 1.

Furthermore using (8) and (4) we obtain

A ⊳I (R ◦T B) ≤ I(A(m), sup
v∈V

T (R(m, v), B(v)))

= T (A(m), sup
v∈V

T (R(m, v), B(v)))

≤ A ◦T (R ◦T B)
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The proofs of (31)-(33) are analogous. By (19), we have

(A ⊳I R) ◦T B

≤ sup
v∈V

inf
u∈U

T (I(A(u), R(u, v)), B(v))

and by (11) and (21)

≤ sup
v∈V

inf
u∈U

I(A(u), T (R(u, v), B(v)))

≤ inf
u∈U

sup
v∈V

I(A(u), T (R(u, v), B(v)))

≤ A ⊳I (R ◦T B)

which proves (34); the proof of (35) is analogous.

The following proposition also involves a fuzzy relation S from V to W and a

fuzzy set C in W .

Proposition 3 (Transitivity).

T (A ⊳I R ⊲I B, B ⊳I S ⊲I C)

≤ A ⊳I (R ◦T S) ⊲I C

(36)

T ((A ⊳I R) ◦T B, (B ⊳I S) ◦T C)

≤ (A ⊳I (R ◦T S)) ◦T C

(37)

T (A ⊳I (R ◦T B), B ⊳I (S ◦T C))

≤ A ⊳I ((R ◦T S) ◦T C)

(38)

T ((A ◦T R) ⊲I B, (B ◦T S) ⊲I C)

≤ (A ◦T (R ◦T S)) ⊲I C

(39)
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T (A ◦T (R ⊲I B), B ◦T (S ⊲I C))

≤ A ◦T ((R ◦T S) ⊲I C)

(40)

Proof. As an example we prove (36). Since B is normalized there exists an m

in V such that B(m) = 1.

T (A ⊳I R ⊲I B, B ⊳I S ⊲I C)

= T ( inf
v∈V

I(B(v), inf
u∈U

I(A(u), R(u, v))),

inf
w∈W

I(C(w), inf
v∈V

I(B(v), S(v, w))))

≤ T (I(B(m), inf
u∈U

I(A(u), R(u, m))),

inf
w∈W

I(C(w), I(B(m), S(m, w))))

By (8) we obtain

= T ( inf
u∈U

I(A(u), R(u, m)),

inf
w∈W

I(C(w), S(m, w)))

By (19), we have

≤ inf
u∈U

inf
w∈W

T (I(A(u), R(u, m)),

I(C(w), S(m, w)))

11



and by (15)

≤ inf
u∈U

inf
w∈W

I(T (A(u), C(w)),

T (R(u, m), S(m, w)))

≤ inf
u∈U

inf
w∈W

I(T (A(u), C(w)),

sup
v∈V

T (R(u, v), S(v, w)))

= inf
u∈U

inf
w∈W

I(T (A(u), C(w)), (R ◦T S)(u, w))

Finally, by (13) and (18)

= inf
u∈U

inf
w∈W

I(C(w), I(A(u), (R ◦T S)(u, w)))

= inf
w∈W

I(C(w), inf
u∈U

I(A(u), (R ◦T S)(u, w)))

= A ⊳I (R ◦T S) ⊲I C

Proposition 4 (Reflexivity). If R is a reflexive fuzzy relation in U then

A ⊳I (R ◦T A) = 1 (41)

(A ◦T R) ⊲I A = 1 (42)
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Proof. As an example we prove (41).

A ⊳I (R ◦T A)

= inf
u∈U

I(A(u), sup
v∈U

T (R(u, v), A(v)))

≥ inf
u∈U

I(A(u), T (R(u, u), A(u)))

= inf
u∈U

I(A(u), A(u))

By (10) we verify that the latter is 1.

Proposition 5 (Irreflexivity). If R is an irreflexive fuzzy relation in U then

A ◦T (R ⊲I A) = 0 (43)

(A ⊳I R) ◦T A = 0 (44)

Proof. As an example we prove (43).

A ◦T (R ⊲I A)

= sup
u∈U

T (A(u), inf
v∈U

I(A(v), R(u, v)))

≤ sup
u∈U

T (A(u), I(A(u), R(u, u)))

By (12) we verify that the latter equals 0.

4 Applications

The measures introduced in Section 3 can be used to compute virtually any kind

of relatedness between fuzzy sets (defined in the same or in different universes).
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The semantics of the relatedness is brought into the measure through a fuzzy

relation between the universes of the fuzzy sets. We demonstrate this process

with 2 applications. Firstly, using fuzzy ordering relations between time points

such as “December 1, 1930 came long before January 31, 1992”, we propose

expressive representations of qualitative relations between time events such as

“The late 1930’s came long before the early 1990’s”. Note that both the events

as well as the relation between them is imprecise!

The second application example concerns recommender systems. Our ap-

proach resembles the information retrieval techniques touched upon in Section

1. Like a document is represented as a fuzzy set of terms, a customer is rep-

resented by the items he bought and/or liked in the past. We use a similarity

relation between items to identify similarities between users, even if their past

shopping baskets do not have any items in common. We also show how this

helps to overcome the “new item problem”, which is how to decide on recom-

mending an item that previously has not been bought by anyone, e.g. because

it is newly introduced into the market.

Temporal Reasoning. Temporal information plays an important role in our

knowledge about the world. In practice, available temporal information is often

qualitative, rather than quantitative, in nature. Several qualitative temporal

reasoning models have been developed (see [10] for an overview). One option

is to model the time span of an event as an interval in R; Allen [1] defined

a set of 13 jointly exhaustive and pairwise disjoint interval relations for this
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purpose. For example, before([a, b], [c, d]) holds iff b < c, meets([a, b], [c, d])

holds iff b = c and overlaps([a, b], [c, d]) holds iff a < c, b < d and c < b. All 13

interval relations can be expressed by referring to the relative positioning of the

endpoints of the intervals.

However, many events are inherently imprecise, i.e. they are characterized

by a gradual beginning and/or ending. The time span of this kind of events can

be represented by a fuzzy time interval, i.e. a normalized, convex fuzzy set in R.

This however requires a suitable generalization of Allen’s interval relations. For

example, a fuzzy relation meets has to be defined, such that for fuzzy time inter-

vals A and B, meets(A, B) expresses the degree to which the end of A is equal

to the beginning of B. In [5] such an interpretation has been introduced. How-

ever, this approach suffers from a number of important disadvantages. For ex-

ample, if A and B are continuous mappings, then meets(A, B) ≤ before(A, B),

i.e. this approach fails to properly differentiate between meets and before. In

the alternative approach introduced in [7], many important properties, such as

T -transitivity, antisymmetry and (ir)reflexivity, are lost.

By using the relatedness measures introduced in this paper, we obtain an

interpretation which allows to model imprecise qualitative relations, without

any of the aforementioned shortcomings of the existing approaches. Indeed, let

L≪ be an irreflexive, T –transitive fuzzy relation in R such that for u and v in R,

L≪(u, v) expresses the extent to which u is much smaller than v. Moreover, let

L4 be a reflexive, T –transitive fuzzy relation in R such that L4(u, v) expresses

the extent to which u is smaller than or approximately equal to v. Then A ⊳I
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L≪ ⊲I B expresses the degree to which the end of A is much smaller than the

beginning of B. As as consequence, we define the fuzzy relation before by

before(A, B) = A ⊳I L≪ ⊲I B (45)

In the same way, we have

meets(A, B) = min(A ⊳I L4 ⊲I B, B ◦T L4 ◦T A) (46)

where A ⊳I L4 ⊲I B expresses the degree to which the end of A is smaller than

or approximately equal to the beginning of B, and B ◦T L4 ◦T A expresses the

degree to which the beginning of B is smaller than or approximately equal to the

end of A. Similar interpretations can be given for the other qualitative interval

relations. The properties established in Section 3 support temporal reasoning.

Recommender systems. Recommender systems are applications that an-

ticipate the needs of e-service users by referring them to information items (or

products, in the context of e-commerce) that are likely to interest them. One

popular strategy is collaborative filtering (CF) [9], which recommends an item

to someone if it was purchased and/or rated positively by others who share sim-

ilar characteristics with them. Another approach is called content-based (CB),

or reclusive [11], and identifies objects that sufficiently resemble those the user

has liked in the past. Fuzzy set theory lends itself very well to reflect the un-

certainties and gradedness inherent to these processes; in [8], Perny and Zucker

developed a hybrid CF-CB approach to predict the degree to which a user will

like an item, given fuzzy relations R and S that represent user, resp. item simi-
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larity. A few important problems remain; we briefly address how the relatedness

measures introduced in this paper can aid.

Traditionally, in the absence of explicit profile information, users’ preference

judgments are compared to assess the similarity of users. Let U and I be

the universe of users, resp. items, and let A and B be the fuzzy sets of items

liked in the past by user u, resp. user v (the degree of “liking” an item could

be established based on a rating of the product expressed by the users). The

formula

R(u, v) = inf
i∈I

I(A(i), B(i)) (47)

evaluates to what extent all items that u likes are also popular with v. Such

an approach however quickly incurs practical problems, as it is hardly realistic

to expect that every user has rated every item, and so A(i) and B(i) are not

always available. A patch is therefore sometimes provided, replacing I by the

set of items that u and v have commonly rated, see e.g. [8], but this is not

a satisfying nor an elegant solution either. Suppose for instance that I is a

book collection, and that u has positively evaluated novels by Edgar Allan Poe

and Mary Shelley, and that v likes “Wuthering heights” by Emily Bronte and

“Dracula” by Bram Stoker (but did not rate any of the books u read), hence

both of them seem to be fond of gothic literature, and u might make a very

good advisor to v. However, since they have no rated items in common, the

above approach cannot discover this shared interest. However, when

R(u, v) = A ⊳I (S ◦T B) (48)
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the fuzzy relation S (which in general is relatively easy to establish based on the

internal representation of the items) comes into play, exploiting the similarity

between the considered items by evaluating to what extent for each item u likes,

there exists a similar item that v likes. Under these assumptions, R(u, v) can

indeed assume a high value in our example.

Another problem concerns recommendation itself. In the traditional setting,

i is recommended to user u only when similar users approve of i, i.e.

sup
v∈U

T (R(u, v), P (v, i)) (49)

is used to predict the preference of user u towards item i, based on the revealed

preference P (v, i) of every other user v towards i. This approach is in particular

susceptible to the so-called new item problem: items not yet rated/purchased

by anyone cannot be recommended, which is a significant drawback of CF. To

overcome this problem, as a predictive value, we propose to use the relatedness

of the fuzzy set of users similar to u with the fuzzy set of products similar to

i. These fuzzy sets Ru and Si are respectively defined by Ru(v) = R(u, v) and

Si(j) = S(i, j) for all v in U and all j in I, giving rise to the final recommen-

dation score Ru ◦T P ◦T Si.

5 Conclusion

We introduced 6 different measures to assess the relatedness of fuzzy sets, based

not only on the degree to which they contain elements (as is traditionally done)

but also on the relatedness of these elements. The measures are partially or-
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dered. They inherit the (ir)reflexive and transitive behaviour of the underlying

fuzzy relation on the level of the elements. We used the measures to express

imprecise qualitative relations between time events, as well as a solution to the

new item problem in recommender system. In general, problems that require

the comparison between fuzzy sets in any way, even if in different universes, are

possible candidates for the application of our measures.
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