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Abstract. Answer validation is an important component of any ques-
tion answering system. In this paper we show how the formalism of pri-
oritized fuzzy constraint satisfaction allows to unify and generalize some
common validation strategies. Moreover, answer candidates are repre-
sented by fuzzy sets, which allows to handle imprecise answers.

1 Introduction

Question answering systems try to improve the functionality of search engines by
providing an exact answer to a user’s question, rather than a list of documents.
A typical question answering system consists of a question analysis module, a
search engine, an answer extraction module and an answer validation module.
At least two fundamentally different ways to handle answer validation are used
by current systems. Corpus–based methods (e.g. [5]) rely on a deep linguistic
analysis of the question and the answer candidates, while redundancy–based
methods (e.g. [2],[3],[6]) rely on the massive amount of information available on
the web. This paper will focus on the latter kind of methods.

Since it is reasonable to assume that on the web, the answer to most questions
is stated in a lot of documents, we can assume that there will be documents in
which the answer is formulated in a simple way. As a consequence, simple answer
extraction algorithms often suffice. However, simplicity comes with a price; a lot
of web pages contain incorrect information, so the answer validation process used
in corpus–based methods is not appropriate. Most redundancy–based methods
apply some kind of voting: the answer which occurs most often is considered
the most likely answer to be correct. This approach has the disadvantage of
favouring short, unspecific, answers (e.g. “1928” over “July 26, 1928”). Some
systems (e.g. [2],[6]) therefore apply heuristics to boost the scores of specific
answers. These heuristics would treat an occurrence of “1928” as evidence for
“July 26, 1928” which, in our opinion, is not a fully satisfactory approach.

In this paper we propose an alternative voting scheme, which separates posi-
tive and negative information about the feasibility of the answer candidates. To
this end, we represent answer candidates as fuzzy sets and define a degree of in-
consistency and a degree of inclusion between answer candidates. We show how
this scheme can be further refined by asking additional questions and enforcing
fuzzy constraints on the results.
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2 Answer Comparison

Let’s consider the question “When was the Mona Lisa painted?”. When examin-
ing the first few snippets returned by Google1 for this question, we find answers
like “the 1500s”, “1506”, “1503–1506”, . . . It is clear that simple string equality
won’t yield very good results in this case. Instead we will represent each answer
as a fuzzy set in a suitable universe which enables us to handle differences in
granularity (e.g. “July 26, 1928” vs. “1928”), intervals (e.g. “1503–1506”, “the
1920s”) and vague descriptions (e.g. “the late 1920s”, “around 1930”).

Recall that a fuzzy set A on a universe U is a mapping from U to the unit
interval [0, 1]. If A(u) = 1 for some u in U , A is called normalised. To generalize
the logical conjunction to the unit interval [0, 1], we have a large class of [0, 1]2−
[0, 1] mappings, called t-norms at our disposal. Likewise, logical implication can
be generalized by a class of [0, 1]2−[0, 1] mappings called implicators. For further
details on t-norms and implicators we refer to [8].

Let a1 and a2 be two fuzzy sets in the universe D of dates, the degree of
inclusion incl(a1, a2) and the degree of contradiction contr(a1, a2) between a1

and a2 can be given by

incl(a1, a2) = inf
u∈D

I(a1(u), a2(u)) contr(a1, a2) = 1 − sup
u∈D

T (a1(u), a2(u))

where I is an implicator and T is a t-norm. In our implementation we used the
�Lukasiewicz implicator IW defined by IW (x, y) = min(1, 1 − x + y) and the t-
norm TM defined by TM (x, y) = min(x, y) for x and y in [0, 1]. For each answer
candidate a we can define the degree pos(a) to which this answer is confirmed by
the other candidates and the degree neg(a) to which this answer is inconsistent
with the other candidates:

pos(a) =
1
n

n∑

i=1

incl(ai, a) neg(a) =
1
n

n∑

i=1

contr(ai, a)

where (a1, a2, . . . , an) is the list of all answer candidates (ai = aj may hold for
some i �= j, i.e. an answer candidate can occur several times). We interpret pos(a)
as the degree of feasibility of an answer candidate and neg(a) as the degree of
inconsistency, where pos(a) = 1−neg(a) doesn’t hold in general. If I is a border
implicator and all answer candidates are normalised then pos(a) + neg(a) ≤ 1
holds. As a consequence, the set of answer candidates can be represented by an
intuitionistic fuzzy set [1].

3 Refining the Answer Scores

Asking additional questions Prager et al. [9] introduced the idea to (automati-
cally) ask additional questions in order to estimate the feasibility of an answer

1 http://www.google.com
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candidate. To answer the question “When did Leonardo da Vinci paint the Mona
Lisa?”, Prager et al. suggest to ask the additional questions “When was Leonardo
da Vinci born?” and “When did Leonardo da Vinci die”, which gives us the vari-
ables Xwork, Xborn and Xdied. The possible instantiations of these variables are
the answer candidates of the corresponding questions. All answer triplets that
do not satisfy the following constraints2 are rejected in [9]:

Xborn + 7 ≤ Xdied ≤ Xborn + 100 (1)
Xwork ≤ Xdied ≤ Xwork + 100 (2)

Xborn + 7 ≤ Xwork ≤ Xborn + 100 (3)

The use of crisp constraints has the disadvantage that a lot of world knowl-
edge can not be expressed. For example, by using this kind of rather arbitrary
threshold values, we can not express that it is more likely that someone became
70 years old than that someone became 8 years old. Another problem with this
approach is how to combine the frequency counts of the answer candidates of
the three variables Xwork, Xborn and Xdied. In this section we show how both
problems can be solved by using prioritized fuzzy constraints.

Prioritized fuzzy constraint satisfaction Let X1, X2, . . . , Xn be variables taking
values in the finite domains D1, D2, . . . , Dn respectively. A fuzzy constraint c is
a mapping from D1 × D2 × . . . × Dn to the unit interval [0, 1]. For a constraint
c and an instantiation (x1, x2, . . . , xn) ∈ D1 × D2 × . . . × Dn of the variables,
c(x1, x2, . . . , xn) is interpreted as the degree to which the constraint c is satisfied
by this instantiation. In [4] the notion of prioritized fuzzy constraint is introduced
by assigning a priority to each constraint, which can be interpreted as the degree
of importance of the constraint. Let αi in [0, 1] be the priority of constraint ci

(i ∈ {1, 2, . . . ,m}), the degree of joint satisfaction of the constraints c1, c2, . . . , cm

by an instantiation (x1, x2, . . . , xn) can then be defined by [7]:

C(x1, x2, . . . , xn) =
m∏

i=1

P (αi, ci(x1, x2, . . . , xn)) (4)

where P is [0, 1]2 − [0, 1] mapping called a priority operator. It is easy to see
that the notion of a priority operator as defined in [7] corresponds to that of a
border implicator.

Constructing the fuzzy constraints As a fuzzification of inequality (1) for exam-
ple, we used the fuzzy constraint c1 defined by

c1(xb, xd) = incl(xd �T xb, f) (5)

where (xb, xd) is an instantiation of (Xborn,Xdied); xb and xd are fuzzy sets
in the universe of dates D. According to the extension principle of Zadeh [10],
xd � xb is the fuzzy set in the universe of real numbers IR defined for d in IR by

2 Prager et al. [9] consider only crisp answer candidates, corresponding to a year.
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(xd �T xb)(d) = sup
d1−d2=d

T (xd(d1), xb(d2)) (6)

where T is a t-norm. The result of the date subtraction d1 − d2 is treated as a
real number respresenting the number of years between the date d1 and the date
d2. The fuzzy set f in the universe IR reflects life expectation expressed in years
and is defined for d in IR by

f(d) =

⎧
⎪⎪⎨

⎪⎪⎩

d
30 if 0 ≤ d ≤ 30
1 if 30 ≤ d ≤ 90

120−d
30 if 90 ≤ d ≤ 120
0 otherwise

(7)

Fuzzification of (2) and (3) can be treated analogously. The priority of each of
these fuzzy constraints is 1.

For a variable X, corresponding to a question with answer candidates x1,
x2, . . . , xn, we can impose the unary constraint cX , defined for each answer
candidate x by3

cX(x) =
1 − neg(x)
1 − neg(a∗)

(8)

where neg(a∗) = infa∈A neg(a) and A is the set of all answer candidates. The
priority of this constraint can be interpreted as the reliability of the frequency
count. In other words, if the number of answer candidates is high (resp. low)
the priority should be high (resp. low) too. A possible definition of the priority
αX of the constraint cX is given by αX = n

n+K where n is the number of (not
necessarily distinct) answer candidates as before, and K > 0 is a constant.

Yet another type of fuzzy constraints that can be imposed is based on co-
occurrence. Consider the question “When was the Mona Lisa painted”. In this
case there is a fourth variable Xpers representing the painter of the Mona Lisa.
If xw is an answer candidate for the date that some person xp painted the Mona
Lisa, then we can assume that a lot of the sentences containing a date that is
entailed by xw in a set of documents about the “Mona Lisa” should contain a
reference to xp. We can express this by enforcing the constraint cassoc, defined
by

cassoc(xw, xp) =
assoc(xw, xp)

sup
(xW ,xP )

assoc(xW , xP )
(9)

where the supremum in (9) is taken over all possible instantiations (xW , xP ) of
(XW ,XP ) and assoc(xw, xp) measures the extent to which sentences containing
a date that is entailed by xw tend to contain a reference to xp.

3 We will consider only constraints that are normalised (i.e. constraints for which there
exists at least one possible instantiation that fully satisfies the constraint).
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Putting the pieces together Let {c1, c2, . . . , cm} be the set of all considered con-
straints and let X1, X2,. . . , Xn be the variables that are considered relevant to
the user’s question. The degree negC(x1, x2, . . . , xn) of infeasibility of an answer
tuple (x1, x2, . . . , xn) is then given by

negC(x1, x2, . . . , xn) = 1 − C(x1, x2, . . . , xn) (10)

where C is defined as in (4). For notational simplicity we use c(x1, x2, . . . , xn)
even when the constraint c doesn’t refer to all xi (1 ≤ i ≤ n). The degree of
feasibility posC(x1, x2, . . . , xn) of an answer tuple (x1, x2, . . . , xn) is defined by

posC(x1, x2, . . . , xn) =
n∏

i=1

pos(xi) (11)

4 Experimental Results

To implement the ideas presented in this paper we extracted answer candidates
using a simple pattern matching algorithm. Given the title of some work of
art, possible creation dates and possible creators along with their birthdate and
death date, are extracted from the snippets returned by Google for some (auto-
matically generated) queries. Generic patterns to extract the entities of interest
were constructed by hand. Table 1 shows some of the creators and creation dates
that are found for the “Mona Lisa” together with their frequency of occurrence.
Simply counting the frequency of occurrence of each answer candidate gives good
results for determining the creator in this example; the creation date however
is more problematic. In fact there exist several opinions about when the “Mona
Lisa” was painted, but most agree it must have been between 1503 and 1506. For
each potential creator our algorithm tries to discover the date this person was
born and the date this person died. Using this information posC(xw, xb, xd, xp)
and negC(xw, xb, xd, xp) are calculated for each instantiation (xw, xb, xd, xp) of
the variables Xwork, Xborn, Xdied and Xpers. The answer tuples x (i.e. the
instantiations of the variables) are ranked using the product of posC(x) and
1 − negC(x); the results are shown in table 2. We omit answer tuples that are
entailed by another answer tuple that is ranked higher.

Table 1. Frequency counts for the creator and creation date of the “Mona Lisa”

Creator Frequency

Leonardo da Vinci 18
Leonardo 8
Slick Rick 6
Everybody 6
Leonardo Da Vinci 6
Nick Pretzlik 2
Fernando Botero 2

Creation date Frequency

1506 6
1950 5
1503 2
between 1503 and 1506 2
early 1500s 1
between 1503 and 1507 1
1502 1



Fuzzy Constraint Based Answer Validation 399

Table 2. Top candidates of our algorithm for the “Mona Lisa”

Creator Creation date Score

Leonardo da Vinci (1452 – 1519) between 1503 and 1507 (0.038,0.460)
Leonardo (1452 – 1519) between 1503 and 1507 (0.029,0.564)
Leonardo da Vinci (1452 – 1519) early 1500s (0.019,0.562)
Leonardo (1452 – 1519) early 1500s (0.014,0.607)

5 Conclusions

In this paper we have shown how the formalism of prioritized fuzzy constraints
allows to unify and generalize three approaches to estimate the feasibility of
an answer candidate: frequency counts (e.g. Eq. (8)), co-occurrence statistics
(e.g. Eq. (9)) and asking additional questions (e.g. Eq. (5)). The usefulness of
representing answer candidates by fuzzy sets was illustrated by considering the
problem of searching the creation date of a work of art, which in practice is often
stated by means of an interval or a fuzzy description instead of an exact date.
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