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Abstract

Boolean games (BGs) are a framework for specifying strategic games in which the utility
of an agent is determined based on the satisfaction of goals in propositional logic. The
majority of existing work on BGs relies on the often unrealistic assumption that agents have
perfect knowledge of each other’s preferences. In this paper, we show how this issue can
be addressed in a natural way, by replacing the use of classical logic for expressing agents’
goals by possibilistic logic. We consider two such settings. In the first setting, possibilistic
logic is used to encode knowledge about other agents’ goals with different levels of certainty.
In the second setting, which is based on generalized possibilistic logic, certainty levels are
instead used to compactly encode priorities, while incompleteness is modelled in a binary
way, similar as in epistemic modal logics. In both cases we introduce natural solution
concepts, motivated by Schelling’s theory on focal points: a certain pure Nash equilibrium
(PNE) is preferred over another one due to the fact that all agents know it to be a PNE.
Alternatively, an outcome might be preferred when all agents consider it possible of being
a PNE. We prove that the associated computational complexity of these solution concepts
does not increase compared to PNEs in Boolean games with complete information. Finally,
to illustrate the practical relevance, we consider an application to negotiation, among others
showing how knowledgeable agents can obtain a more desirable outcome than others.
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1. Introduction

Game-theoretic frameworks often rely on the somewhat artificial assumption that agents
are fully aware of each other’s goals. In strategic settings, agents might deliberately conceal
such information, or might not have had a chance to exchange it. Even if an agent knows
its opponents well, it may not be fully certain about what exact goals the other agents are5

pursuing. For instance, suppose Alice and Bob are married and plan a night out. The
options are going to the theatre and attending a sports game. Even if we assume that Alice
and Bob have been married for an eternity and know each other inside out, they are not
mind readers: it is still possible that Alice is not entirely sure whether Bob really prefers
to join her to the theatre over attending the sports game alone. Games with incomplete10

information [1, 2] allow us to explicitly model the limitations of agents’ knowledge about the
preferences of the others. While this topic has been extensively researched for normal form
games, Boolean games with incomplete information have hardly received any attention; see
Section 2 for a discussion.

In this paper, we study the use of possibilistic logic [3] to model Boolean games with15

incomplete information. Possibilistic logic has the advantage of staying close to classical
logic, while offering us more flexibility, and it can be naturally used to model (partial) ig-
norance [4]. Specifically, we study two different settings which differ in how the necessity
degrees from the possibilistic logic theories are interpreted. In the first setting, we consider
the usual interpretation of necessity degrees as certainty degrees. It uses possibilistic know-20

ledge bases to encode necessary and sufficient conditions for the satisfaction of other agents
subgoals. For instance, Alice can encode that she is absolutely certain that Bob reaches his
highest utility when they both attend the sports game, while she is less certain that Bob
reaches his highest utility when they both go to the theatre. We prove that this framework
at the semantic level corresponds to a possibility distribution over all possible games.25

In the second approach, necessity degrees are instead used to model preference. To
keep the ability to model incomplete information, for this setting we switch from standard
possibilistic logic to generalized possibilistic logic (GPL) [4]. In particular, each GPL theory
semantically corresponds to a set of possibility distributions. In our context, these possibility
distributions are interpreted as the utility functions that, according to a given agent, may30

correspond to the actual utility function of some other agent.
For both frameworks of Boolean games with incomplete information, we propose intuit-

ive solution concepts, reflecting whether agents know or consider it possible that a certain
outcome is a pure Nash equilibrium (PNE). We prove that the computational complexity
of the associated decision problems does not increase compared to PNEs in Boolean games35

with complete information. To illustrate how these solution concepts could be useful, we
briefly discuss an application to negotiation in Boolean games with incomplete information.

The remainder of this paper is structured as follows. We first discuss related work in
Section 2 and give some background on Boolean games and possibilistic logic in Section 3.40

Next we introduce our two approaches in Section 4 and Section 5. Finally, we present the
application to negotiation in Section 6. Finally note that this paper is an extension of our
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work in [5] (Section 4) and [6] (Sections 5 and 6). In addition to providing more detailed
explanations and proofs, we have extended the framework from [5] with joint constraints
and have added complexity results to the framework from [6].45

2. Related Work

Although uncertainty has been studied extensively in the context of game theory (see e.g.
[1]), the literature on Boolean games with incomplete information is currently limited. Note
that we are only concerned with epistemic uncertainty in this paper (e.g. we do not consider
stochastic actions, whose outcome cannot be predicted with certainty). To the best of our50

knowledge, stochastic uncertainty has not yet been studied in the context of Boolean games.
Moreover, we are not aware of any existing approaches for modelling uncertainty w.r.t. the
goals of other agents, in the context of Boolean games, although uncertain Boolean games
have been studied for other purposes. For example, in [7] uncertain Boolean games are
modelled by introducing a set of environment variables which are outside the control of any55

agent. Each agent has some (possibly incorrect) belief about the value of the environment
variables. The focus of [7] is on manipulating Boolean games by making announcements
about the true value of some environment variables, in order to create a stable solution if
there were none without the announcements. In [8] uncertainty is modelled by extending the
framework of Boolean games with a set of observable action variables for every agent, i.e.60

every agent can only observe the values assigned to a particular subset of action variables.
As a result, agents are not able to distinguish between some outcomes, if these profiles only
differ in action variables that are not observable to that agent. Three notions of verifiable
equilibria are investigated, capturing respectively outcomes for which all agents know that
they might be pure Nash equilibria (PNEs), outcomes for which all agents know that they65

are PNEs and outcomes for which it is common knowledge that they are PNEs, i.e. all
agents know that they are PNEs and all agents know that all agents know that they are
PNEs etc. The same authors have extended this framework to epistemic Boolean games [9],
in which the logical language for describing goals is broadened to a multi-agent epistemic
modal logic. Note, however, that agents are still fully aware of each other’s goals in this70

framework, i.e. [9] considers agents whose goal is to obtain a particular epistemic state. For
instance, I not only want my husband to pick up our baby, I also want to know he is picking
up our baby.

In contrast, we study Boolean games with incomplete information, considering agents
which have their own beliefs about the goals of other agents. Although probability theory is75

often used to model uncertainty in game theory [1], a possibilistic logic approach provides
a simple and elegant mechanism for modelling partial ignorance, which is closely related
to the notion of epistemic entrenchment [10]. Being based on ranking formulas (at the
syntactic level) or ranking possible worlds (at the semantic level), possibilistic logic has the
advantage of staying close to classical logic. As a result, we can introduce methods for80

solving possibilistic Boolean games that are closely similar to methods for solving standard
Boolean games.

Within the broader context of game theory, several authors have looked at qualitative
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ways of modelling epistemic uncertainty. A common approach is to model the beliefs of
an agent a about another agent b as a set of pairs (s, t), where s is a strategy and t is a85

so-called type (where types are used to model beliefs about beliefs in a hierarchical way).
Such a belief structure is sometimes called possibilistic in the game theory literature (e.g.
[11, 12]). However, it should be noted that these approaches are not related to possibility
theory in the sense of [13], and are thus different in spirit from the “possibilistic” approach
we present in this paper. In particular, while the aforementioned approaches rely on a90

Boolean uncertainty model (i.e. a given strategy s is either considered possible or not), we
use possibility theory to model uncertainty (in Section 4) or preferences (in Section 5) based
on a ranking semantics.

3. Preliminaries

3.1. Background on Boolean Games95

The logical language LΦ associated with a finite set of atoms Φ contains the following
formulas: (i) every atom of Φ, (ii) the logical constants ⊥ and >, and (iii) the formulas ¬ϕ
and ϕ∧ψ for every ϕ, ψ ∈ LΦ. As usual, we use the abbreviations ϕ→ ψ ≡ ¬(ϕ∧¬ψ) and
ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ). We write Lit(Φ) to denote the set of literals of the language LΦ, i.e.
Lit(Φ) = Φ ∪ {¬p | p ∈ Φ}. An interpretation of Φ is defined as a subset ν of Lit(Φ) such100

that for every atom p ∈ Φ either p ∈ ν or ¬p ∈ ν. We denote the set of all interpretations of
Φ as Int(Φ). An interpretation can be extended to a satisfaction relation on LΦ in the usual
way. If a formula ϕ ∈ LΦ is satisfied by an interpretation ν, we denote this as ν |= ϕ. An
interpretation that satisfies a given formula is called a model of that formula. We denote
the set of models of ϕ as JϕK.105

Originally, the utilities in BGs were binary, but several extensions have been introduced
to allow more general preferences. Examples are the addition of costs [14], the use of a
prioritized goal base instead of a single goal [15, 5] or the use of many-valued  Lukasiewicz
logic to formalize the idea of weighted goal satisfaction [16]. In our paper, we use the
definition of a BG as stated in [5]. The latter is a particular case of generalized BGs [15]110

in which the preference relations are total. Additionally, we incorporate a constraint δ,
restricting the possible joint actions of the agents. This is a generalization of the constraints
in [17], which only restrict the individual actions of the agents. Such joint constraints might
at first glance seem to conflict with the autonomous character of agents, since it creates a
dependency between their actions: the strategy choice of one agent can restrict the available115

strategies of another agent. However, such dependencies are clearly all around us: agents
cannot, for instance, buy the same house, complete the same one man’s job, marry the
same person etc. In particular, such dependencies naturally force agents to negotiate about
their strategy choices, which is the subject of Section 6. Moreover, since the Boolean game
framework with joint constraints is a generalization of the one from [17], we explain our120

theory for the former.

Definition 1 (Boolean Game). A Boolean game (BG) is a tuple G = (N , (Φi)i∈N , δ,
(Γi)i∈N). For every agent i in N = {1, . . . , n}, Φi is a finite set of atoms such that Φi∩Φj =
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∅,∀j 6= i. We write Φ =
⋃
i∈N Φi. For every i ∈ N , Γi = {γ1

i ; . . . ; γ
p
i } is i’s prioritized goal

base. The formula γmi ∈ LΦ is agent i’s goal of priority m. We assume that every agent has125

p priority levels and that δ ∧ γmi 6|= ⊥ for every i ∈ N and m ∈ {1, . . . , p}. Finally, δ is a
consistent formula in LΦ, which encodes the integrity constraints of the game G.

The set Φ contains all action variables. Agent i controls Φi and can set these atoms to true
or false. We also write Φ−i = Φ \ Φi for the set of action variables outside i’s control. By
convention, goals are ordered from high (level 1) to low priority (level p).130

Example 1. Alice and Bob, who share a car, are planning their afternoon. Alice controls
Φ1 = {bA, fA, dA} and Bob controls Φ2 = {bB, fB}. Agent i can drive to the beach (set bi
to true) or to the forest (set fi to true). If Alice sets dA to true, she takes the dog with her.
The game is constrained by δ = ¬(bB ∧ fB) ∧ ¬(bA ∧ fA) ∧ (bB → ¬fA) ∧ (bA → ¬fB). In
words: neither Bob nor Alice can simultaneously go to the beach and the forest. Moreover,
if Bob goes to the beach then Alice cannot go to the forest and similarly Bob cannot go to
the forest if Alice goes to the beach. Alice and Bob’s goal bases are:

Γ1 = {fA ∧ fB ∧ dA; bA ∧ bB ∧ dA; dA}
Γ2 = {bB ∧ bA ∧ ¬dA; bB ∧ bA; fB ∧ fA}

Thus Alice’s first priority is to go to the forest with Bob and her dog. If this is not possible,
she would like to go to the beach with Bob and her dog. Furthermore, we can infer that
Alice prefers staying at home with her dog over leaving without it. Bob prefers to take Alice
to the beach without the dog. However, he still prefers to go to the beach with Alice and
the dog over going to the forest with Alice, and he prefers going to the forest with Alice135

over all remaining possibilities.

Definition 2 (Outcome). An interpretation of Φ that satisfies δ is called an outcome of G.
We denote the set of all outcomes as S, i.e. S = JδK.

Given an outcome ν, we write ν−i for the projection of the outcome ν on Φ−i, i.e. ν−i =
ν∩Φ−i. Furthermore, we write Si(ν−i) for the set of partial outcomes νi ∈ Φi that can extend140

the partial outcome ν−i ∈ Φ−i, i.e. Si(ν−i) = {νi ∈ Int(Φi) | (ν−i ∪ νi) ∈ S}. Sometimes,
we will write an outcome ν as (ν−i, νi) to make explicit that the action variables from Φi

are chosen in accordance with νi in the outcome ν. In particular, (ν−i, ν
′
i) will denote a

modification to the outcome ν in which the action variables for agent i are instead chosen in
accordance with ν ′i. For the ease of presentation, we define a utility function that is scaled145

to the unit interval.

Definition 3 (Utility Function). For each i ∈ N and ν ∈ S, the utility of i in ν is defined
as

ui(ν) =
p+ 1−min{k | 1 ≤ k ≤ p, ν |= γki ∧ δ}

p

with min ∅ = p+ 1.
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Note that the utility can take p + 1 possible values, namely those in Λp = {0, 1
p
, 2
p
, . . . , 1}.

We will denote the vector of utilities (u1(ν), . . . , un(ν)) corresponding to outcome ν as U(ν).
In Example 1, we have for instance:

U({fA, fB, dA,¬bA,¬bB}) = (1, 0.33),

U({bB, bA,¬fA,¬fB,¬dA}) = (0, 1),

U({bA, bB, dA,¬fA,¬fB}) = (0.67, 0.67),

U({fA, bB,¬fB,¬bA,¬dA}) = (0, 0).

Definition 4 (Pure Nash equilibrium). An outcome ν of a BG G is a pure Nash equilib-
rium (PNE) iff for every agent i ∈ N , νi is a best response (BR) to ν−i, i.e. ui(ν) ≥ ui(ν−i, ν

′
i)

for all ν ′i ∈ Si.150

The concept of utility function highlights the close connection there is between Boolean
games and normal-form games (NFGs). The main difference between the two frameworks
is that in NFGs a utility value for each outcome is encoded explicitly, while in BGs utilities
are defined implicitly based on logical formulas. This means that in practice, BGs can be
exponentially more compact than the NFG representation of the same game. Clearly, for155

every BG we can always construct an NFG that is equivalent to it (in the sense that it
induces the same utility function). Conversely, given an NFG in which all utilities belong
to Λp, we can always construct an equivalent BG as well (e.g. by introducing one action
variable for each action from the NFG, and adding the constraint that each agent has to
set exactly one of these action variables to true). Note that in this paper, we will only be160

concerned with solution concepts that rely on the relative ordering of the utility values, such
as PNEs (but unlike e.g. mixed equilibria). Clearly the requirement that all utilities belong
to Λp does then not restrict the kind of games that can be encoded. Furthermore note that
in finite settings, we can always model games with real-valued utilities, by considering an
injective mapping from utility scores in Λp to R. On the other hand, the results we present165

in this paper would not be directly applicable to settings where agents can choose between
an infinite number of actions (as in  Lukasiewicz games [16]), nor in settings where utilities
are partially ordered.

In the context of bargaining (see Section 6), it is natural that agents try to achieve
an outcome that is, among others, efficient. A well-known efficiency concept is Pareto170

optimality.

Definition 5 (Pareto Optimality). For every ν, ν ′ ∈ S it holds that ν Pareto dominates
ν ′, denoted as ν >par ν

′, iff

(∀i ∈ N : ui(ν) ≥ ui(ν
′)) ∧ (∃i ∈ N : ui(ν) > ui(ν

′))

We denote the set of Pareto optimal outcomes in S as

PO = {ν ∈ S |¬(∃ν ′ ∈ S : ν ′ >par ν)}
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Intuitively, an outcome is Pareto optimal if no agent can be better off without another agent
being worse off. It is easy to see that every BG has at least one Pareto optimal outcome.

A well-known refinement of the Pareto ordering incorporating a notion of fairness is the
discrimin ordering [18]. To define it, we denote the set of agents whose utility is the same175

in ν and ν ′ as eq(U(ν),U(ν ′)), i.e. eq(U(ν),U(ν ′)) = {i ∈ N |ui(ν) = ui(ν
′)}.

Definition 6 (Discrimin Ordering). For every ν, ν ′ ∈ S it holds that ν >discr ν
′ iff

min
j /∈eq(U(ν),U(ν′))

uj(ν) > min
j /∈eq(U(ν),U(ν′))

uj(ν
′)

We define the set of discrimin optimal outcomes as

DO = {ν ∈ S |¬(∃ν ′ ∈ S : ν ′ >discr ν)}

It is easy to see that >discr is a strict order relation on S. It holds that DO ⊆ PO and
DO 6= ∅. In Example 1, {bA, bB, dA,¬fA,¬fB} is the unique discrimin optimal outcome,
although it is not the only Pareto optimal outcome.

3.2. Background on Possibility Theory180

3.2.1. Possibility theory

Possibilistic logic (see e.g. [19] for a more comprehensive overview) is a popular tool
to encode and reason about uncertain information in an intuitive and compact way. The
semantics is defined based on possibility distributions [13]:

Definition 7 (Possibility Distribution). A possibility distribution on the universeW is185

a mapping π :W → [0, 1].

The elements of the universeW are referred to as possible worlds1. Let us denote an arbitrary
element of the universe W as ν. If π(ν) = 1, ν is considered to be completely possible,
whereas π(ν) = 0 corresponds to ν being completely impossible. A possibility distribution
such that π(ν) = 1 for every ν ∈ W corresponds to a state of complete ignorance, since all190

options are completely possible. For instance, consider two possible worlds, denoted as w
and ¬w, corresponding respectively to a specific nation being weaponized or not. If one has
no information regarding the weapons of this nation, both worlds are completely possible, i.e.
π(w) = π(¬w) = 1. A possibility distribution π is called normalized if at least one world is
considered completely possible, i.e. ∃ν ∈ W : π(ν) = 1. Note that in contrast to probability195

distributions, there is no requirement that possibility distributions satisfy
∑

ν∈W π(ν) = 1.
A possibility distribution encodes which worlds cannot be excluded based on available know-
ledge. Therefore, smaller possibility degrees are more specific, as they reflect a higher degree
of certainty that some worlds can be ruled out. For instance, suppose you suspect that your
neighbouring nation is weaponized. This could be encoded through the possibility distri-200

bution π(w) = 1 and π(¬w) = 0.5. If you have evidence that your neighbouring nation is

1Outside possibilistic logic, possibility distributions can also be defined over universa that do not represent
possible worlds, e.g. the real numbers.
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weaponized (you are certain of it), this could be encoded through the possibility distribution
π(w) = 1 and π(¬w) = 0. The latter is more specific than the former. An ordering ≤ on
all possibility distributions on W can be defined as π1 ≤ π2 iff it holds that π1(ν) ≤ π2(ν),
∀ν ∈ W , assuming the natural ordering on [0, 1]. We say that π1 is at least as specific as π2205

when π1 ≤ π2. Given a set of possibility distributions, the maximal elements w.r.t. ≤ are
called the least specific possibility distributions, as these correspond to the smallest amount
of information. A possibility and necessity measure are induced by a possibility distribution
in the following way.

Definition 8 (Possibility and Necessity Measure). Given a possibility distribution π
on a universe W , the possibility Π(A) and necessity N(A) that an event A ⊆ W occurs is
defined as:

Π(A) = sup
ν∈A

π(ν); N(A) = inf
ν /∈A

(1− π(ν))

Note that Π(A) measures the degree to which the event A is compatible with available210

evidence, whereas N(A) measures the degree to which the event A is implied by the available
evidence.

Example 2. Suppose a specific nation has two neighbouring nations. If the first (respect-
ively the second) is weaponized, we denote this as w1 (respectively w2). Consider the universe
W = {{w1, w2}, {w1,¬w2}, {¬w1, w2}, {¬w1,¬w2}} and the possibility distribution π onW :

π({w1, w2}) = 1

π({w1,¬w2}) = 0.4

π({¬w1, w2}) = 0.4

π({¬w1,¬w2}) = 0

Thus the nation considers it impossible that none of its neighbours is armed and has limited
certainty that both of the neighbours are armed. Now consider the event A that the first
neighbour is weaponized, i.e. A = {{w1, w2}, {w1,¬w2}}. Then the possibility Π(A) is 1,215

i.e. it is completely possible that the first neighbour is armed. The necessity N(A) is 0.6,
i.e. it is necessary to degree 0.6 that the first neighbour is armed.

Another uncertainty measure which is sometimes used in possibility theory is called
guaranteed possibility. It is defined for an event A ⊆ W as follows:

∆(A) = inf
ν∈A

π(ν)

In other words, ∆(A) reflects the degree to which all elements of A are considered possible.
This measure will be useful to express limitations on the knowledge of an agent.

3.2.2. Possibilistic logic220

Definition 9 (Possibilistic Knowledge Base). A possibilistic knowledge base is a finite
set {(ϕ1, α1), . . . , (ϕm, αm)} of pairs of the form (ϕi, αi), with ϕi ∈ LΦ and αi ∈ ]0, 1]. It
encodes a possibility distribution, namely the least specific possibility distribution satisfying
the constraints N(ϕi) ≥ αi.
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Note that N(ϕ) is an abbreviation for N(JϕK) or thus N({ν ∈ Int(Φ) | ν |= ϕ}). When it is225

clear from the context, we abbreviate possibilistic knowledge base to knowledge base.

Example 3. Recall the context of Example 2. To encode the situation in which a nation
found evidence that at least one of its neighbouring nations is weaponized, it adds (w1∨w2, 1)
to its knowledge base. The corresponding constraint N(w1 ∨w2) ≥ 1 implies that the world
in which nation w1 and nation w2 are not weaponized is considered impossible. If the nation230

is rather certain that both of its neighbouring nations are weaponized, it adds (w1∧w2, 0.6)
to its knowledge base. This has the effect that every world in which the neighbours are not
both armed has a possibility degree of at most 0.4. It is easy to see that the possibility
distribution encoded by these formulas is π as defined in Example 2.

The possibility distribution πK encoded by a knowledge base K is well-defined because there
is a unique least specific possibility distribution which satisfies the constraints of K [3]. It
is given by

πK(ν) = min{1− α | (φ, α) ∈ K and ν 6|= φ}

235

The following inference rules are associated with possibilistic logic:

• (¬p ∨ q, α); (p ∨ r, β) ` (q ∨ r,min(α, β)) (resolution rule),

• if p entails q classically, then (p, α) ` (q, α) (formula weakening),

• for β ≤ α, (p, α) ` (p, β) (weight weakening),

• (p, α); (p, β) ` (p,max(α, β)) (weight fusion).240

The axioms consist of all propositional axioms with weight 1. These inference rules and
axioms are sound and complete in the following sense [3]: it holds that K ` (ϕ, α) iff
N(ϕ) ≥ α for the necessity measure N induced by πK. Another useful property is K ` (ϕ, α)
iff Kα ` ϕ (in the classical sense) [19], with Kα = {ϕ | (ϕ, β) ∈ K, β ≥ α} the α-cut of K.

3.2.3. Generalized Possibilistic Logic245

Generalized possibilistic logic (GPL) is a recent extension of possibilistic logic which
has been introduced to model incomplete knowledge about the beliefs of another agent [4].
Whereas a possibilistic knowledge base corresponds to a single possibility distribution, a
knowledge base in GPL corresponds to a set of possibility distributions. Each of these
possibility distributions corresponds to a possible model of the beliefs of the other agent.250

Syntactically, the language of GPL uses propositional combinations of modal formulas of
the form Nλ(α), where Nλ(α) intuitively means that the necessity of α is at least λ. A
possibilistic knowledge base intuitively corresponds to conjunctions of such modal formulas.
In GPL, on the other hand, we can express formulas such as N1(α1)∨N1(α2), which encodes
the fact that we know that the other agent is either certain of α1 or certain of α2, but we255

are ignorant about which of these two possibilities is the case.
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Example 4. Suppose a specific nation is reacting to the fact that one of its two neighboring
nations is weaponized. While the considered nation knows which of its two neighbours is
weaponized, we do not possess this knowledge, and hence we cannot precisely model the
beliefs of that nation. However, we can encode the knowledge N1(w1) ∨ N1(w2), which260

states that we know that the nation either knows that w1 is the case or that they know that
w2 is the case.

Formally the language of GPL is defined as follows:

• For each formula α from LΦ (with LΦ defined as before) and each certainty degree
from { 1

k
, 2
k
, ..., 1} we have that NΛ(α) is a GPL formula. GPL formulas of this form265

are also called meta-atoms.

• If γ1 and γ2 are GPL formulas, then ¬γ1 and γ1 ∧ γ2 are also GPL formulas.

Interpretations in GPL are normalized possibility distributions π, whose possibility degrees
are taken from {0, 1

k
, 2
k
, ..., 1}. Such a GPL interpretation π satisfies the formula Nλ(α) iff

N(α) ≥ λ, with N the necessity measure corresponding to π. The notion of satisfaction270

is then extended to (sets of) propositional combinations of meta-atoms in the usual way.
We define a GPL knowledge base as a finite set of GPL formulas. An interpretation that
a satisfies all formulas of a GPL knowledge base K is called a model of K. The set of all
models of K will be denoted as Mod(K).

Note that the semantics of GPL are defined in terms of lower bounds on necessity meas-
ures. However, because only finitely many certainty degrees are used, we can easily express
lower bounds on possibility measures as well. In particular, for α ∈ LΦ, we have that
Π(α) ≥ λ iff Π(α) > λ − 1

k
, which is equivalent to N(¬α) < 1 − λ + 1

k
. This means that

syntactically we can express the constraint Π(α) ≥ λ using the GPL formula ¬N1−λ+ 1
k
(¬α).

For the ease of presentation, we will use the abbreviation inv(λ) = 1− λ+ 1
k

and:

Πλ(α) ≡ ¬Ninv (λ)(¬α)

If the set of atoms in Φ is finite, constraints of the form ∆(α) ≥ λ can also be expressed in
GPL. In particular, we introduce the following notation:

∆λ(α) ≡
∧
ν∈JαK

Πλ(ν)

The guaranteed possibility measure is closely related to the notion of ‘only knowing’ from275

non-monotonic reasoning [20]. For example, a formula such as N1(α) ∧ ∆1(α) states that
the agent knows that α is true but nothing more than that.

Example 5. In the running example, N1(w1∨w2)∧∆1(w1∨w2) means that the considered
nation knows that one of its neighbors is weaponized but that it does not know which one it
is. This can be contrasted with N1(w1)∨N1(w2) which states that the nation knows which280

of its neighbors is weaponized, and with N1(w1 ∨ w2), which leaves in the middle whether
the considered nation knows which one of its neighbors is weaponized.
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The use of GPL formulas for expressing limitations on the knowledge of others is explored
in more detail in [4].

Finally note that the following links between the syntax and semantics of GPL can be
easily verified:

(K |= Nλ(α)) ≡
(
∀π ∈ Mod(K),∀ν ∈ W : (ν 6|= α)⇒ π(ν) ≤ 1− λ

)
(K |= Πλ(α)) ≡

(
∀π ∈ Mod(K),∃ν ∈ W : (ν |= α) ∧ π(ν) ≥ λ

)
(K |= ∆λ(α)) ≡

(
∀π ∈ Mod(K),∀ν ∈ W : (ν |= α)⇒ π(ν) ≥ λ

)
4. Using Possibilistic Logic for Encoding Uncertain Boolean Games285

In this section, we show how Boolean games can be naturally extended to model situ-
ations in which agents are uncertain about other agents’ goals. We first use uncertainty
measures from possibility theory to semantically define (solution concepts to) Boolean games
with incomplete information in Section 4.1. Then in Section 4.2 we present a syntactic char-
acterization of these semantics. We prove that the semantic and the syntactic approach290

are equivalent in Section 4.3. Finally, we characterize the computational complexity of the
related solution concepts in Section 4.4.

Throughout this paper, we consider Boolean games with prioritized goal bases (see Defin-
ition 1). Recall that in these games, an agent is most eager to achieve the goal with the
highest priority. If this goal cannot be achieved, the agent will settle for the goal with the295

second-highest priority, etc.

Example 6. Bob and Alice are going out: they can attend a sports game or go to the
theatre. Alice – agent 1 – controls action variable a, and Bob – agent 2 – controls b. Setting
their action variable to true corresponds to attending a sports game; setting it to false
corresponds to going to the theatre. Bob and Alice’s first priority is to go out together. If
they do not go out together, Bob prefers a sports game, whereas Alice prefers the theatre.
This can be represented as a Boolean game with priorities, where Alice’s and Bob’s goal
bases are:

Γ1 = {a↔ b;¬a}, Γ2 = {a↔ b; b}

Both agents have utility 2 in the PNEs {a, b} and ∅, which respectively correspond to
attending a sports game together and going to the theatre together.

Our aim in this section is to propose an extension to the Boolean game framework in
which agents can be uncertain about other agents’ goals. An important concern is that the300

resulting framework should still enable a compact and intuitive representation of games,
as this is the main strength of Boolean games. In Section 4.2 we will provide a compact
characterization of the semantics proposed in Section 4.1. Using this extended Boolean game
framework, we aim to determine rational behaviour for agents which are uncertain about
the other agents’ goals. We illustrate this with the following example.305
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Example 7. Consider again the scenario of Example 6, but now assume that Bob and
Alice are not fully aware of each other’s goals. For instance, if Bob knows Alice’s goal, but
Alice thinks that Bob does not want to join her to the theatre, then, based on their beliefs,
attending a sports game together is a ‘better’ solution than going to the theatre together.
Indeed, Alice believes that Bob will not agree to go to the theatre together (or might have310

an incentive to leave if he would go), but they both believe that the other will agree to
attend a sports game together.

The results presented in this section can easily be generalized to accommodate for par-
tially ordered preference relations. However, as modelling preferences is not the focus here,
we prefer the simpler setting of Definition 1, for clarity.315

For the ease of presentation, we will impose an additional restriction on the kind of goal
bases that are considered in our framework for Boolean games with incomplete information.
In particular, we will consider Boolean games G = (N, (Φi)i∈N , δ, (Γi)i∈N) satisfying the
conditions of Definition 1, in which each goal base Γi belongs to the following set:.

G = {{γ1; . . . ; γp} | (γ1 ∧ δ 6|= ⊥) ∧ ∀k ∈ {1, . . . , p} : γk ∈ LCNF
Φ ∧ (k 6= p⇒ γk |= γk+1)}

(1)

with LCNF
Φ all formulas of LΦ in conjunctive normal form. Note that we can make this

restriction without loss of generality as any goal base {γ1; . . . ; γp} violating the condition
γk |= γk+1 can be transformed into a semantically equivalent2 goal base which does satisfy
the restriction (1), namely {γ1; γ1 ∨ γ2; . . . ;

∨p
m=1 γ

m}. Moreover, the set of possible goal
bases is independent of the agent, i.e. every agent has the same set G of possible goal bases.320

4.1. Semantics of Possibilistic Games

In the considered setting, the set of agents N , the corresponding partitions of action
variables Φi, and the global constraint δ are known to all the agents. However, we assume
that agents are uncertain about the goals of the other agents. We can formalise this by
considering for each agent i a possibility distribution πi on the set of possible Boolean
games, where this latter set is defined as follows:

BG(N,Φ1, . . . ,Φn, δ) = {(N, (Φi)i∈N , δ, (Γi)i∈N) | ∀i ∈ N : Γi ∈ G}

When the set N of agents, the action variables Φ1, . . . ,Φn and the constraint δ are clear
from the context, we abbreviate BG(N,Φ1, . . . ,Φn, δ) to BG. The knowledge of an agent i
about the goals of the other agents can then be captured by a possibility distribution πi over
BG, encoding agent i’s beliefs about what is the actual game being played. Note that this325

possibility distribution πi is different for each agent.

Example 8. Recall the scenario of Example 6. Suppose Bob has perfect knowledge of
Alice’s preferences, then π2 : BG → {0, 1}maps every Boolean game to 0, except the Boolean

2Here equivalent means that they induce the same utility function.
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games with the preference orderings of Example 6, i.e. the actual game being played is the
only one considered possible by Bob up to logical equivalence. Suppose Alice is certain that330

Bob wants to attend a sports game together, or attend the game on his own if attending it
together is not possible. Then π1 : BG → {0, 1} maps all Boolean games to 0, except those
with the following preference orderings and corresponding payoff matrix:

{a, b} =1 ∅ >1 {b} >1 {a}
{a, b} >2 {b} >2 ∅ =2 {a}

Bob \ Alice a ¬a
b (1, 1) (0.5, 0.5)
¬b (0, 0) (0, 1)

Our first aim is to determine to which degree a specific outcome ν is necessarily or possibly
a PNE according to agent i. Intuitively, it is possible to degree λ that an outcome ν is a
PNE according to agent i iff there exists a Boolean game G ∈ BG such that ν is a PNE in G
and such that agent i considers it possible to degree λ that G is the real game being played,
i.e.

Πi({G ∈ BG | ν is a PNE in G}) = λ

Similarly, it is certain to degree λ that an outcome ν is a PNE according to agent i iff for
every G ∈ BG such that ν is not a PNE, it holds that i considers it possible to degree at
most 1− λ that G is the real game being played, i.e.

Ni({G ∈ BG | ν is a PNE in G}) = λ

Using the aforementioned degrees, we can define measures which offer a way to distinguish335

between multiple equilibria, motivated by Schellings’ notion of focal points [21]. An equi-
librium is a focal point if, for some reason other than its utility, it stands out from the
other equilibria. In our case, the reason can be that agents have a higher certainty that the
outcome is actually a PNE. This motivation is similar as the one for verifiability in [8]: only
certain PNEs carry sufficient information such that the agents can tell that an equilibrium340

has been played. Such a property provides an argument to play such an equilibrium, instead
of the alternatives. Note that there might not exist an outcome which every agent believes
is necessarily a PNE, even when the (unknown) game being played has one or more PNEs.
In such cases, the degree to which various outcomes are possibly a PNE could be used to
guide decisions.345

When we consider PNEs from an epistemic game theory point of view, a PNE is a sensible
solution concept in games with complete information, as it corresponds to the fact that it
is common knowledge that every agent is acting individually rationally and thus playing a
best response. In other words: every agent knows that every agent plays a best response,
and thus has no incentive to individually deviate. Moreover, every agent knows that every350

agent knows that every agent plays a best response etc. When knowledge is incomplete,
this property is no longer valid. It makes sense to consider weakened properties, such as:
every agent believes that every agent is playing rationally. Note that to obtain common
belief, one should also model the beliefs of the other agents, and the beliefs of the beliefs
of the other agents etc. Such hierarchical beliefs have been studied for both probabilistic355

and Boolean models of agents’ beliefs. A standard technique for modelling such beliefs,
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proposed in [22, 23, 24], is to consider a notion of types. The main idea is to assign to
each agent a type, which determines its beliefs about the utilities and types of other players.
This allows us to express hierarchical beliefs without explicitly construction a hierarchical
model. Among others, this has the advantage that infinite belief hierarchies can be encoded360

in a finite way. While a similar approach could be pursued in our possibilistic setting, for
simplicity we will focus on agents’ beliefs about the goal bases of other agents.

Definition 10. Given the possibility measures Πi for every agent i, the degree to which all
agents find it possible that the outcome ν is a PNE is

poss(ν) = min
i∈N

Πi({G ∈ BG | ν is a PNE in G})

Similarly, given the necessity measures Ni for every agent i, the degree to which all agents
believe it necessary that ν is a PNE is defined as

nec(ν) = min
i∈N

Ni({G ∈ BG | ν is a PNE in G})

4.2. Syntactic Characterization

While the two possibilistic solution concepts from Section 4.1 are useful, the formulation
in Definition 10 cannot directly be used in applications, since the number of Boolean games365

in BG is double-exponential. In this section, we present a syntactic counterpart which will
allow for a more compact representation of the agents’ knowledge about the game being
played, as well as a more efficient implementation.

Definition 11 (Goal-Knowledge Base). A goal knowledge base (goal-KB) Kji of agent i
w.r.t. agent j contains formulas of the form (ϕ → gkj , λ) or (ϕ ← gkj , λ), where 1 ≤ k ≤ p,370

ϕ ∈ LΦ, λ ∈ ]0, 1] and gkj is a new atom, encoding agent j’s goal of priority k. We further

assume that Kji contains {(gkj → gk+1
j , 1) | 1 ≤ k ≤ p−1}. Finally, we require that a goal-KB

Kji satisfies the following criteria, which we will refer to as goal-consistency :

• For every ϕ, ψ ∈ LΦ such that (ϕ → gkj , λ) ∈ Kji and (ψ ← gkj , µ) ∈ Kji , it holds that
ϕ |= ψ.375

• For all (ψ1 ← gkj , λ1), ..., (ψr ← gkj , λr) ∈ K
j
i it holds that ψ1 ∧ ... ∧ ψr ∧ δ 6|= ⊥.

Furthermore if ψ1 ∧ ... ∧ ψr ∧ δ has a single model ν, we assume that Kji contains a
formula (

∧
{l | l ∈ ν} → gkj , λ) with λ ≥ min(λ1, ..., λr).

We will sometimes also encode Kji using formulas of the form (ϕ↔ gkj , λ) as an abbreviation
for the two formulas (ϕ→ gkj , λ) and (ϕ← gkj , λ). Furthermore, for the ease of presentation380

we do not normally mention the formulas the formulas {(gkj → gk+1
j , 1) | 1 ≤ k ≤ p − 1} in

examples, as these formulas belong to Kji by definition.
A goal-KB Kji captures the knowledge of agent i about the goal base of agent j. These

formulas express that, if agent j’s utility is at least p+1−k
p

, it is at least p−k
p

. Furthermore, the

information that we like to express in Kji consists of necessary and/or sufficient conditions385
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for the utility of agent j. For instance, agent i might believe with certainty λ that ϕ is
a sufficient condition for satisfying the goal with priority k, i.e. for achieving a utility of
at least p+1−k

p
. This is encoded as (ϕ → gkj , λ) ∈ Kji . Similarly, agent i might believe

with certainty λ that ϕ is a necessary condition for achieving the goal with priority k, i.e.
(ϕ← gkj , λ) ∈ Kji . These formulas can be combined as (ϕ↔ gkj , λ) ∈ Kji . Note how adding390

the atoms gkj to the language allows us to explicitly encode what an agent knows about the
goals of another agent. This is inspired by the approach from [25] for merging conflicting
sources, where similarly additional atoms are introduced to encode knowledge about the
unknown meaning of vague properties, in the form of necessary and sufficient conditions.

Example 10. Recall the scenario of Example 6. Suppose Bob has a good idea of what395

Alice’s goal base looks like: K1
2 = {((a ↔ b) ↔ g1

1, 0.9), (((a ↔ b) ∨ ¬a) ↔ g2
1, 0.6)}. He

is very certain that Alice’s first priority is to go out together and rather certain that she
prefers the theatre in case they do not go out together. Although Alice is very certain that
Bob will be pleased if they attend a sports game together, she is only a little certain that
Bob would be just as pleased if they go to the theatre together. She knows Bob prefers to400

go to a sports game as a second priority. Her knowledge of Bob’s goal base can be captured
by K2

1 = {((a ∧ b)→ g1
2, 0.8), ((¬a ∧ ¬b)→ g1

2, 0.3), (b→ g2
2, 1)}.

It is natural to assume that Kii contains the formulas (gki ↔
∨k
m=1 γ

m
i , 1) for all k ∈

{1, . . . , p}, i.e. every agent knows its own goal base and the corresponding utility. However,
this assumption is not necessary for the results in this section. By requiring goal-consistency405

in Definition 11, we ensure that the knowledge base Kji only encodes beliefs about the goal
of agent j. Without this assumption, it could be possible to derive from Kji formulas of the
form ϕ→ ψ that are not implied yet by the constraints of the game, i.e. δ 6|= (ϕ→ ψ). Such
formulas encode dependencies between the action variables of agents, which might be useful
for modelling suspected collusion, but this will not be considered in this work. However,410

we do not demand that the beliefs of an agent are correct, i.e. we do not assume that each
agent considers the actual game possible.

Definition 12 (Boolean Game with Incomplete Information). A Boolean game with
incomplete information is a tuple G = (N, (Φi)i∈N , δ, (Γi)i∈N , (Ki)i∈N) with N, (Φi)i∈N , δ and
(Γi)i∈N as in Definition 1 and Ki the set {K1

i , . . . ,Kni }, where Kji is a goal-KB of i w.r.t. j415

(see Definition 11).

Let us now consider how to compute the necessity and possibility that agent j plays a
best response in the outcome ν according to agent i. First recall that whenever we write an
interpretation ν where a formula is expected, this should be interpreted as the conjunction
of ν’s literals, i.e.

∧
{l | l ∈ ν}.420

Agent j plays a best response in the outcome ν iff for every alternative strategy ν ′j ∈
Sj(ν−j) it holds that uj(ν) ≥ uj(ν−j, ν

′
j). Essentially this boils down to the fact that, for

some k ∈ {0, . . . , p}, uj(ν) ≥ k
p

and ∀ν ′j ∈ Sj(ν−j) : uj(ν−j, ν
′
j) ≤ k

p
. Note that for k = 0,

the first condition is always fulfilled. Similarly, for k = p, the second condition becomes
trivial. Similarly, agent j does not play a best response in ν iff there exists a ν ′j ∈ Sj(ν−j)425
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such that uj(ν) < uj(ν−j, ν
′
j). This means that, for all k ∈ {0, . . . , p}, uj(ν) < k

p
or

∃ν ′j ∈ Sj(ν−j) : uj(ν−j, ν
′
j) >

k
p
. The possibility of agent j playing a best response is dual

to the necessity of agent j playing no best response. These insights motivate the following
definition.

Definition 13. Let i, j ∈ N be two agents in a Boolean game with incomplete information430

G and let ν be an outcome of G. We denote gp+1
j = > and g0

j = ⊥ for every j. We say that
j plays a best response in ν with necessity λ according to i, written BRnec

i (j, ν) = λ, iff λ is
the greatest value in [0, 1] for which there exists some k ∈ {0, . . . , p} such that the following
two conditions are satisfied:

1. Kji ` ν → (gk+1
j , λ)435

2. Kji ` ((ν−j ∧ ¬νj)→ (¬gkj ∨ ¬δ), λ)

Let λ∗ be the smallest value greater than 1 − λ which occurs in Kji . Agent i believes it is
possible to degree λ that agent j plays a best response in ν, written BRpos

i (j, ν) = λ, iff λ is
the greatest value in ]0, 1] for which there exists some k ∈ {0, ..., p} such that the following
two conditions are satisfied:440

1. Kji 0 (ν → ¬gk+1
j , λ∗)

2. ∀ν ′j ∈ Sj(ν−j) : Kji 0 (ν−j ∧ ν ′j → gkj , λ
∗)

If no such λ exists, then BRpos
i (j, ν) = 0.

Importantly, the syntax in Definition 13 allows us to express the certainty or possibililty
that an agent plays a best response, from the point of view of another agent. This forms an445

important base from which to define interesting solution concepts or measures in Boolean
games with incomplete information. In this paper, we introduce the following measures that
respectively reflect to what degree all agents believe it is necessary and possible that ν is a
PNE. In other words, the degree to which all agents believe it is necessary or possible that
all other agents will not have the incentive to deviate from the outcome.450

Definition 14. Let G be a Boolean game with incomplete information. For every out-
come ν ∈ S, we define the degree PNE nec(ν) to which ν is necessarily a PNE and the
degree PNE pos(ν) to which ν is possibly a PNE as follows:

PNE nec(ν) = min
i∈N

min
j∈N

BRnec
i (j, ν), PNE pos(ν) = min

i∈N
min
j∈N

BRpos
i (j, ν)

In Section 4.3 below, we will show that these notions indeed correspond to the notions of
necessary and possible PNE that were defined semantically in Section 4.1.

If we assume that all agents know their own goal, then BRnec
i (i, ν) = BRpos

i (i, ν) = 0 if ν
is not a PNE. Consequently, if ν is not a PNE, then we have PNE nec(ν) = PNE pos(ν) = 0.
Note that the measures from Definition 14 induce a total ordering on S, so there always455

exists a ν ∈ S such that PNE nec or PNE pos is maximal.
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Example 10 (continued). LetG be the Boolean game with incomplete information, defined
by the aforementioned goal-KBs, and assume that Bob and Alice know their own goals. It
can be computed that:

{¬a,¬b} {a,¬b} {¬a, b} {a, b}
minj∈N BRnec

1 (j, .) 0.3 0 0 0.8

minj∈N BRnec
2 (j, .) 0.9 0 0 0.9

PNE nec(.) 0.3 0 0 0.8

460

The outcome {a, b} has the highest value for PNE nec. Note that if Bob had the ‘dual’ beliefs
of Alice, i.e. K1

2 = {((¬a ∧ ¬b) → g1
1, 0.8), ((a ∧ b) → g1

1, 0.3), (¬a → g2
1, 1)}, then {¬a,¬b}

and {a, b} both would have had value 0.3 for PNE nec.

In [26] we showed that many solution concepts for Boolean games can be found by using a
reduction to answer set programming. The concepts in this section, such as PNE nec, can be465

computed using a straightforward generalization of these ideas.

4.3. Soundness and Completeness

In this section, we show that the solution concepts for Boolean games with incomplete
information that were introduced in Section 4.2 indeed correspond to their semantic coun-
terparts from Section 4.1.470

With a given goal base Γj = {γ1
j ; . . . ; γ

p
j } ∈ G we can associate a classical knowledge

base Tj = {γkj ↔ gkj | k ∈ {1, . . . , p}}, which is simply encoding that each goal gkj is defined
as in the goal base Γj. Using this formulation of a goal base as a logical theory, we can now
associate Kji with a possibility distribution πji on G in the following natural way, inspired
by [27], with max ∅ = 0:

πji (Γj) = 1−max{αl | (ϕl, αl) ∈ Kji , Tj 6|= ϕl} (2)

Note that Tj 6|= ϕl means that the goal base Γj does not satisfy the formula α. In other
words, it means that if Γj is the actual goal base of agent j, then the belief α of agent i
about this goal base is incorrect. The higher the certainty of the formulas violated by the
theory associated with Γj, the lower the possibility that Γj is the real goal base of agent j
according to agent i. Note that if we make the reasonable assumption that an agent knows
its own goals, then πii maps all elements of G to 0 except the real goal base3 of i, which
is mapped to 1. Given the Boolean game with incomplete information G, and using the
possibility distributions on G for every j, we can define a possibility distribution πGi on the
set of possible Boolean games BG:

πGi (G′) = min
j∈N

πji (Γ
G′

j )

3and any semantically equivalent goal base
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with ΓG
′

j the goal base of agent j in the Boolean game G′. This possibility distribution is
the natural semantic counterpart of the Boolean game with incomplete information G. We
now show that these possibility distributions πGi allow us to interpret the solution concepts
that have been defined syntactically in Section 4.2 as instances of the semantically defined
solution concepts from Section 4.1. This is formalized in the following proposition and475

corollary, which we prove further on. We use the notation brj(ν,Γj) for the propositional
variable corresponding to the statement “agent j with goal base Γj plays a best response
in ν”.

Proposition 1. For every ν ∈ S, i, j ∈ N and λ ∈ ]0, 1], it holds that

BRnec
i (j, ν) ≥ λ⇔

(
∀Γj ∈ G : ¬brj(ν,Γj)⇒ πji (Γj) ≤ 1− λ

)
(3)

BRpos
i (j, ν) ≥ λ⇔

(
∃Γj ∈ G : brj(ν,Γj) ∧ πji (Γj) ≥ λ

)
(4)

Corollary 1. Let us denote the possibility and necessity measure associated with πGi as ΠG
i

and NG
i . For every ν ∈ S it holds that

NG
i ({G′ ∈ BG | ν is a PNE in G′}) = min

j∈N
BRnec

i (j, ν) (5)

ΠG
i ({G′ ∈ BG | ν is a PNE in G′}) = min

j∈N
BRpos

i (j, ν) (6)

Consequently, it holds that:

necG({G′ ∈ BG | ν is a PNE in G′}) = PNE nec(ν)

possG({G′ ∈ BG | ν is a PNE in G′}) = PNE pos(ν)

Before we prove Proposition 1 and Corollary 1, a lemma is stated which deals with the
construction of specific goal bases in G, given specific knowledge bases encoding information480

about these goal bases.

Lemma 1. Given a goal-KB Kji , there exists a goal base Γj ∈ G such that πji (Γj) = 1.

Proof. We show that the condition πji (Γj) = 1 is satisfied for the goal base Γj = (γ1
j ; . . . ; γ

p
j ),

with γkj a formula in CNF which is equivalent to
∧
{ϕ |ϕ ∈ LΦ,∃λ > 0 : Kji ` (gkj → ϕ, λ)}.

Indeed, first note that due to the fact that Kji is goal consistent, we have γkj ∧ δ 6|= ⊥. We485

also clearly have γkj |= γk+1
j for k < p, hence it holds that Γj ∈ G. To prove πi(Γj) = 1 we

have to show Tj |= φ for each (φ, α) ∈ Kji . By construction we already have that Tj |= φ
for each φ of the form gkj → ϕ or gkj → gk+1

j . Since Kji , by definition of goal KB, is goal

consistent, it also follows that Tj |= φ for all φ of the form ϕ→ gkj .

Note that the construction of Γj relies on the (constrained) syntax of the formulas in Kji .490

We now prove Proposition 1.

Proof of Proposition 1. ⇒ of (3) Suppose BRnec
i (j, ν) ≥ λ and let Γj ∈ G. We show by

contraposition that πji (Γj) > 1 − λ implies brj(ν,Γj). From πji (Γj) > 1 − λ and (2), we
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find that ∀(ϕl, αl) ∈ Kji : Tj 6|= ϕl ⇒ αl < λ. By Definition 13, BRnec
i (j, ν) ≥ λ implies

that there exists a k′ ∈ {0, . . . , p} such that Kji ` (ν → gk
′+1
j , λ) and Kji ` ((ν−j ∧ ¬νj) →

(¬gk′j ∨ ¬δ), λ). It follows that Tj |= ν → gk
′+1
j and Tj |= (ν−j ∧ ¬νj) → (¬gk′j ∨ ¬δ).

Consequently, by definition of Tj, if k′ ∈ {1, . . . , p − 1}, it holds that Tj |= ν → γk
′+1
j and

Tj |= (ν−j ∧ ¬νj)→ (¬γk′j ∨ ¬δ). This means that j indeed plays a best response in ν since

γk
′+1
j ∧ δ is satisfied in ν (noting that ν |= δ by the definition of outcome) and for every

alternative strategy of j, γk
′
j ∧ δ is not satisfied.

⇐ of (3) Suppose that BRnec
i (j, ν) < λ, i.e. for every k ∈ {0, . . . , p} either Kji 0 (ν →

gk+1
j , λ) or Kji 0 ((ν−j ∧ ¬νj) → ¬gkj ∨ ¬δ, λ). Let k′ be the greatest index for which

Kji 0 (ν → gk
′
j , λ). Note that k′ ≥ 1 because of (i). Furthermore note that we then have

Kji 0 (ν → gkj , λ) for all k ≤ k′ and thus in particular for k = 1. We now construct a
goal base Γj = (γ1

j ; . . . ; γ
p
j ) with γkj defined as follows. For k ≤ k′, γkj is a formula in CNF

equivalent to Φk ∨ (Ψk ∧ ¬ν) where:

Φk =
∨
{ϕ |ϕ ∈ LΦ,Kji ` (ϕ→ gkj , λ)}

Ψk =
∧
{ψ |ψ ∈ LΦ,Kji ` (ψ ← gkj , λ)}

For k > k′, γkj is a formula in CNF equivalent to Φk ∨Ψk.

We first show that Γj ∈ G. Clearly, we have γkj |= γk+1
j for k < p. To see why γ1

j ∧δ 6|= ⊥,
note that γ1

j = Φ1 ∨ (Ψ1 ∧ ¬ν) and that Ψ1 ∧ ¬ν ∧ δ |= ⊥ would mean that ν is the only

model of Ψ1 ∧ δ, which by definition of goal consistency would mean that Kji ` (ν → g1
j , λ),495

which is a contradiction.
Next we show that πji (Γj) > 1 − λ by checking that for every formula (ϕ, α) ∈ Kji with

α ≥ λ, it holds that Tj |= ϕ. This is clear for formulas ϕ of the form φ→ gkj and for formulas

of the form gkj → gk+1
j . The fact that formulas of the form φ← gkj are satisfied can be seen

by the fact that then φ |= Ψk by definition of goal consistency.500

Finally we show that j does not play a best response in ν with the constructed Γj.
First note that because Kji 0 (ν → gkj , λ) for k ≤ k′ we know that ν 6|= Φ, and thus

we have ν 6|= γkj for any k ≤ k′. Moreover, since Kji ` (ν → gk
′+1
j , λ) we must have

Kji 0 ((ν−j ∧ ¬νj) → ¬gk
′
j ∨ ¬δ, λ). It follows that ν−j ∧ ¬νj ∧ Ψk′ ∧ δ is consistent, which

means that there is some ν ′j ∈ Sj(ν−j) such that (ν−j, ν
′
j) satisfies γk

′
j .505

⇒ of (4) Analogous to the proof of “⇐ of (3)”.

⇐ of (4) We prove directly that BRpos
i (j, ν) ≥ λ, i.e. ∃k ∈ {0, . . . , p} such that Kji 0 (ν →

¬gk+1
j , λ∗) and ∀ν ′j ∈ Sj(ν−j) : Kji 0 ((ν−j, ν

′
j) → gkj , λ

∗). By assumption, there exists a

Γj such that j plays a best response in ν and πji (Γj) ≥ λ. The former means that for
some k′ ∈ {0, . . . , p}, Tj |= ν → γjk′+1 and ∀ν ′j such that (ν−j, ν

′
j) satisfies δ it holds that510

Tj |= (ν−j, ν
′
j) → ¬γ

j
k′ . Since Tj |= γjl ↔ glj, it then holds that Tj |= ν → gk

′+1
j . Since by

definition ν 6|= ⊥, Tj 6|= ⊥ and Tj 6|= ¬ν, it follows that Tj 6|= ν → ¬gk′+1
j . The assumption

that πji (Γj) ≥ λ implies that ∀(ϕl, αl) ∈ Kji : Tj 6|= ϕl ⇒ αl ≤ 1 − λ. It follows that
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Kji 0 (ν → ¬gk′+1
j , λ∗). Analogously, we can prove that the fact that Tj |= (ν−j, ν

′
j)→ ¬γ

j
k′

holds for every ν ′j such that (ν−j, ν
′
j) satisfies δ implies that ∀ν ′j ∈ Sj(ν−j) : Kji 0 ((ν−j, ν

′
j)→515

gk
′
j , λ

∗).

We now prove Equation (5) from Corollary 1. The proof of (6) is analogous and the rest
of Corollary 1 follows immediately by minimizing over all agents in (5) and (6).

Proof of (5). By definition, minj∈N BRnec
i (j, ν) ≥ λ iff BRnec

i (j, ν) ≥ λ for every j ∈ N . We
proved (Proposition 1) that the latter is equivalent with ∀Γj ∈ G : j no best response in520

ν ⇒ πji (Γj) ≤ 1 − λ. We first prove that this implies that for all G′ ∈ BG it holds that
πGi (G′) ≤ 1 − λ if ν is not a PNE in G′. By definition, this means that NG

i ({G′ ∈ BG | ν
is a PNE in G′}) ≥ λ. Take an arbitrary G′ such that ν is not a PNE in G′. Then there
exists some j who plays no best response in ν if its goal base is ΓG

′
j . By assumption, this

implies πji (Γ
G′
j ) ≤ 1 − λ, which implies πGi (G′) ≤ 1 − λ by definition. We now prove the525

opposite direction. Take an arbitrary j and Γj such that j plays no best response in ν with
the goal base of j equal to Γj. Using Lemma 1, we can construct a G′ ∈ BG such that
ΓG
′

j = Γj and πij′(Γ
G′

j′ ) = 1 for every j′ 6= j. Obviously ν is not a PNE in G′ since j plays

no best response. By assumption and by definition of NG
i , it holds that πGi (G′) ≤ 1 − λ.

Since πij′(Γ
j′

G′) = 1 for every j′ 6= j, it follows that πji (Γj) ≤ 1− λ. Due to Proposition 1, we530

proved that BRnec
i (j, ν) ≥ λ. Since j is arbitrary, it follows that minj∈N BRnec

i (j, ν) ≥ λ.

Example 11. Recall the scenario of Example 8. We define the corresponding Boolean game
with incomplete information G. Since Bob has perfect knowledge of Alice’s preferences, his
goal-KB can be modelled as K1

2 = K1
1 = {((a ↔ b) ↔ g1

1, 1), (((a ↔ b) ∨ ¬a) ↔ g2
1, 1)}.

Alice is certain that Bob wants to attend a sports game together, or attend the game on535

his own if attending it together is not possible. This can be captured by the goal-KB
K2

1 = {((a ∧ b) ↔ g1
2, 1), (b ↔ g2

2, 1)}. It is easy to see that πG1 and πG2 correspond to
the possibility distributions π1 and π2 described in Example 8. Despite Alice’s incorrect
beliefs, Bob and Alice are both certain that attending a sports game together is a PNE,
since necG({G′ ∈ BG | {a, b} is a PNE in G′}) = PNE nec({a, b}) = 1. Contrary to Alice,540

Bob knows that going to the theatre together is a PNE as well.

An interesting question is how the agents’ beliefs can influence the proposals they can
make in e.g. bargaining protocols. Suppose for instance that in the above example, Alice
wants to make Bob a suggestion. Based on her beliefs, it would be rational to suggest
to attend a sports game together, as she believes that neither one of them would have545

an incentive to deviate from this outcome. Bob would then rationally agree, based on his
beliefs, as he is also convinced that neither one of them would deviate. We will study a simple
bargaining protocol in Section 6.1, although that protocol will be based on Boolean beliefs
(i.e. the setting from Section 5). Taking into account weighted beliefs in such protocols
remains a topic for future work, where for instance strength of belief could be related to550

the degree of risk-aversion of an agent. Another interesting question for future work is
how the actions of other agents can be used to modify one’s beliefs about that agent. For
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example, if Bob were to make a proposal, he can choose between two rational suggestions:
attending a sports game together or going to the theatre together. If he did the latter, Alice
would know that her beliefs are incorrect, if she assumes Bob makes rational suggestions.555

Other research possibilities lie in manipulating Boolean games with incomplete information
through communication, for instance through announcements, as investigated for Boolean
games with environment variables [7]. Another option is to extend the framework of Boolean
games with incomplete information, allowing agents to also reason about the beliefs of other
agents, although this is likely to lead to an increase in computational complexity.560

4.4. Computational Complexity

In this section two natural decision problems associated with the proposed possibilistic
Nash equilibria are investigated.

Proposition 2. Let G be a Boolean game with incomplete information and λ ∈ ]0, 1]. The
following decision problems are ΣP

2 -complete:565

1. Does there exist an outcome ν with PNE nec(ν) ≥ λ?

2. Does there exist an outcome ν with PNE pos(ν) ≥ λ?

Proof. Hardness of 1 and 2 Both problems are ΣP
2 -hard since they contain the ΣP

2 -complete
problem to decide whether a Boolean game has a PNE as a special case. Indeed, when G
is a Boolean game, we can construct a Boolean game with incomplete information in which570

all agents have complete knowledge of each other’s goals. Then PNE nec(ν) and PNE pos(ν)
coincide and take values in {0, 1}, depending on whether ν is a PNE or not. Consequently,
G has a PNE iff there exists a ν with PNE nec(ν) = PNE pos(ν) ≥ λ.

Membership of 1 We can decide the problem by first guessing an outcome ν. Checking

whether PNE nec(ν) ≥ λ means checking whether BRnec
i (j, ν) ≥ λ for every i, j ∈ N . The575

latter involves checking possibilistic entailments, which can be done in constant time using
an NP-oracle. Therefore, the decision problem is in ΣP

2 .

Membership of 2 We can decide the problem by first guessing an outcome ν. Checking

whether PNE pos(ν) ≥ λ means checking whether BRpos
i (j, ν) ≥ λ for every i, j ∈ N . To see

that the latter can be reduced to checking a polynomial number of possibilistic entailments,
we need to rewrite the condition that ∀ν ′j ∈ Sj(ν−j) : Kji 0 ((ν−j, ν

′
j) → gkj , λ

∗). To

this end, we define Kk, for every k ∈ {1, . . . , p}, as the knowledge base Kji in which all
formulas defining necessary and/or sufficient conditions for gkj are preserved; all formulas
with necessary conditions for glj (l ≥ k) are translated into necessary conditions for gkj by
replacing (ϕ → glj, α) by (ϕ → gkj , α); all formulas with sufficient conditions for glj (l ≤ k)
are translated into sufficient conditions for gkj by replacing (ϕ ← glj, α) by (ϕ ← gkj , α); all
other formulas are removed. Then it holds

∀ν ′j ∈ Sj(ν−j) : Kji 0 ((ν−j, ν
′
j)→ gkj , λ

∗)

⇔ ∀ν ′j ∈ Sj(ν−j) : Kk 0 ((ν−j, ν
′
j)→ gkj , λ

∗)

⇔ ∀ν ′j ∈ Sj(ν−j) : Kk1−λ 0 ((ν−j, ν
′
j)→ gkj )
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⇔ ∀ν ′j ∈ Int(Φj) : Kk1−λ 0 ((ν−j, ν
′
j)→ (gkj ∧ δ))

⇔ ∀ν ′j ∈ Int(Φj) : Kk1−λ and (ν−j, ν
′
j) and ¬(gkj ∧ δ) are consistent

⇔ ∀ν ′j ∈ Int(Φj) : Kk1−λ and (ν−j, ν
′
j) and (¬gkj ∨ ¬δ) are consistent

⇔ ∀ν ′j ∈ Int(Φj) : K′k1−λ and ν ′j and (¬gkj ∨ ¬δ′) are consistent

where K′k1−λ is obtained from Kk1−λ by replacing each occurrence of p ∈ Φ \ Φj by its truth
value (> or ⊥) in ν, and similar for δ′. The last condition is equivalent with ((K′k1−λ)> ∧
¬δ′) ∨ (K′k1−λ)⊥ being a tautology, where (K′k1−λ)> is obtained from K′k1−λ by replacing each580

occurrence of gkj with > and similar for (K′k1−λ)⊥. Checking whether the latter expression is
indeed a tautology can be done with a SAT-solver, i.e. in constant time with an NP-oracle.
Therefore, the decision problem is in ΣP

2 .

We can conclude that both problems are ΣP
2 -complete.

The result of Proposition 2 shows that the complexity for the introduced measures does585

not increase compared to PNEs of Boolean games, since deciding whether a Boolean game
has a PNE is also ΣP

2 -complete. Moreover, given the experimental results reported in [26]
for standard Boolean games, it seems plausible that a reduction to answer set programming
would support an efficient computation of solutions for medium sized games.

5. Using GPL for Encoding Ignorance in Boolean Games590

In this section, we introduce an alternative framework to represent incomplete informa-
tion in Boolean games, using GPL to compactly encode what each agent knows about the
preferences of each agent. In particular, we will consider GPL knowledge bases Kji to encode
what agent i knows about the preferences of agent j. Each possibility distribution over Φ
will correspond to a utility function, where those utility functions that i considers possible595

utility functions of agent j will correspond to the models of Kji . Note that because i may
be uncertain about the utility function of agent j, we need GPL (where knowledge bases
may correspond to arbitrary sets of possibility distributions) rather than standard possib-
ilistic logic (where knowledge bases are naturally associated with a particular possibility
distribution).600

Although Section 4 also uses possibilistic logic to model incomplete information in
Boolean games, our motivation now differs: whereas the previous section uses possibilistic
logic to encode graded beliefs about other agents’ goals, we now want to use possibilistic logic
to compactly describe agents’ preferences. In contrast to the approach from Section 4, the
weights associated with the formulas will now correspond to degrees of preference [28, 29]605

instead of degrees of certainty [3]. In particular the notion of uncertainty in this frame-
work, i.e. the way we model incompleteness, is binary: an agent either considers a given
utility function possible or impossible. Note that both the approach from Section 4 and
the approach from this section model incomplete information w.r.t. the agents’ preferences
(namely partial knowledge about the goals of the agents) in the context of Boolean games.610

However, to avoid confusion when referring to either one of them, we use the term Boolean

22



game with incomplete information for the framework of Section 4, and the term Boolean
game with incomplete preference-information for the framework from this section.

Note that the approach presented in this section is clearly different from approaches
that are aimed at modelling uncertainty in games, such as the Bayesian approaches that615

have been widely studied in the game theory literature (see e.g. [30]). Our use of GPL
also differs from approaches such as CP-nets4, which despite their similar aim to compactly
model preferences, only capture a single preference structure and are thus less suitable for
modelling incomplete information. To the best of our knowledge, this is the first research
on using GPL to model incomplete information about other agents’ preferences.620

5.1. GPL Encoding of Incomplete Boolean Games

We now explain in detail how GPL can be used to model incomplete information about
preferences in Boolean games with priorities. We use Example 1 as the running example of
this section.

Definition 15 (BG with Incomplete Preference-Information). A Boolean game with625

incomplete preference-information is a tuple G = (N , (Φi)i∈N , δ, (Γi)i∈N , (Ki)i∈N) with
N, (Φi)i∈N , δ and (Γi)i∈N as in Definition 1 and Ki = {K1

i , . . . ,Kni }, where Kji is a GPL
knowledge base such that Kji |= N1(δ) and Mod(Kii) = {ui}.

For every two agents i and j in N the GPL knowledge base Kji encodes what agent i knows
about the preferences of j. Recall from Section 3.2.3 that Mod(K) are the models of K.630

These models are normalized possibility distributions over Int(Φ) which only take values
from {0, 1

p
, ..., 1}, which means that we can view them as utility functions. To reinforce this

view, throughout this section we will use the notation u to denote GPL interpretations,
rather than the more common notation π. For a model u of Kji and an outcome ν, u(ν) = l

p

then means that the utility of outcome ν for agent j is l
p
, if we take u to be the actual utility635

function of j. Each model u of Kji thus implicitly encodes the prioritized goal base {γ1
j , ..., γ

p
j }

where γlj is equivalent to
∨
{ν |u(ν) ≥ p + 1 − l} (i.e. u(ν) = l

p
if the highest priority goal

from j that is satisfied in ν is γp+1−l
j ). In this way, the GPL knowledge bases K1

i , . . . ,Kni
compactly encode the BGs with priorities that agent i considers possible representations of
the actual game being played. Note that in contrast to the setting from Section 4, the link640

between the syntactic characterization from Definition 15 and the corresponding semantics
in terms of sets of BGs with priorities is immediately clear.

The condition N1(δ) ∈ Kji corresponds to the assumption that all agents are aware of the
integrity constraint δ. Specifically, it expresses that agent i knows that agent j’s utility is 0
for ν — the lowest possible payoff — if ν violates δ (i.e. if ν is not an outcome). Finally, the
assumption that Mod(Kii) is a singleton {ui} in Definition 15 corresponds to the assumption
that agent i knows its own utility. If the actual goal base of agent i is given by (γ1

i , ..., γ
p
j ),

4CP = ceteris paribus
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we can define Kii as follows:

Kii = {N p−m+1
p

(
m∨
l=1

γli) ∧∆inv (m
p

)(γ
m
i ∧ δ) |m ∈ {1, ..., p}} ∪ {N1(δ)}

Indeed, let ν ∈ Int(Φ) and suppose that u is a model of Kii. Suppose that ν |= δ and let
m be the highest priority goal satisfied in ν. Because Kii entails ∆inv (m

p
)(γ

m
i ∧ δ) we have

u(ν) ≥ m
p

. If m < p we furthermore have that u(ν) ≤ m
p

because Kii entails N p−m
p

(
∨m−1
l=1 γli)645

and ν is not a model of
∨m−1
l=1 γli. If ν 6|= δ, then u(ν) = 0 because Kii contains the formula

N1(δ). For every ν ∈ Int(Φ) we thus have that the possibility degree u(ν) is completely
determined by Kii. In other words, Kii has a unique model u, which corresponds to the goal
base (γ1

i , ..., γ
p
j ).

GPL formulas can be used to encode knowledge about preferences in an intuitive way.650

For instance, Kji |= Nλ(α) means that agent i believes that, whenever an outcome does not
satisfy α the utility of agent j can be at most 1−λ. In other words, α is a necessary condition
for agent j to reach utility higher than 1− λ. For example, in the context of Example 1, if
Bob believes that Alice is unhappy without her dog, this can be encoded by N1(dA) ∈ K1

2:
whenever the dog is not with Alice, Alice’s utility is 0. Similarly, K |= ∆λ(α) means that655

agent i believes that agent j’s utility is at least λ whenever the outcome satisfies α. In other
words, α is a sufficient condition for j to reach a utility of λ or more. For instance, in the
context of Example 1, Bob can encode that Alice is at least partially happy when she is with
the dog, regardless of whatever else happens, by adding ∆ 1

3
(dA) to his knowledge base K1

2.

This states that Alice’s utility is at least 1
3

when the dog is with her. Finally, K |= Πλ(α)660

encodes that agent i believes that there is some outcome that satisfies α in which agent j
reaches utility λ. For instance, in the context of Example 1, when Bob’s knowledge base K1

2

contains the formula Π1(dA ∧ (fA ∨ bA)), which encodes that Bob believes that Alice’s first
priority goal can be satisfied when she takes the dog to the beach or the forest.

Rather than encoding bounds on specific utility scores, in some applications it may be
more natural to express comparative preferences, e.g. encoding that i believes that j prefers
any/some outcome satisfying α over any/some outcome satisfying β. To conveniently express
such knowledge, we will introduce some abbreviations for α, β ∈ LΦ:

β � α ≡
p−1∨
m=1

(¬Πm+1
p

(α) ∧∆m
p

(β)) ∨ ¬Π 1
p
(α) ∨∆1(β)

β � α ≡
p∨

m=1

(¬Πm
p

(α) ∧∆m
p

(β)) (7)

Intuitively, whenever Kji |= β � α, agent i knows that the utility of agent j in any outcome
that satisfies β is at least the utility of j in any outcome that satisfies α. Similarly, whenever
Kji |= β � α, agent i knows that agent j strictly prefers any outcome in which β is true to
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any outcome in which α is true. Another useful abbreviation is:

β �c α ≡
p∨

m=1

(¬Πm
p

(α) ∧Πm
p

(β)) (8)

Intuitively, whenever Kji |= β �c α, agent i knows that there is some outcome satisfying β665

with a utility that is higher than that of any outcome satisfying β.
We illustrate the expressiveness of GPL for modelling preferences in the following example.

Example 12. Recall the context of Example 1 and suppose Alice knows that Bob’s first
priority goal can only be fulfilled without bringing the dog. This is encoded as N 1

3
(¬dA) ∈670

K2
1. If Alice knows that Bob prefers going to the beach exclusively with her over going to

the beach with her and the dog, this is encoded as (bA ∧ bB ∧ ¬dA) � (bA ∧ bB ∧ dA) ∈ K2
1.

When Alice believes that Bob has at least utility 2
3

when they both go to the beach, she
can encode this as ∆ 2

3
(bA ∧ bB). If Bob knows that Alice is unhappy without her dog, this

is encoded as N1(dA) ∈ K1
2. To encode that Alice is at least partially happy when she is675

with the dog, regardless of whatever else happens, Bob can add ∆ 1
3
(dA) to K1

2. Similarly,
if Bob believes Alice’s top priority is to go to the beach together with the dog, he can add
∆1(bA ∧ bB ∧ dA) to his knowledge base.

Similar to Definition 13 and Definition 14, we define solution concepts which capture
that agents believe that a certain outcome is a PNE.680

Definition 16. Let i, j ∈ N be two agents in a Boolean game with incomplete preference-
information G and let ν be an outcome of G. We say that agent i knows that agent j plays
a best response in ν iff it holds that Kji |= ν � ν−j. We say that agent i considers it possible
that agent j plays a best response in ν iff it holds that Kji 6|= ν−j �c ν.

At the semantic level, agent i knows that agent j plays a best response in ν iff this is the685

case for every utility function of j considered possible by i. Similarly, agent i believes it is
possible that agent j plays a best response in ν iff this is the case for at least one utility
function of j considered possible by i.

Definition 17. Let G be a Boolean game with incomplete preference-information. For
every outcome ν ∈ S, we say that ν is a known PNE iff every agent in the game knows690

that every other agent plays a best response in ν. Similarly, we say that ν is a possible PNE
iff every agent in the game considers it possible that every other agent plays a best response
in ν.

Example 13. Recall the context of Example 12, where Alice’s and Bob’s knowledge bases
w.r.t. each other are:

K2
1 = {N1(δ),N 1

3
(¬dA), (bA ∧ bB ∧ ¬dA) � (bA ∧ bB ∧ dA),∆ 2

3
(bA ∧ bB)}

K1
2 = {N1(δ),N1(dA),∆ 1

3
(dA),∆1(bA ∧ bB ∧ dA)}
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The possible PNEs correspond to the true PNEs: Bob and Alice go to the forest with the
dog or Bob and Alice go to the beach with the dog. The three of them going to the beach695

is the unique known PNE.

Note that we have not demanded that the knowledge of the agents is correct, i.e. the true
utility function is not ruled out as a possibility by other agents. However, if we do make
the assumption that all knowledge is correct, then it is easy to verify that any true PNE is
also a possible PNE. Also note that believing that some outcome ν is a possible PNE when700

it is not a true PNE is impossible when we assume that the agents know their own utility:
when ν is not a true PNE, the agent who does not play a best response does not consider it
possible that ν is a PNE.

5.2. Computational Complexity

In this section, we investigate the computational complexity of known and possible PNEs.705

Proposition 3. Let G be a Boolean game with incomplete preference-information. The
following decision problems are ΣP

2 -complete:

1. Does there exist a known PNE?

2. Does there exist a possible PNE?

Proof. Hardness The problems are ΣP
2 -hard since they contain the ΣP

2 -complete problem710

to decide whether a Boolean game has a PNE as a special case. Indeed, when G is a Boolean
game, we can construct a Boolean game with incomplete preference-information G′ in which
all agents have complete knowledge of each other’s goals. In that case, known and possible
PNEs in G′ coincide with PNEs in G, thus G has a PNE iff G′ has a known or possible PNE.
Membership We can decide whether a known PNE exists by first guessing an outcome ν.715

Checking whether ν is a known PNE means checking whether agent i knows that agent j
plays a best response in ν for every i, j ∈ N . The latter involves checking possibilistic
entailments in GPL. Since the formula ν � ν−j contains the modal operator ∆, the compu-
tational complexity of deciding Kji |= ν � ν−j is in ΘP

2 [31], i.e. the problem can be solved
in polynomial time on a deterministic Turing maching, using a logarithmic number of calls720

to an NP-oracle. Since ΣP
2 represents the problems which can be solved in polynomial time

on a non-deterministic Turing machine with an NP-oracle, we can conclude that deciding
whether a known PNE exists is in ΣP

2 . Similarly, we can decide whether a possible PNE
exists by first guessing an outcome ν. The latter involves checking possibilistic entailments
in GPL. Since the formula ν−j �c ν only contains the modal operator Π, the computational725

complexity of deciding Kji 6|= ν−j �c ν is in NP [31]. Deciding whether Kji 6|= ν−j �c ν holds
can thus be done using an NP-oracle. Consequently, deciding whether a possible PNE exists
is in ΣP

2 .

We can conclude that both problems are ΣP
2 -complete.

Similarly as for Proposition 2, the result of Proposition 3 shows that considering incom-730

plete information about the preferences of other agents does not lead to an increase in the
computational complexity of the main decision problems.
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6. An Application to Negotiation

In this section we present an application of Boolean games with incomplete preference-
information. In particular, we develop a multilateral negotiation protocol which allows the735

agents to use their knowledge about other agents’ goals. We analyze how a lack of knowledge
affects the agreement outcome. In particular, we show how knowledgeable agents can obtain
a more desirable outcome than others.

Negotiating allows agents in a strategic setting to settle on an agreement outcome. A mul-
tilateral bargaining protocol in Boolean games with complete information has been investig-740

ated in [14], showing that, when the logical structure of the goals is restricted, the protocol
is guaranteed to end in a Pareto optimal outcome, i.e. no agent can improve its position
without another agent being worse off. In this section, we propose a protocol which converges
to an acceptable agreement without restrictions on the game structure. Moreover, under
complete information our protocol always results in a discrimin optimal outcome. Discrimin745

optimality refines Pareto optimality [18], and while the latter indeed ensures efficiency, it
is often not sufficient to characterize desirable outcomes [32]. Suppose, for instance, that
two agents are negotiating in a situation with two Pareto optimal outcomes, with utility
vectors (1, 0.2) and (0.5, 0.6), where utility reflects the degree of satisfaction of the agents.
A natural concept arising in negotiation is fairness : intuitively, the latter utility vector is750

more fair than the former in the sense that there is less inequality between the utilities of
the two agents. In the literature, several notions of fairness apart from discrimin optimality
have been introduced and studied; we refer the interested reader to [33] for an overview and
discussion.
The literature on bargaining is extensive, and covers a wide range of possible settings, such755

as discrete versus continuous bargaining (e.g. prices [34]), bilateral [35, 36] versus multilat-
eral bargaining, transferable and non-transferable utility, a limited versus unlimited num-
ber of responses, modeling incomplete knowledge through probability theory [34], through
Cartesian products of so-called complete knowledge problems [37], or by means of possibil-
istic logic [35]. To the best of our knowledge, our work is the first research on negotiation760

that considers incomplete knowledge about the goals of other agents in a Boolean game
setting.

This section is structured as follows. In Section 6.1 we propose a multilateral negotiation
protocol for Boolean games with complete information and characterize the agreement out-
comes. Then we generalize the negotiation protocol of Section 6.1 to Boolean games with765

incomplete information in Section 6.2. We characterize the agreement outcomes, linking
back to those under complete information. Additionally, we show how knowledge is crucial
for an agent to reach a satisfying agreement. To conclude, we discuss several future work
directions.

6.1. Negotiating under Complete Information770

We investigate multilateral negotiation in Boolean games with prioritized goal bases (see
Definition 1). We use the following scenario as a running example.
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Example 14. Recall Example 1 where Alice and Bob, who share a car, are planning their
afternoon. Alice controls Φ1 = {bA, fA, dA} and Bob controls Φ2 = {bB, fB}, respectively
expressing the actions of going to the beach, going to the forest and taking the dog (in Alice’s
case). The game is constrained by δ = ¬(bB ∧ fB)∧¬(bA ∧ fA)∧ (bB → ¬fA)∧ (bA → ¬fB).
The goal bases of Alice and Bob are:

Γ1 = {fA ∧ fB ∧ dA; bA ∧ bB ∧ dA; dA}
Γ2 = {bB ∧ bA ∧ ¬dA; bB ∧ bA; fB ∧ fA}

In the context of bargaining, it is natural that agents try to achieve an outcome that is,
among others, efficient. A well-known efficiency concept is Pareto optimality. Recall that an
outcome is Pareto optimal if no agent can be better off without another agent being worse775

off (see Definition 5). It is easy to see that every Boolean game has at least one Pareto
optimal outcome. A well-known refinement of the Pareto ordering incorporating a notion
of fairness is the discrimin ordering (see Definition 6). In Example 14, (bA, bB, dA) is the
unique discrimin optimal outcome, although it is not the only Pareto optimal outcome.

We are interested in a negotiation protocol that is guaranteed to converge within a finite780

number of steps. Therefore, we want agents to make offers according to a negotiation rule,
which ensures that every offered outcome is an improvement compared to the previous one.
For instance, an agent might only be allowed to make a counteroffer if no agent is worse
off than in the previous offer. Obviously, this rule will lead to Pareto optimal outcomes.
However, the rule is so strict that the result can hardly be called fair: the first agent simply785

offers the outcome which yields its personal highest utility and no other agent is allowed to
make a counteroffer which lowers the first agent’s utility. Suppose, for instance, that there are
two possible utility vectors: (1, 0) and (0.5, 0.5). If the first agent opens the negotiation with
(1, 0), the other agent would not be allowed to counter this offer with (0.5, 0.5). To develop
a fairer rule, we consider two properties that characterize a valid counteroffer. First of all,790

an agent is only interested in making a counteroffer if its own utility improves compared to
the original offer. Second, the agents apply the silver rule or ethic of reciprocity, proposed
by the Confucian Way of Humanity [38]:

One should not treat others in ways that one would not like to be treated.

In our negotiation protocol, an agent reasons as follows: if I do not accept an offer of utility k,
I should not lower another agent’s utility to k or less in order to improve my own. Therefore,
if an agent decides to lower other agents’ utilities, it should offer more than k. We formally
define the set co(i, ν) of agent i’s legal counteroffers to the proposal ν as follows, where
i ∈ N and ν ∈ S:

co(i, ν) = {ν ′ ∈ S |ui(ν ′) > ui(ν) ∧ ∀j ∈ N : uj(ν
′) < uj(ν)⇒ uj(ν

′) > ui(ν)} (9)

We suggest the following negotiation protocol. In a given order, agents make proposals one795

by one. Without loss of generality, we assume that this order is 1, 2, . . . , n.
Algorithm 1 depends on a selection function to choose which ν ′ ∈ S is made as the initial
offer and which ν ′ ∈ co(i, ν) is chosen each time as the counteroffer. The results discussed
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Algorithm 1 Negotiation Protocol for Boolean game

ν ← ν ′ with ν ′ ∈ S % Agent 1 proposes ν ′

accepted ← 1; i← 2
while accepted < n do

if co(i, ν) == ∅ then
% Agent i accepts the offer
accepted ← accepted +1

else
% Agent i rejects the offer and makes a counteroffer
ν ← ν ′ with ν ′ ∈ co(i, ν)
accepted ← 1

end if
i← (i == n ? 1 : i+ 1)

end while

in the paper hold regardless of this selection. The negotiation protocol ends if an offer ν is
made such that no counteroffers can be made, i.e. ∀i ∈ N : co(i, ν) = ∅.800

If we apply Algorithm 1 in the context of Example 14, Alice is the first agent to make
a proposal. Suppose she proposes to Bob the unique outcome corresponding to her first
priority goal of going to the forest with Bob and her dog, i.e. ν1 = {fA, fB, dA,¬bA,¬bB}.
The associated utility vector is (1, 0.33). Bob now looks into his possible counteroffers, i.e.
co(2, ν1). First of all, Bob has to be better off in his own counteroffer and should thus have805

utility 0.67 or greater. Therefore, the only candidates for co(2, ν1) are going to the beach
exclusively with Alice and going to the beach with Alice and the dog. The second condition
for co(2, ν1) regards Alice’s utility: if Alice’s utility in Bob’s counteroffer is lower than in ν1,
then her utility in the counteroffer should be strictly greater than 0.33 (i.e. Bob’s utility in
Alice’s proposal), or it should thus be at least 0.67. Given that Alice has utility 0 if she is810

not with her dog, the only possible counteroffer for Bob is going to the beach with Alice and
the dog, i.e. ν2 = {bB, bA, dA,¬fA,¬fB}. In other words, co(2, ν1) = {ν2}. Bob thus makes
the counteroffer ν2 with associated utility vector (0.67, 0.67). If Alice now wants to make
another counteroffer, then by definition of co(1, ν2) both Alice and Bob should have utility 1
in this counteroffer, or Alice should have utility 1 and Bob should keep utility 0.67. Clearly815

no such counteroffers exist, i.e. co(1, ν2) = ∅. Alice therefore accepts Bob’s offer ν2 and the
protocol ends. Bob and Alice have agreed to go to the beach with the dog.
We now prove that, whenever an offer is rejected, the new offer is fairer according to the
discrimin ordering.

Proposition 4. For ν ∈ S, i ∈ N and ν ′ ∈ co(i, ν), it holds that ν ′ >discr ν.820

Proof. According to Definition 6 we need to prove:

min
j /∈eq(U(ν),U(ν′))

uj(ν
′) > min

j /∈eq(U(ν),U(ν′))
uj(ν)
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For every j /∈ eq(U(ν),U(ν ′)) either uj(ν
′) > uj(ν) holds or uj(ν

′) < uj(ν) holds by
definition of eq(U(ν),U(ν ′)). For every j /∈ eq(U(ν),U(ν ′)) such that uj(ν

′) > uj(ν)
holds, we have uj(ν

′) > minj′ /∈eq(U(ν),U(ν′)) uj′(ν) by definition of the minimum. For every
j /∈ eq(U(ν),U(ν ′)) such that uj(ν

′) < uj(ν) holds, the definition of co(i, ν) (9) implies
that uj(ν

′) > ui(ν). Moreover, (9) implies that i /∈ eq(U(ν),U(ν ′)). Consequently, we825

have uj(ν
′) > minj′ /∈eq(U(ν),U(ν′)) uj′(ν). Combining all parts, we see that the inequality

uj(ν
′) > minj′ /∈eq(U(ν),U(ν′)) uj′(ν) holds for every j /∈ eq(U(ν),U(ν ′)), thus implying what

needed to be proven.

It immediately follows that every discrimin optimal outcome is accepted.

Corollary 2. For ν ∈ DO and i ∈ N it holds that co(i, ν) = ∅.830

Conversely, we can also show that only discrimin optimal outcomes will be overall accepted,
i.e. accepted by every agent.

Proposition 5. For ν ∈ S \ DO there is an agent i ∈ N with co(i, ν) 6= ∅.

Proof. Let ν ∈ S \DO , then by definition of DO there exists a ν ′ ∈ S such that ν ′ >discr ν.
By Definition 6 this implies that

min
j /∈eq(U(ν),U(ν′))

uj(ν
′) > min

j /∈eq(U(ν),U(ν′))
uj(ν)

Since the number of agents is finite, there exists at least one agent i outside eq(U(ν),U(ν ′))
such that ui(ν) = minj /∈eq(U(ν),U(ν′)) uj(ν). In other words: of all agents for which the choice835

between ν and ν ′ matters, agent i has the lowest utility in ν. In particular, since ν ′ >discr ν,
it holds that ui(ν

′) > ui(ν). Moreover, since minj /∈eq(U(ν),U(ν′)) uj(ν
′) > ui(ν), it holds that

uj(ν
′) > ui(ν) for every j /∈ eq(U(ν),U(ν ′)). In particular, uj(ν

′) > ui(ν) for every j ∈ N :
uj(ν

′) < uj(ν). Therefore, it immediately follows that ν ′ ∈ co(i, ν).

Note that since there are only a finite number of offers that can be made, and because840

each offer must strictly improve the previous offer in terms of the discrimin ordering, we
know that the negotiation protocol always ends. From Corollary 2 and Proposition 5 we
moreover know that the possible agreement outcomes at the end of the negotiation protocol
are exactly the discrimin optimal outcomes. This result implies that the first offering agent
still has a strong advantage, as this agent can select the discrimin optimal outcome that845

yields its highest personal utility, which no agent is allowed to reject. For instance, if the
only discrimin optimal outcomes have utility vectors (1, 0.5) and (0.5, 1), agent 1 should
propose the former and agent 2 has no choice but to accept. If the first agent follows this
strategy, the negotiation ends within one step.

Remark 1. In our protocol, it is irrelevant which agent controls which atoms. The depend-850

ence of actions implied by the constraint δ forces agents to negotiate about what actions
they will undertake. In Example 14, Alice and Bob cannot individually decide to go out.
However, Alice can decide to stay with the dog without violating δ. Moreover, both Alice
and Bob can decide to stay at home without restricting the other agent’s options w.r.t. the
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constraint. Thus Alice is able to reach a utility of 0.33 without negotiating, and Bob will855

be stuck with a utility of 0. The utility vector (0.33, 0) can be viewed as the disagreement
point [39], i.e. the utility the agents would receive if they fail to reach an agreement. This
information could be added to the framework: Alice rejects everything with a lower utility
than 0.33, ergo Bob should not make such offers during the negotiation. Note that we can
incorporate this info in the constraint δ, demanding that the utility of every agent is greater860

than its disagreement utility.

6.2. Negotiating under Incomplete Information

In this section, we consider Boolean games in which the agents are uncertain about the
preferences of the other agents. For example, recall the context of Example 14 where Bob
and Alice are planning their Sunday afternoon: they can go to the beach or the forest, or865

they can stay at home, and Alice can bring the dog or leave it at home. Since being a couple
does not imply having identical preferences nor knowing exactly each other’s preferences,
Bob and Alice will have to compromise under incomplete information. However, they might
not be completely ignorant about each other’s goals; for instance, Bob knows that Alice
loves the dog and Alice knows that Bob loves the beach. In this section, we show how they870

can use such knowledge to reach an agreement through negotiation. Moreover, we explore
the link between having information about other agents’ goals and obtaining a satisfactory
agreement. To the best of our knowledge, our process is the first multilateral negotiation
protocol for Boolean games that takes uncertainty w.r.t. the other agents’ goals into account.

We first define a set of possibilistic discrimin optimal outcomes in S. Intuitively, an875

outcome ν is optimal if for any outcome ν ′ which dominates ν according to the discrimin
ordering, the agents who are better off in ν ′ than in ν are not aware that ν ′ is a valid coun-
teroffer in the sense of (9). Recall that the models of a generalized possibilistic knowledge
base Kji are possibility distributions.

Definition 18 (Possibilistic Discrimin). We define the set of possibilistic discrimin op-
timal outcomes:

DOp = {ν ∈ S | ∀ν ′ ∈ S : (ν ′ >discr ν)⇒
(
∀i ∈ N : (ui(ν

′) > ui(ν))⇒
(∃j ∈ N,∃uji ∈ Mod(Kji ) : (uji (ν

′) < uji (ν)) ∧ (uji (ν
′) ≤ ui(ν)))

)
}

It is easy to see that DO ⊆ DOp. In particular, when each agent has full knowledge, i.e.880

Mod(Kji ) = {uj} for every i, j ∈ N , DO and DOp coincide.
We now analyze negotiation in Boolean games with incomplete preference-information.

The protocol remains as specified in Algorithm 1: agents take turns in responding to an offer,
by accepting it or making a counteroffer. However, the set of legal counteroffers co(i, ν) might
be unknown to agent i. Indeed, determining the allowed counteroffers requires – possibly
unknown – information about the other agents’ utility. Therefore, we replace co(i, ν) by
cop(i, ν), which intuitively contains every outcome ν ′ ∈ S for which agent i has enough
information to derive that ν ′ is indeed a legal counteroffer to ν:

cop(i, ν) = {ν ′ ∈ S | (Kii |= ν ′ � ν) ∧ ∀j ∈ N : Kji |= (∆ui(ν)+ 1
p
(ν ′) ∨ (ν ′ � ν))}
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Recall that an outcome ν, when used as a formula, represents the conjunction of the literals
in ν. Moreover, as defined in (7), ν ′ � ν and ν ′ � ν are abbreviations of GPL formulas.
When agent i’s knowledge base Kji models ν ′ � ν, this means that agent i knows that the
utility of agent j in ν ′ is higher than its utility in ν. Similarly, Kji |= ν ′ � ν encodes that885

agent i knows that the utility of agent j in ν ′ is at least as high as its utility in ν. If Kji
models the GPL formula ∆ui(ν)+ 1

p
(ν ′), this means that agent i knows that agent j’s utility

in ν ′ is higher than ui(ν). As before, an outcome ν is agreed upon iff cop(i, ν) = ∅ for every
i ∈ N .

We can prove that every possibilistic discrimin optimal outcome is generally accepted.890

To this end, we first prove the following link between the sets of valid counteroffers under
complete and incomplete information, assuming the agents have correct beliefs about the
preferences of others. By the latter we mean that the beliefs of an agent i concerning the
utility of an agent j do not rule out the true utility function of an agent j.

Proposition 6. For every i ∈ N such that ∀j ∈ N : uj ∈ Mod(Kji ) it holds that cop(i, ν) ⊆895

co(i, ν) for every ν ∈ S.

Proof. Let ν ′ be an arbitrary element of cop(i, ν). By definition, it holds that ui(ν
′) >

ui(ν) ∧ ∀j ∈ N : Kji |= (∆ui(ν)+ 1
p
(ν ′) ∨ (ν ′ � ν)). Let j ∈ N . It remains to prove that

uj(ν
′) < uj(ν)⇒ uj(ν

′) > ui(ν) or equivalently uj(ν
′) ≥ uj(ν)∨uj(ν ′) > ui(ν). It is assumed

that uj is a model of Kji . Consequently, it holds that uj satisfies either ∆ui(ν)+ 1
p
(ν ′) or ν ′ � ν.900

In the first case, it holds that uj(ν
′) ≥ ui(ν) + 1

p
or thus uj(ν

′) > ui(ν). In the second case,

it holds that uj(ν
′) ≥ uj(ν). In any case it holds that uj(ν

′) ≥ uj(ν) ∨ uj(ν ′) > ui(ν).

We can prove that an agent always accepts a possibilistic discrimin optimal outcome, as-
suming it has correct beliefs.

Proposition 7. For ν ∈ DOp and i ∈ N such that ∀j ∈ N : uj ∈ Mod(Kji ) it holds that905

cop(i, ν) = ∅.

Proof. Let ν ∈ DOp and i ∈ N . Suppose there exists some ν ′ ∈ cop(i, ν). If ¬(ν ′ >discr ν),
then Proposition 4 and Proposition 6 imply that ν ′ /∈ cop(i, ν), which is a contradiction.
Now assume that ν ′ >discr ν. Since ν ′ ∈ cop(i, ν) and Mod(Kii) = {ui} it follows that
ui(ν

′) > ui(ν). Because ν ∈ DOp, we know that there exists some j ∈ N and uji ∈ Mod(Kji )910

such that uji (ν
′) < uji (ν) and uji (ν

′) ≤ ui(ν). Consequently, uji does not satisfy ∆ui(ν)+ 1
p
(ν ′),

nor ν ′ � ν. This contradicts the fact that Kji |= (∆ui(ν)+ 1
p
(ν ′) ∨ (ν ′ � ν)).

Conversely, we can also show that only possibilistic discrimin optimal outcomes will be
generally accepted, i.e. accepted by all agents.

Proposition 8. For ν ∈ S \ DOp there is an agent i ∈ N with cop(i, ν) 6= ∅.915

Proof. For ν ∈ S \ DOp there exists a ν ′ ∈ S such that ν ′ >discr ν and there exists an
agent i ∈ N such that ui(ν

′) > ui(ν), and for every j ∈ N and uji ∈ Mod(Kji ) it holds that
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uji (ν
′) ≥ uji (ν) or uji (ν

′) > ui(ν). Since Mod(Kii) = {ui}, it follows that Kii |= ν ′ � ν. Now
let j be an arbitrary agent in N . For every model uji of Kji such that uji (ν

′) ≥ uji (ν) it holds
that uji models ν ′ � ν. For every model uji of Kji such that uji (ν

′) > ui(ν) it holds that920

uji models ∆ui(ν)+ 1
p
(ν ′). Consequently, we have Kji |= (∆ui(ν)+ 1

p
(ν ′) ∨ (ν ′ � ν)), and thus

ν ′ ∈ cop(i, ν).

Note that since the number of possible offers is finite and because each offer must strictly
improve the previous offer in terms of the discrimin ordering, the negotiation protocol always
ends when we assume correct beliefs. Note that incorrect beliefs, however, can lead to an925

infinite loop: if agent 1 believes ν is a valid counteroffer to ν ′ and agent 2 believes that ν ′ is a
valid counteroffer to ν, then a negotiation between the both of them can loop infinitely from
ν to ν ′ and vice versa. From Proposition 7 and Proposition 8 we know that the possible
agreement outcomes at the end of the negotiation protocol are exactly the possibilistic
discrimin optimal outcomes, assuming the agents have correct beliefs.930

From DO ⊆ DOp and Proposition 7, it follows that any discrimin optimal offer is overall
accepted under incomplete information. However, Example 15 shows that the opposite
does not hold, i.e. a non-discrimin optimal outcome might be accepted under incomplete
information.

Example 15. Suppose, in the context of Example 14, that Alice has absolutely no informa-935

tion concerning Bob’s goals. If Bob may make the first offer and suggests to go to the beach
together without the dog, Alice’s utility is 0. Although this outcome is discrimin dominated
by going to the beach with the dog, Alice is unable to make this counteroffer, because she
does not know whether Bob’s utility is at least 0.33 in that case or whether Bob’s utility is
at least the same as in his first offer.940

Note that, in contrast to a fully informed agent, an agent with limited knowledge might not
be able to open with a discrimin-optimal solution. It is clear that having no information
leaves an agent in a very weak position. Indeed, if agent i knows nothing about the prefer-
ences of another agent, it holds that cop(i, ν) = ∅ for every ν ∈ S, hence agent i is obliged to
accept every offer. In contrast, an agent who has full knowledge knows all valid counteroffers945

and may be able to achieve a better outcome than in any discrimin optimal outcome, cfr.
Bob in Example 15. Note that an agent with full knowledge can either use a safe or a risky
selection function. Suppose for instance that there are only three possible utility vectors:
(0.6, 0.4), (0.4, 0.6) and (1, 0.2). If agent 1 proposes (0.6, 0.4), it is certain that agent 2 ac-
cepts. Alternatively, if agent 1 proposes (1, 0.2) and agent 2 does not know that there exists950

a valid counteroffer, agent 1 can get away with an unfair agreement, yielding a higher utility
than in any fair outcome. However, if agent 2 knows that (0.4, 0.6) is a valid counteroffer,
the negotiations end in (0.4, 0.6), leaving agent 1 worse off than if it had proposed (0.6, 0.4)
right away. This discussion shows that an interesting extension of the framework would be
to allow agents to reason about the knowledge of others. Such knowledge can be encoded955

using multi-agent extensions of modal logics for epistemic reasoning, although we are then
forced to express knowledge about preferences at the propositional level (e.g. by introducing
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variables gmi to denote the mth most preferred goal of agent i as in Section 4). This exten-
sion would allow agents to act based on their knowledge of how other agents would react to
various counteroffers, as is common in the field of epistemic game theory [40].960

Remark 2. In our protocol, the order of the agents plays an important role, which is
natural in hierarchical contexts (e.g. leader-follower type setting, where followers can only
question proposals by leaders if they can prove their unfairness). Alternatively, the power
of agents [41] can be used to deduce a sensible ordering in which agents are allowed to
make offers: the most powerful agent can make the initial offer. Note, however, that the965

use of GPL for encoding knowledge about the preferences of others is independent of the
negotiation protocol. Consequently, future research w.r.t. alternative negotiation protocols
e.g. for settings in which agents have equal status can also rely on our GPL framework.

Even though the negotiation model we have discussed in this section is rather simple, it
offers a rich basis from which we can study a wide variety of settings. Interesting extensions970

could include the use of agents who expand their knowledge base during the protocol, by
drawing conclusions from the offering behavior of other agents [42]. Another option is to use
different negotiation rules, e.g. an agent could be allowed to make a counteroffer ν if it does
not know that ν is an illegal counteroffer. However, if the offer turns out to be illegal, the
agent must pay a penatly. In that case, agents need to weigh the potential gain of such an975

offer against the risk of paying a penalty, which brings them in a standard setting for decision
making under uncertainty (see e.g. [43]). Alternatively, we can allow ‘third party’ agents to
protest against offers, in case they know that the offer is illegal. This can also be employed
in case the assumption of correct beliefs is violated. Recall that the characterization of
the agreement outcomes under incomplete information relies on this assumption. When an980

agent has incorrect beliefs, it is possible that the agent makes a counteroffer that violates
the original bargaining rule, while believing it does not. For instance, suppose Bob suggests
to Alice to attend a sports game together. Now assume Alice mistakingly believes Bob is
indifferent between attending a sports game together and going to the theatre together,
while Alice prefers the latter. She therefore believes going to the theatre together is a valid985

counteroffer. If she makes this offer, Bob can deduce that Alice’s beliefs concerning his
preferences are wrong. He could protest against the counteroffer and Alice could update her
beliefs. However, protesting against an unfair proposal requires the revelation of knowledge,
which might also weaken the bargaining power of the agent. Hence, it is not straightforward
that protesting is always in the protester’s advantage, even if it initially leads to a higher990

utility. Other options for alternative protocols include the addition of time constraints [44]
or the use of arguments to support an offer [35].

7. Conclusion

We introduced the first Boolean game frameworks that allow agents to be uncertain
about the other agents’ goals. Moreover, we approached the incompleteness of information995

in two distinct ways. In Section 4 we have argued that such a scenario can naturally be
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modelled by associating with each agent a possibility distribution over the universe of all
possible games (given the considered action variables and constraints). While this allows us
to define a variety of solution concepts in a natural way, definitions at the semantic level are
not directly useful in practice, due to the exponential size of these possibility distributions.1000

Therefore, we also proposed a syntactic characterization, which avoids exponential repres-
entations by relying on standard possibilistic logic inference, and can be implemented by
reduction to answer set programming. Our main result is that this syntactic characterization
indeed corresponds to the intended semantic definitions. We furthermore showed that the
computational complexity of the introduced solution concepts remains at the second level1005

of the polynomial hierarchy.
In Section 5 we have developed an alternative framework for Boolean games with in-

complete information, using GPL to compactly represent agents’ knowledge about the pref-
erences of others. In contrast to the previous approach, here the possibility distributions
correspond to utility functions, hence the weights of formulas reflect preference instead of cer-1010

tainty. An agent then considers a set of possibility distributions as being the possible utility
functions of another agent. We illustrated how the syntax of GPL allows us to easily model
intuitive notions: not only can we capture necessary and sufficient conditions for reaching
subgoals, it is also straightforward to encode e.g. comparative preferences. Moreover, in
contrast to the framework from Section 4, the GPL-based model does not require additional1015

variables in the logical language. However, the approach from Section 4 allows different
degrees of certainty, whereas the GPL-based model corresponds to binary certainty: either
an agent completely rules a scenario out or it considers a scenario completely possible. To
the best of our knowledge, our frameworks are the first models for Boolean games with
incomplete information regarding the agents’ goals.1020

We introduced new solution concepts, which are appropriate for this context. They reflect
whether an outcome is known to be a PNE or whether it is considered possible of being a
PNE. For instance, in case of a known PNE, all agents believe that no other agent has the
incentive to deviate. Moreover, we investigated the associated computational complexity
and showed that this complexity does not increase compared to PNEs in Boolean games1025

with complete information.
To illustrate how the proposed frameworks could be used in practice, we presented an

application to negotiation in the context of Boolean games with incomplete information.
Our multilateral negotiation protocol uses an intuitive negotiation rule based on the ethic
of reciprocity principle and is guaranteed to converge within a finite number of steps. We1030

characterized the set of possible outcomes of the negotiation process, confirming the intuition
that incomplete knowledge may lead to negotiation inefficiency, i.e. the agreement outcome
may not be fair or efficient.

The presented frameworks lead to several interesting avenues for future work. First,
the approaches could be generalized for taking into account prior beliefs about the likely1035

behaviour of other players (e.g. for modelling collusion) and/or for modelling situations where
agents may be uncertain about the actions that are being played by other agents. Moreover,
it seems of interest to analyse the effect of adding communication to the framework, by
allowing agents to strategically ask questions or make proposals to each other in order to
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reduce uncertainty or as part of a negotiation process.1040
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[9] T. Ågotnes, P. Harrenstein, W. van der Hoek, M. Wooldridge, Boolean games with epistemic goals, in:

Logic, Rationality, and Interaction, Vol. 8196 of LNCS, Springer, 2013, pp. 1–14.
[10] D. Dubois, H. Prade, Epistemic entrenchment and possibilistic logic, Artif. Intell. 50 (2) (1991) 223–239.
[11] A. Brandenburger, On the existence of a ‘complete’ possibility structure, in: M. Basili, N. Dimitri,1060

I. Gilboa (Eds.), Cognitive Processes and Economic Behavior, Routledge, 2003, pp. 30–34.
[12] J. Chen, S. Micali, R. Pass, Tight revenue bounds with possibilistic beliefs and level-k rationality,

Econometrica 83 (4) (2015) 1619–1639.
[13] D. Dubois, H. Prade, Possibility Theory, Plenum Press, New York (NY), 1988.
[14] P. Dunne, W. van der Hoek, S. Kraus, M. Wooldridge, Cooperative Boolean games, in: Proc. AAMAS,1065

Vol. 2, IFAAMAS, 2008, pp. 1015–1022.
[15] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, Compact preference representation for Boolean games,

in: Proc. PRICAI, Springer-Verlag, 2006, pp. 41–50.
[16] E. Marchioni, M. Wooldridge,  Lukasiewicz games: A logic-based approach to quantitative strategic

interactions, ACM Transactions on Computational Logic 16 (4) (2015) 33:1–33:44.1070

[17] E. Bonzon, M.-C. Lagasquie-Schiex, J. Lang, Effectivity functions and efficient coalitions in Boolean
games, Synthese 187 (2012) 73–103.

[18] D. Dubois, H. Fargier, H. Prade, Beyond min aggregation in multicriteria decision: (ordered) weighted
min, discri-min, leximin, in: The ordered weighted averaging operators, Springer, 1997, pp. 181–192.

[19] D. Dubois, H. Prade, Possibilistic logic: a retrospective and prospective view, Fuzzy Sets and Systems1075

144 (2004) 3–23.
[20] H. J. Levesque, All I know: A study in autoepistemic logic, Artificial Intelligence 42 (1990) 263 – 309.
[21] T. Schelling, The strategy of conflict, Oxford University Press, 1960.
[22] J. C. Harsanyi, Games with incomplete information played by bayesian players part i, Management

Science 14 (1968) 159–182.1080

[23] J. C. Harsanyi, Games with incomplete information played by bayesian players part ii, Management
Science 14 (1968) 320–334.

[24] J. C. Harsanyi, Games with incomplete information played by bayesian players part iii, Management
Science 14 (1968) 486–502.

[25] S. Schockaert, H. Prade, Solving conflicts in information merging by a flexible interpretation of atomic1085

propositions, Artif. Intell. 175 (11) (2011) 1815–1855.
[26] S. De Clercq, K. Bauters, S. Schockaert, M. Mihaylov, A. Nowé, M. De Cock, Exact and heuristic
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