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Abstract

Since the introduction of the stable marriage problem (SMP) by Gale and Shapley (1962),
several variants and extensions have been investigated. While this variety is useful to
widen the application potential, each variant requires a new algorithm for finding the
stable matchings. To address this issue, we propose an encoding of the SMP using answer
set programming (ASP), which can straightforwardly be adapted and extended to suit
the needs of specific applications. The use of ASP also means that we can take advantage
of highly efficient off-the-shelf solvers. To illustrate the flexibility of our approach, we
show how our ASP encoding naturally allows us to select optimal stable matchings, i.e.
matchings that are optimal according to some user-specified criterion. To the best of our
knowledge, our encoding offers the first exact implementation to find sex-equal, minimum
regret, egalitarian or maximum cardinality stable matchings for SMP instances in which
individuals may designate unacceptable partners and ties between preferences are allowed.

KEYWORDS: Answer Set Programming, Logic Rules, Stable Marriage Problem, Optimal
Stable Matchings

1 Introduction

The stable marriage problem (SMP) is a well-known matching problem introduced

by Gale and Shapley (1962). The input of an SMP instance consists of (i) a set

of n men and n women, (ii) for each man a ranking of the women as preferred
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partners, and (iii) for each woman a ranking of the men as preferred partners.

A blocking pair of an SMP instance consists of a man and a woman who are in

different marriages but both prefer each other to their actual partners. Given the

problem, one can compute a stable matching or stable set of marriages, which is

defined as a set of n couples (marriages) such that there are no blocking pairs.

Due to its practical relevance, countless variants on the SMP have been investi-

gated, enabling a wider range of applications. Examples of such applications include

the kidney-exchange problem (Irving 2007), which matches donors in incompatible

donor-recipient pairs to compatible recipients in other incompatible pairs and vice

versa, and the hospital-resident problem (Manlove et al. 2002), which matches res-

idents to the free positions in hospitals. In 2012, Roth and Shapley won the Nobel

Prize for Economics for their theory of stable allocations and the practice of market

design, which directly resulted from an application of the SMP.

In the literature, typically each time a new variant or generalization of the SMP or

a different optimality criterion is considered, a new algorithm is developed; see e.g.

(Gusfield 1987; Irving et al. 1987; McDermid and Irving 2012), or (Manlove 2013)

for an overview. In this paper, we propose to use answer set programming (ASP) as

a general vehicle for modeling a large class of extensions and variations of the SMP.

We show how ASP encodings can be used to compute stable matchings, and how this

encoding can be extended to compute optimal stable matchings. Although the SMP

has been widely investigated, and efficient approximation or exact algorithms are

available for several of its variants (Iwama et al. 2010; McDermid and Irving 2012),

to the best of our knowledge, our encoding offers the first exact implementation to

find sex-equal, minimum regret, egalitarian or maximum cardinality stable match-

ings for SMP instances with unacceptable partners and ties (see below).

In this paper, we will consider two well-known adaptions of the SMP. First, we will

consider problem instances in which every person can specify a set of unacceptable

partners. The second alteration consists of allowing ties in the preferences, i.e. one

can be indifferent between some possible partners. In the literature, the SMP variant

with unacceptable partners – or, equivalently, with incomplete preference lists – is

abbreviated as SMI. The variant with ties is denoted as SMT and the variant which

allows both extensions as SMTI. Note that the original SMP is a special case of

the SMTI, i.e. the set of unacceptable partners is empty for each man and woman,

and there are no ties. Therefore, our paper focusses on the SMTI variant, as it is

the most general one.

Another way to generalize the SMP is by introducing optimality criteria for

stable matchings. This is motivated by the fact that, if multiple stable match-

ings exist, some may be more interesting than others. In this paper, we focus on

sex-equality, minimum regret, egalitarity and maximum cardinality of the stable

matchings, as these are commonly investigated optimality criteria in the match-

ing literature. Note, however, that there exist several other optimality criteria

in the context of matchings, such as popularity (Gärdenfors 1975), Pareto opti-

mality (Gale and Sotomayor 1985; Roth and Sotomayor 1990) or profile-based no-

tions such as rank-maximum (Irving 2003), greedy maximum and generous max-
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imum (Irving 2003). As this list is non-exhaustive, we refer the interested reader

to (Manlove 2013) for an overview.

The structure of the paper is as follows. First we give some background about the

SMP and ASP in Section 2. Then we introduce our encoding of the SMTI with ASP

and prove its correctness in Section 3.1. To illustrate the flexibility of the approach,

we show how it can be used to tackle three-dimensional stable matching problems

in Section 3.2. In Section 4, we first discuss several optimality criteria and then

extend the encoding from Section 3.1, enabling us to find optimal stable matchings.

We show how optimal stable matchings of an SMTI instance can be found by solving

the corresponding induced disjunctive ASP program and prove the soundness of

our approach. This paper is an extended version of (De Clercq et al. 2013) and

additionally provides detailed examples, complete correctness proofs and an ASP

encoding of the three-dimensional stable matching problem. The three-dimensional

stable matching problem is very important for practical applications, such as the

kidney exchange program (Biró and McDermid 2010).

2 Background

2.1 The Stable Marriage Problem

To solve the original SMP, Gale and Shapley (Gale and Shapley 1962) constructed

an iterative algorithm —known as the Gale-Shapley algorithm, G-S algorithm or

deferred-acceptance algorithm— to compute a particular stable matching of an

SMP instance. The algorithm works as follows: in round 1 every man proposes to

his first choice of all women. A woman, when being proposed, then rejects all men

but her first choice among the subset of men who proposed to her. That first choice

becomes her temporary husband. In the next rounds, all rejected men propose to

their first choice among the subset of women by whom they were not rejected yet,

regardless of whether this woman already has a temporary husband. Each woman,

when being proposed, then rejects all men but her first choice among the subset

of men who just proposed to her and her temporary mate. This process continues

until all women have a husband. This point, when everyone has a partner, is always

reached after a polynomial number of steps and the corresponding set of marriages

is stable (Gale and Shapley 1962). It should be noted, however, that only one of

the potentially exponentially many stable matchings is found in this way.

The classical SMP can be generalized by (i) allowing men and women to point out

unacceptable partners, i.e. exclude them from their preference list and (ii) dropping

the restriction that the number of men n equals the number of women p. In this

variant, men and women can remain single in a stable matching. Intuitively, one

prefers remaining single over being matched with an unacceptable partner. This

variant is also referred to as the SMP with incomplete preference lists, abbreviated

as SMI. A stable matching for an SMI instance always exists and can be found in

polynomial time (Roth and Sotomayor 1990) by a slightly modified G-S algorithm.

As we focus on an extension of the SMI, we refer to the online appendix for the

formal definitions of the classical SMP and the SMI.
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The SMI variant can further be generalized by additionally allowing ties in the

preference lists. For this variant (SMTI) there are several ways to define stability,

but we will use the notion of weak stability (Irving 1994). We denote a set of men

as M = {m1, . . . ,mn} and a set of women W = {w1, . . . , wp}. A set of marriages

or a matching is a collection of man-woman pairs and singles (persons paired to

themselves) such that every man and every woman occurs in just one pair.

Definition 1 (SMTI )

An instance of the SMTI is a pair (SM , SW ) with SM = {σ1
M , . . . , σn

M} and SW =

{σ1
W , . . . , σ

p
W }. For every i ∈ {1, . . . , n}, σi

M is a list of disjoint subsets of {1, . . . , p}.

Symmetrically σi
W is a list of disjoint subsets of {1, . . . , n} for every i ∈ {1, . . . , p}.

We call σi
M and σi

W the preferences of man mi and woman wi respectively and

we denote the length of the list σi
M as |σi

M |. If k ∈ σi
M (j), woman wk is in man

mi’s j
th most preferred group of women. All the women in that group are equally

preferred by mi. The case k ∈ σi
W (j) is similar. If there is no l such that j ∈ σi

M (l),

woman wj is an unacceptable partner for man mi, and similarly when there is no

l such that j ∈ σi
W (l). For every k in the set σi

M (|σi
M |), man mi equally prefers

staying single to being paired to woman wk, and symmetrically for the preferences

of a woman wi. This is the only set in σi
M that might be empty, and similar for

σi
W . Man m and woman w form a blocking pair in a set of marriages S if m strictly

prefers w to his partner in S and w strictly prefersm to her partner in S. A blocking

individual in S is a person who stricly prefers being single to being paired to his

partner in S. A weakly stable matching is a set of marriages without blocking pairs

or individuals.

A weakly stable matching always exists for an instance of the SMTI and it can be

found in polynomial time by arbitrarily breaking the ties (Iwama and Miyazaki 2008).

However, as opposed to the SMI variant, the number of matched persons is no longer

constant for every stable matching in this variant.

We introduce the following notations:

acceptableiM = σi
M (1) ∪ σi

M (2) ∪ . . . ∪ σi
M (|σi

M | − 1)
︸ ︷︷ ︸

= preferred i
M

∪ σi
M (|σi

M |)
︸ ︷︷ ︸

= neutraliM

Furthermore unacceptableiM = {1, . . . , p} \ acceptableiM . We define the ordering

≤mi

M on {wj | j ∈ acceptableiM} ∪ {mi} as x ≤mi

M y iff mi prefers person x at least

as much as person y. Note that mi is included in its own preference ordering to

encode the possibility of staying single. The strict ordering <mi

M is defined in the

obvious way and analogous notations are used for σj
W .

Example 1

Suppose M = {m1, m2}, W = {w1, w2, w3, w4} and SM = {σ1
M = ({1, 3}, {4}), σ2

M

= ({2, 3}, {})}. Hence manm1 prefers women w1 and w3 to woman w4. There is a tie

between woman w1 and w3 as well as between woman w4 and staying single. Woman

w2 is unacceptable for man m1. Man m2 prefers woman w2 and w3 to staying

single, but finds w1 and w4 unacceptable. It holds that w1 <m1

M m1, i.e. m1 prefers
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marrying w1 over staying single, acceptable1M = {1, 3, 4}, preferred1
M = {1, 3},

neutral1M = {4} and unacceptable1M = {2}.

2.2 Answer Set Programming

Answer set programming or ASP is a form of declarative programming (Brewka et al. 2011).

Its transparence, elegance and ability to deal with ΣP
2 -complete problems make it

an attractive method for solving combinatorial search and optimization problems.

An ASP program is a finite collection of first-order rules

A1 ∨ . . . ∨ Ak ← B1, . . . , Bm, not C1, . . . , not Cn

where A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn are predicates, possibly negated by ¬,

and not is the negation-as-failure operator, whose meaning is explained below.

The semantics are defined by the ground version of the program, consisting of

all ground instantiations of the rules w.r.t. the constants that appear in it (see e.g.

(Brewka et al. 2011) for a good overview). This grounded program is a propositional

ASP program. The building blocks of these programs are atoms, literals and rules.

The most elementary are atoms, which are propositional variables that can be

true or false. A literal is an atom or a negated atom, denoted with ¬. Beside

strong negation, ASP uses a special kind of negation, namely negation-as-failure

(naf), denoted with ‘not’. For a literal a we call ‘not a’ the naf-literal associated

with a. The extended literals consist of all literals and their associated naf-literals.

A disjunctive rule has the following form

a1 ∨ . . . ∨ ak ← b1, . . . , bm, not c1, . . . , not cn

where a1, . . . , ak, b1, . . . , bm, c1, . . . , cn are literals from a fixed set L, determined

by a fixed set A of atoms. We call a1 ∨ . . . ∨ ak the head of the rule while the

set of extended literals b1, . . . , bm, not c1, . . ., not cn is called the body. The rule

above intuitively encodes that a1, a2, . . . or ak is true when we have evidence that

b1, . . . , bm are true and we have no evidence that at least one of c1, . . . , cn is true.

When a rule has an empty body, we call it a fact ; when the head is empty, we speak

of a constraint. A rule without occurrences of not is called a simple disjunctive rule.

A simple disjunctive ASP program is a finite collection of simple disjunctive rules

and similarly a disjunctive ASP program P is a finite collection of disjunctive rules.

If each rule head consists of at most one literal, we speak of a normal ASP program.

We define an interpretation I of a disjunctive ASP program P as a subset of L.

An interpretation I satisfies a simple disjunctive rule a1 ∨ . . . ∨ ak ← b1, . . . , bm

when a1 ∈ I or a2 ∈ I or . . . or ak ∈ I or {b1, . . . , bm} 6⊆ I. An interpreta-

tion which satisfies all rules of a simple disjunctive program is called a model

of that program. An interpretation I is an answer set of a simple disjunctive

program P iff it is a minimal model of P , i.e. no strict subset of I is a model

of P (Gelfond and Lifschitz 1988). The reduct PI of a disjunctive ASP program

P w.r.t. an interpretation I is defined as the simple disjunctive ASP program

PI = {a1 ∨ . . . ∨ ak ← b1, . . . , bm | (a1 ∨ . . . ∨ ak ← b1, . . . , bm, not c1, . . . , not cn) ∈
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P , {c1, . . . , cn} ∩ I = ∅}. An interpretation I of a disjunctive ASP program P is an

answer set of P iff I is an answer set of PI .

Example 2

Let P be the ASP program with the following 4 rules:

man(john)←, person(john)←, person(fiona)←

woman(X) ∨ child(X)← person(X), notman(X)

The first 3 rules are facts; hence their heads will be in any answer set. The fourth

rule encodes that any person who is not a man, is a woman or child. The latter rule

is grounded to 2 rules in whichX is resp. replaced by john and fiona. We check that

the interpretation I = {man(john), woman(fiona), person(john), person(fiona)}

is an answer set of the ground version of P by computing the reduct PI . As the

grounded rule with X = john is deleted since man(john) is in I, PI is:

man(john)←, person(john)←, person(fiona)←

woman(fiona) ∨ child(fiona)← person(fiona)

It is clear that I is a minimal model of this simple program, so I is an answer

set of P . By replacing woman(fiona) by child(fiona) in I, another answer set is

obtained.

To automatically compute the answer sets of the programs in this paper, we have

used the ASP solver DLV (www.dlvsystem.com), due to its ability to handle predi-

cates, disjunction and numeric values, with built-in aggregate functions (Faber et al. 2008).

The numeric values are only used for grounding.

3 Modeling the Stable Marriage Problem in ASP

3.1 Modeling the SMTI in ASP

In this section we model the SMTI, using ASP. A few proposals of using non-

monotonic reasoning for modeling the SMP have already been described in the

literature. For instance, in (Marek et al. 1990) a specific variant of the SMP is men-

tioned (in which boys each know a subset of a set of girls and want to be matched

to a girl they know) and in (Dung 1995) an abductive program is used to find a

stable matching of marriages in which two fixed persons are paired, with strict,

complete preference lists. To the best of our knowledge, beyond a few specific ex-

amples, no comprehensive study has been made of using ASP or related paradigms

in this context. In particular, the generality of our ASP framework for weakly sta-

ble matchings of SMTI instances allows to easily adjust the encoding to variants of

the SMP, such as the stable roommate problem (Gale and Shapley 1962), in which

matches need to be found within one group instead of between two groups, or

the three-dimensional stable matching problem (Ng and Hirschberg 1991), which

matches triples between three groups instead of pairs between two.

The expression accept(m,w) denotes that a man m and a woman w accept each

www.dlvsystem.com
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other as partners. The predicate manpropose(m,w) expresses that man m is will-

ing to propose to woman w and analogously womanpropose(m,w) expresses that

woman w is willing to propose to man m. Inspired by the Gale-Shapley algorithm,

we look for an ASP formalization to find the stable matchings.

Definition 2 (ASP program induced by SMTI )

The ASP program P induced by an instance ({σ1
M , . . . , σn

M}, {σ
1
W , . . . , σ

p
W }) of the

SMTI is the program containing for every i ∈ {1, . . . , n}, j ∈ {1, . . . , p} the following

rules:

accept(mi, wj)← manpropose(mi, wj), womanpropose(mi, wj) (1)

accept(mi,mi)← {not accept(mi, wk) | k ∈ acceptableiM} (2)

accept(wj, wj)← {not accept(mk, wj) | k ∈ acceptable
j
W} (3)

and for every i ∈ {1, . . . , n}, j ∈ acceptableiM :

manpropose(mi, wj)← {not accept(mi, x) |x ≤
mi

M wj and wj 6= x} (4)

and for every j ∈ {1, . . . , p}, i ∈ acceptable
j
W :

womanpropose(mi, wj)← {not accept(x,wj) |x ≤
wj

W mi and mi 6= x} (5)

Intuitively (1) means that a man and woman accept each other as partners if they

propose to each other. Due to (2), a man accepts himself as a partner (i.e. stays

single) if no woman in his preference list is prepared to propose to him. Rule (4)

states that a man proposes to a woman if he is not paired to a more or equally

preferred woman. For j ∈ neutraliM the body of (4) contains not accept(mi,mi).

No explicit rules are stated about the number of persons someone can propose to or

accept but as we will see below, in Proposition 1, this is unnecessary. Note that, for

k = max(n, p), the number of grounded rules in the induced ASP program is O(k2).

We now illustrate our approach with an example.

Example 3

Consider the following instance (SM , SW ) of the SMTI. Let M = {m1,m2} and

W = {w1, w2, w3}. Furthermore:

σ1
M = ({1}, {2, 3}, {})

σ2
M = ({2}, {1})

σ1
W = ({1, 2}, {})

σ2
W = ({1}, {})

σ3
W = ({2}, {1}, {})

The ASP program induced by this SMTI instance is:

accept(X,Y )← manpropose(X,Y ), womanpropose(X,Y )

manpropose(m1, w1)←

manpropose(m1, w2)← not accept(m1, w1), not accept(m1, w3)

manpropose(m1, w3)← not accept(m1, w1), not accept(m1, w2)

accept(m1,m1)← not accept(m1, w1), not accept(m1, w2),

not accept(m1, w3)
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manpropose(m2, w2)←

manpropose(m2, w1)← not accept(m2, w2), not accept(m2,m2)

accept(m2,m2)← not accept(m2, w2), not accept(m2, w1)

womanpropose(m1, w1)← not accept(m2, w1)

womanpropose(m2, w1)← not accept(m1, w1)

accept(w1, w1)← not accept(m1, w1), not accept(m2, w1)

womanpropose(m1, w2)←

accept(w2, w2)← not accept(m1, w2)

womanpropose(m2, w3)←

womanpropose(m1, w3)← not accept(m2, w3)

accept(w3, w3)← not accept(m1, w3), not accept(m2, w3)

If we run the program in DLV, we get three answer sets, containing respectively:

• {accept(m1, w3), accept(m2, w1), accept(w2, w2)},

• {accept(m1, w2), accept(m2, w1), accept(w3, w3)},

• {accept(m1, w1), accept(m2,m2), accept(w2, w2), accept(w3, w3)}.

These answer sets correspond to the three weakly stable matching of marriages of

this SMTI instance, namely {(m1, w3), (m2, w1), (w2, w2)}, {(m1, w2), (m2, w1),

(w3, w3)} and {(m1, w1), (m2,m2), (w2, w2), (w3, w3)}.

The following proposition states that our ASP encoding is sound, i.e. that there

is a bijective correspondence between the answer sets of the induced program and

the weak stable matchings of the SMTI. The complete proof is provided in the

online appendix.

Proposition 1

Let (SM , SW ) be an instance of the SMTI and let P be the corresponding ASP

program. If I is an answer set of P , then a weakly stable matching for (SM , SW ) is

given by {(x, y) | accept(x, y) ∈ I}. Conversely, if {(x1, y1), . . ., (xk, yk)} is a weakly

stable matching for (SM , SW ) then P has the following answer set I:

{manpropose(xi, y) | i ∈ {1, . . . , k}, xi ∈M, y <xi

M yi ∨ y = yi 6= xi}

∪{womanpropose(x, yi) | i ∈ {1, . . . , k}, yi ∈W,x <
yi

W xi ∨ x = xi 6= yi}

∪{accept(xi, yi) | i ∈ {1, . . . , k}}

A pair (m,w) is stable if there exists a stable matching that contains (m,w).

In (Manlove et al. 2002) it is shown that the decision problem ‘is the pair (m,w)

stable?’ for a given SMTI instance is an NP-complete problem, even in the absence

of unacceptability. It is straightforward to see that we can reformulate this decision

problem as ‘does there exist an answer set of the induced normal ASP program P

which contains the literal accept(m,w)?’ (i.e. brave reasoning), which is known to be

an NP-complete problem (Baral 2003). Thus our model forms a suitable framework

for these kind of decision problems concerning the SMTI.
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3.2 Modeling the 3-Dimensional SMTI in ASP

To illustrate further the flexibility of our ASP approach, we consider a variant of the

SMP and show how small adaptations of the ASP encoding can solve this variant.

Extending the SMP by adding another dimension to the problem was first proposed

in (Knuth 1976). We work out the three-dimensional SMTI, where n men are to

be matched with p women and r children. Definition 1 can straightforwardly be

generalized to a three-dimensional instance (SM , SW , SC), in which preference lists

of the men are defined over the set of woman-child pairs and similarly the women

have preferences over man-child pairs and the children have preferences over man-

woman pairs. In the three-dimensional case, σi
M becoms a list of disjoint subsets of

{1, . . . , p}×{1, . . . , r}, and analogously for σj
W and σk

C . Similarly as before, we can

define the notions of acceptableiM etc. Note that the orderings ≤mi

M , ≤
wj

W and ≤ck
C

are resp. defined on pairs in W ×C, M ×C and M ×W . A stable matching is now

defined as a set of man-woman-child triples and singles, with the properties that no

man, woman and child can be found such that each of them prefers the pair formed

by the others above their current mates in the matching and no person prefers

being single to being matched with its current mates. The practical relevance of

this problem is pointed out in (Biró and McDermid 2010).

Extending the ASP program from Definition 2, we can write an ASP program

induced by an instance of the three-dimensional matching problem.

Definition 3 (ASP program induced by 3D SMTI )

The ASP program P induced by an instance ({σ1
M , . . . , σn

M}, {σ
1
W , . . . , σ

p
W }, {σ

1
C ,

. . . , σr
C}) of the 3-dimensional SMTI is the program containing the following rules

for every i ∈ {1, . . . , n}, j ∈ {1, . . . , p} and k ∈ {1, . . . , r}:

accept(mi, wj , ck)← manprop(mi, wj , ck), womprop(mi, wj , ck),

childprop(mi, wj , ck)

accept(mi,mi,mi)← {not accept(mi, wu, cv) | (u, v) ∈ acceptableiM}

accept(wj, wj , wj)← {not accept(mu, wj , cv) | (u, v) ∈ acceptable
j
W}

accept(ck, ck, ck)← {not accept(mu, wv, ck) | (u, v) ∈ acceptablekC}

and for every i ∈ {1, . . . , n} and (j, k) ∈ acceptableiM :

manprop(mi, wj , ck)← {not accept(mi, x, y) | (x, y) ≤
mi

M (wj , ck); (wj , ck) 6= (x, y)}

and for every j ∈ {1, . . . , p} and (i, k) ∈ acceptable
j
W :

womprop(mi, wj , ck)← {not accept(x,wj, y) | (x, y) ≤
wj

W (mi, ck); (mi, ck) 6= (x, y)}

and for every k ∈ {1, . . . , r} and (i, j) ∈ acceptable
j
C:

childprop(mi, wj , ck)← {not accept(x, u, ck) | (x, y) ≤
ck
C (mi, wj); (mi, wj) 6= (x, y)}

Ng and Hirschberg (Ng and Hirschberg 1991) proved that deciding whether a stable

matching exists for the three-dimensional problem – in the absence of unaccept-

ability and ties – is an NP-complete problem. Completely analogously as for the

two-sided SMP, one can prove that this encoding yields a bijective correspondence
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between the answer sets of the ASP program and the stable matchings of the three-

dimensional matching problem. Note that, for k = max(n, p, r), the number of

grounded rules in the induced ASP program is O(k3).

4 Selecting Optimal Stable Matchings

4.1 Notions of Optimality of Stable Matchings

When several stable matchings can be found for an instance of the SMP, some may

be more interesting than others. The stable matching found by the G-S algorithm is

M-optimal (Roth and Sotomayor 1990), i.e. every man likes this set at least as well

as any other stable matching. Exchanging the roles of men and women in the G-S

algorithm yields a W-optimal stable matching (Gale and Shapley 1962), optimal

from the women’s point of view.

While some applications may require us to favour either the men or the women,

in others it makes more sense to treat both parties equally. To formalize some

commonly considered notions of fairness and optimality w.r.t. the SMP, we define

the cost cx(y) of being matched with y for an individual x, where cx(y) = k if y is

x’s kth preferred partner. More precisely, for a man mi, we define cmi
(y) = |{z :

z <mi

M y}|+1 for every y ∈ acceptableiM ; for a woman wj , cwj
is defined analogously.

So in case of ties we assign the same list position to equally preferred partners, as

illustrated in Example 4.

Example 4

Let x = m1 be a man with preference list σ1
M = ({1}, {2, 3}, {4}) then cx(w1) = 1,

cx(w2) = cx(w3) = 2 and w4 yields cx(w4) = 4. The cost for being single would be

4, i.e. cx(m1) = 4, since m1 prefers women w1, w2 and w3 to being single, but is

indifferent between being paired to w4 or staying single.

Definition 4 (Optimal Stable Matchings)

Let S be a set of marriages and let S(x) denote the partner of x in S.

• The sex-equality cost of S is csexeq(S) = |
∑

x∈M cx(S(x))−
∑

x∈W cx(S(x))|,
• the egalitarian cost of S is cweight(S) =

∑

x∈M∪W cx(S(x)),

• the regret cost of S is cregret(S) = maxx∈M∪W cx(S(x)), and

• the cardinality cost of S is csingles(S) = |{z : (z, z) ∈ S}|.

S is a sex-equal stable matching iff S is a stable matching with minimal sex-equality

cost. Similarly, S is an egalitarian (resp. minimum regret, maximum cardinality)

stable matching iff S is a stable matching with minimal egalitarian (resp. regret or

cardinality) cost.

A sex-equal stable matching assigns an equal importance to the preferences of the

men and women, i.e. the men are as pleased with the matching as the women. An

egalitarian stable matching is a stable matching in which the preferences of every

individual are considered to be equally important, i.e. it minimizes the difference in

happiness of all the men and women. In (Xu and Li 2011) the use of an egalitarian

stable matching is proposed to optimally match virtual machines (VM) to servers in
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order to improve cloud computing by equalizing the importance of migration over-

head in the data center network and VM migration performance. A minimum regret

stable matching is optimal for the person who is worst off, i.e. there does not exist

a stable matching such that the person who is most displeased with the matching

is happier than the most displeased person in the minimum regret stable matching.

A maximal or minimal cardinality stable matching is a stable matching with resp.

as few or as many singles as possible. Examples of practical applications include

an efficient kidney exchange program (Roth et al. 2005), which matches donors of

incompatible pairs to recipients of other incompatible pairs and vice versa, and

the National Resident Matching Program (www.nrmp.org) (Manlove et al. 2002),

which matches healthcare professionals to graduate medical education and advanced

training programs. Maximizing cardinality guarantees that as many recipients as

possible will get a compatible donor and as many healthcare professionals as pos-

sible will get a position.

Remark 1

It might be somewhat confusing that the term utilitarian is more frequently used

in sociological and economical contexts for an optimization of the overall happiness

(here called egalitarian), while egalitarian is more used for an optimization which

minimizes the unhappiness of the individuals (tending more to minimum regret).

However, we will use the cost terms as defined above, since these are standard in

the context of the SMP.

For an overview of literature results concerning the computational complexity of

finding optimal stable matchings in the SMP, SMI, SMT and SMTI, we refer to the

online appendix.

Note that other notions of preferred matchings have been described in the litera-

ture, such as popularity (Gärdenfors 1975), Pareto optimality (Gale and Sotomayor 1985;

Roth and Sotomayor 1990) or profile-based notions such as rank-maximum (Irving 2003),

greedy maximum and generous maximum (Irving 2003). For more details on these

and other optimality criteria, we refer the interested reader to (Manlove 2013) for

an overview.

4.2 Finding Stable Matchings using Disjunctive Naf-free ASP

As we discuss in Section 4.3, we can extend our ASP encoding of the SMTI such that

the optimal stable matchings correspond to the answer sets of an associated ASP

program. In particular, we use the saturation technique (Eiter and Gottlob 1995)

to filter non-optimal answer sets. Intuitively, the idea is to create a program with

3 components: (i) a first part describing the solution candidates, (ii) a second part

also describing the solution candidates since comparison of solutions requires mul-

tiple solution candidates within the same answer set whereas the first part in itself

produces one solution per answer set, (iii) a third part comparing the solutions

described in the first two parts and selecting the preferred solutions by saturation.

It is, however, known that the presence of negation-as-failure can cause problems

when applying saturation. This is due to the fact that rules containing naf-literals
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can be altered in the reduct. To address this issue, we use saturation in combi-

nation with a disjunctive naf-free ASP program instead of the ASP program in

Definition 2. To this end, we use a SAT encoding (Janhunen 2004) of the ASP pro-

gram in Definition 2 and define a disjunctive naf-free ASP program in Definition 5

which selects particular models of the SAT problem.

Note that our original normal program is absolutely tight, i.e. there is no infinite

sequence l1, l2, . . . of literals such that for every i there is a program rule for which

li+1 is a positive body literal and li is in the head (Erdem and Lifschitz 2003). We

use the completion to derive an ASP encoding for finding optimal stable matchings.

The completion of a normal ASP program is a set of propositional formulas. For

every atom a with a← bodyi (i ∈ {1, . . . , k}) all the program rules with head a, the

propositional formula a ≡ body′1 ∨ . . .∨ body
′
k is in the completion of that program,

where body′i is the conjunction of literals derived from bodyi by replacing every

occurrence of ‘not’ with ‘¬’. If an atom a of the program does not occur in any

rule head, then a ≡⊥ is in the completion of the program. Similarly the completion

of the program contains the propositional formula ⊥≡ body′1 ∨ . . . ∨ body′l where

the disjunction extends over all the program constraints ← bodyi (i ∈ {1, . . . , l}).

Because our program is absolutely tight, we know that every propositional model

of the completion will correspond to an answer set of the original program and

vice versa (Erdem and Lifschitz 2003). When applied to the induced normal ASP

program in Definition 2, the completion contains the following formulas, for all

i ∈ {1, . . . , n} and j ∈ {1, . . . , p}:

accept(mi, wj) ≡ manpropose(mi, wj) ∧womanpropose(mi, wj),

accept(mi,mi) ≡
∧

k∈acceptablei
M

¬accept(mi, wk),

accept(wj , wj) ≡
∧

k∈acceptable
j

W

¬accept(mk, wj),

and for all i ∈ {1, . . . , n} and j ∈ acceptableiM :

manpropose(mi, wj) ≡
∧

x≤
mi
M

wj ,x 6=wj

¬accept(mi, x),

and similarly for all j ∈ {1, . . . , p} and i ∈ acceptable
j
W :

womanpropose(mi, wj) ≡
∧

x≤
wj

W
mi,x 6=mi

¬accept(x,wj),

and for all i ∈ {1, . . . , n} and j ∈ unacceptableiM :

manpropose(mi, wj) ≡⊥,

and similarly for all j ∈ {1, . . . , p} and i ∈ unacceptable
j
W :

womanpropose(mi, wj) ≡⊥ .

Using these formulas, which form the completion of the normal ASP program
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from Definition 2, we can define an equivalent disjunctive ASP program without

negation-as-failure.

Definition 5 (Induced disj. naf-free ASP program)

The disjunctive naf-free ASP programPdisj induced by an SMTI instance (SM , SW )

contains the following rules for every i ∈ {1, . . . , n}, j ∈ {1, . . . , p}:

¬accept(mi, wj) ∨manpropose(mi, wj)←

¬accept(mi, wj) ∨ womanpropose(mi, wj)←

accept(mi, wj) ∨ ¬manpropose(mi, wj) ∨ ¬womanpropose(mi, wj)←

For every i ∈ {1, . . . , n}, l ∈ unacceptableiM , j ∈ acceptableiM , x ≤mi

M wj , x 6= wj

Pdisj contains:
∨

k∈acceptablei
M

accept(mi, wk) ∨ accept(mi,mi)←

¬accept(mi,mi) ∨ ¬accept(mi, wj)←

¬manpropose(mi, wj) ∨ ¬accept(mi, x)←
∨

x≤
mi
M

wj ,x 6=wj

accept(mi, x) ∨manpropose(mi, wj)←

¬manpropose(mi, wl)←

and symmetrical for j ∈ {1, . . . , p} and womanpropose.

Note that, for k = max(n, p), the number of grounded rules in the induced naf-free

program is O(k3). The following lemma follows from the fact that the completion

corresponds to the original program (Erdem and Lifschitz 2003).

Lemma 1

Let P be the normal ASP program from Definition 2 and Pdisj the disjunctive ASP

program from Definition 5. It holds that for any answer set I of P there exists an

answer set Idisj of Pdisj such that the atoms of I and Idisj coincide. Conversely for

any answer set Idisj of Pdisj there exists an answer set I of P such that the atoms

of I and Idisj coincide.

4.3 ASP Program to Select Optimal Solutions

Let (SM , SW ) be an SMTI instance with SM = {σ1
M , . . . , σn

M} and SW = {σ1
W , . . . ,

σ
p
W }, and let Pnorm be the induced normal ASP program from Definition 2. Our

technique for extending this program to a program that can respectively optimize

for the sex-equality, egalitarian, minimum regret and maximum cardinality criterion

is in each case very similar. We start by explaining it for the case of sex-equality.

Our first step is to add a set of rules that compute the sex-equality cost of a set

of marriages. For every man mi and every x ∈ acceptableiM ∪ {mi} we use the

following rule to determine the cost for mi:

mancost(i, cmi
(x))← accept(mi, x) (6)
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and similarly for every wj and every x ∈ acceptable
j
W ∪ {wj}:

womancost(j, cwj
(x))← accept(x,wj) (7)

We also use the following rules with i ranging from 1 to n and j from 1 to p:

manweight(Z)← #sum{B,A : mancost(A,B)} = Z,#int(Z) (8)

womanweight(Z)← #sum{B,A : womancost(A,B)} = Z,#int(Z) (9)

sexeq(Z)← manweight(X), womanweight(Y ), Z = X − Y

sexeq(Z)← manweight(X), womanweight(Y ), Z = Y −X (10)

Note that #sum, #max, #int and #count are DLV aggregate functions (Faber et al. 2008).

The ‘A’ mentioned as variable in #sum indicates that a cost must be included for

every person (otherwise the cost is included only once when persons have the same

cost). Rule (8) determines the sum of the male costs and similarly (9) determines

the sum of the female costs. According to Definition 4 the absolute difference of

these values yields the sex-equality cost, as determined by rules (10). Since numeric

variables are restricted to positive integers in DLV, we omit conditions as ‘X ≥ Y ’

or ‘X < Y ’. The program Pnorm extended with rules (6) – (10) is denoted Psexeq
ext .

We construct a program Psexeq, composed by subprograms, that selects optimal

solutions. Let P ′
disj be the disjunctive naf-free ASP program, induced by the same

SMTI instance, in which a prime symbol is added to all literal names (e.g. accept

becomes accept′). Define a new program P ′sexeq
ext with all the rules of P ′

disj in which

every occurrence of ¬atom is changed into natom for every atom atom, i.e. replace

all negation symbols by a prefix ‘n’. For every occurring atom atom in P ′sexeq
ext , add

the following rule to exclude non-consistent solutions:

sat← atom, natom (11)

For instance, the rule sat← accept′(m1, w1), naccept
′(m1, w1) is added. Finally add

rules (6) – (10) with prime symbols to the literal names to P ′sexeq
ext but replace rule

(8) and rule (9) by:

mansum′(n,X)← mancost′(n,X)

mansum′(J, Z)← mansum′(I,X),mancost′(J, Y ), Z = X + Y,#succ(J, I)

manweight′(Z)← mansum′(1, Z)

womansum′(p,X)← womancost′(p,X)

womansum′(J, Z)← womansum′(I,X), womancost′(J, Y ), Z = X + Y,

#succ(J, I)

womanweight′(Z)← womansum′(1, Z) (12)

The DLV aggregate function #succ(J, I) is true whenever J+1 = I. We replace the

rules with the aggregate function #max by these rules to make sure the saturation

happens correctly. When saturation is used, the DLV aggregate functions #max,

#sum and #count would not yield the right criterion values. Moreover, DLV does

not accept these aggregate functions in saturation because of the cyclic dependency

of literals within the aggregate functions created by the rules for saturation. These
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adjusted rules, however, will not pose any problems because of the successive way

they compute the criterion values. This becomes more clear in the proof of Proposi-

tion 2. We define the ASP program Psexeq as the union of Psexeq
ext , P ′sexeq

ext and Psat.

The ASP program Psat contains the following rules to select minimal solutions

based on sex-equality:

sat← sexeq(X), sexeq′(Y ), X ≤ Y (13)

← not sat (14)

mancost′(X,Y )← sat,manargcost′1(X),manargcost′2(Y )

womancost′(X,Y )← sat, womanargcost′1(X), womanargcost′2(Y ) (15)

manpropose′(X,Y )← sat,man(X), woman(Y )

womanpropose′(X,Y )← sat,man(X), woman(Y )

accept′(X,X)← sat,man(X)

accept′(X,X)← sat, woman(X)

accept′(X,Y )← sat,man(X), woman(Y ) (16)

and analogous to (16) a set of rules with prefix ‘n’ for the head predicates. Finally we

add the factsmanargcost′1(1..n)←,manargcost′2(1..(p+1))←, womanargcost′1(1..p)←,

womanargcost′2(1..(n + 1)) ←, man(x) ← for every man x and woman(x) ← for

every woman x to Psat. The rule manargcost′1(1..n) ← is DLV syntax for the n

facts manargcost′1(1) ←, . . . ,manargcost′1(n) ←. Intuitively the rules of Psat ex-

press the key idea of saturation. First every answer set is forced to contain the

atom sat by rule (14). Then the rules (15) – (16) and the facts make sure that

any answer set should contain all possible literals with a prime symbol that occur

in Psexeq. Rule (13) will establish that only optimal solutions will correspond to

minimal models and thus lead to answer sets. For any non-optimal solution, the

corresponding interpretation containing sat will never be a minimal model of the

reduct. It is formally proven in Proposition 2 below that Psexeq produces exactly

the stable matchings with minimal sex-equality cost.

Furthermore, only small adjustments to Psexeq are needed to create programs

Pweight, Pregret, and Psingles that respectively produce egalitarian, minimum regret

and maximum cardinality stable matchings. Indeed, the ASP program Pweight can

easily be defined as Psexeq in which the predicates sexeq and sexeq′ are respectively

replaced by weight and weight′ and the rules (10) are replaced by (17), determining

the egalitarian cost of Definition 4 as the sum of the male and female costs:

weight(Z)← manweight(X), womanweight(Y ), Z = X + Y (17)

Similarly the ASP program Pregret is defined as Psexeq in which the predicates

sexeq and sexeq′ are resp. replaced by regret and regret′ and rules (8) – (10) are

replaced by the following rules:

manregret(Z)← #max{B : mancost(A,B)} = Z,#int(Z) (18)

womanregret(Z)← #max{B : womancost(A,B)} = Z,#int(Z) (19)

regret(X)← manregret(X), womanregret(Y ), X > Y
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regret(Y )← manregret(X), womanregret(Y ), X ≤ Y (20)

Rule (18) determines the regret cost but only for the men. Similarly (19) determines

the regret cost for the women. The regret cost as defined in Definition 4 is the

maximum of these two values, determined by the rules in (20). Again we adjust

rules (18) and (19) for the program part P ′regret
ext by replacing them with a variant

based on the successor function:

manmax′(n,X)← mancost′(n,X)

manmax′(J,X)← manmax′(I,X),mancost′(J, Y ), X ≥ Y,#succ(J, I)

manmax′(J, Y )← manmax′(I,X),mancost′(J, Y ), X < Y,#succ(J, I)

manregret′(Z)← manmax′(1, Z)

womanmax′(p,X)← womancost′(p,X)

womanmax′(J,X)← womanmax′(I,X), womancost′(J, Y ), X ≥ Y,#succ(J, I)

womanmax′(J, Y )← womanmax′(I,X), womancost′(J, Y ), X < Y,#succ(J, I)

womanregret′(Z)← womanmax′(1, Z) (21)

Finally we define the ASP program Psingles as Psexeq in which the predicates

sexeq and sexeq′ are resp. replaced by singles and singles′. Furthermore we replace

rules (6) – (10) by (22), determining the number of singles:

singles(Z)← #count{B : accept(B,B)} = Z,#int(Z) (22)

This time we adjust rule (22) for the program part P ′singles
ext as follows:

single′(p+ i, 1)← accept′(mi,mi), single′(p+ i, 0)← naccept′(mi,mi)

single′(j, 1)← accept′(wj , wj), single′(j, 0)← naccept′(wj , wj)

singlesum′(n+ p,X)← single′(n+ p,X)

singlesum′(J, Z)← singlesum′(I,X), single′(J, Y ), Z = X + Y,#succ(J, I)

singles′(Z)← singlesum′(1, Z) (23)

Note that, for k = max(n, p), the number of grounded rules in the induced ASP

program is O(k3) for minimum regret and maximum cardinality, but O(k4) for sex-

equalness and egalitarity. The latter programs have a higher number of grounded

rules because of how the weights are counted in the first and second program part.

We illustrate our method with an example.

Example 5

We reconsider Example 3. This SMTI instance had 3 stable matchings of marriages:

• S1 = {accept(m1, w3), accept(m2, w1), accept(w2, w2)},
• S2 = {accept(m1, w2), accept(m2, w1), accept(w3, w3)},
• S3 = {accept(m1, w1), accept(m2,m2), accept(w2, w2), accept(w3, w3)}.

It is easy to compute the respective regret costs as cregret(S1) = 2 and cregret(S2) =

cregret(S3) = 3. The corresponding ASP program selecting this minimum regret

stable matching is the program consisting of the rules in Example 3 in addition to:

man(m1)←, man(m2)←,
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woman(w1)←, woman(w2)←, woman(w3)←

mancost(1, 1)← accept(m1, w1), womancost(1, 1)← accept(m1, w1)

mancost(1, 2)← accept(m1, w2), womancost(1, 1)← accept(m2, w1)

mancost(1, 2)← accept(m1, w3), womancost(1, 2)← accept(w1, w1)

mancost(1, 4)← accept(m1,m1), womancost(2, 1)← accept(m1, w2)

mancost(2, 2)← accept(m2, w1), womancost(2, 2)← accept(w2, w2)

mancost(2, 1)← accept(m2, w2), womancost(3, 2)← accept(m1, w3)

mancost(2, 2)← accept(m2,m2), womancost(3, 1)← accept(m2, w3)

womancost(3, 3)← accept(w3, w3)

manregret(Z)← #max{B : mancost(A,B)} = Z,#int(Z)

womanregret(Z)← #max{B : womancost(A,B)} = Z,#int(Z)

regret(X)← manregret(X), womanregret(Y ), X > Y

regret(Y )← manregret(X), womanregret(Y ), X <= Y

naccept′(M,W ) ∨manpropose′(M,W )← man(M),

woman(W )

naccept′(M,W ) ∨ womanpropose′(M,W )← man(M),

woman(W )

accept′(M,W ) ∨ nmanpropose′(M,W ) ∨ nwomanpropose′(M,W )← man(M),

woman(W )

accept′(m1, w1) ∨ accept′(m1, w2) ∨ accept′(m1, w3) ∨ accept′(m1,m1)←

accept′(m2, w1) ∨ accept′(m2, w2) ∨ accept′(m2,m2)←

naccept′(m1,m1) ∨ naccept′(m1, w1)←

naccept′(m1,m1) ∨ naccept′(m1, w2)←

naccept′(m1,m1) ∨ naccept′(m1, w3)←

naccept′(m2,m2) ∨ naccept′(m2, w1)←

naccept′(m2,m2) ∨ naccept′(m2, w2)←

accept′(m1, w1) ∨ accept′(m2, w1) ∨ accept′(w1, w1)←

accept′(m1, w2) ∨ accept′(w2, w2)←

accept′(m1, w3) ∨ accept′(m2, w3) ∨ accept′(w3, w3)←

naccept′(w1, w1) ∨ naccept′(m1, w1)←

naccept′(w1, w1) ∨ naccept′(m2, w1)←

naccept′(w2, w2) ∨ naccept′(m1, w2)←

naccept′(w3, w3) ∨ naccept′(m1, w3)←

naccept′(w3, w3) ∨ naccept′(m2, w3)←

nmanpropose′(m1, w2) ∨ naccept′(m1, w1)←

nmanpropose′(m1, w2) ∨ naccept′(m1, w3)←
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nmanpropose′(m1, w3) ∨ naccept′(m1, w1)←

nmanpropose′(m1, w3) ∨ naccept′(m1, w2)←

manpropose′(m1, w1)←

accept′(m1, w1) ∨ accept′(m1, w3) ∨manpropose′(m1, w2)←

accept′(m1, w1) ∨ accept′(m1, w2) ∨manpropose′(m1, w3)←

nmanpropose′(m2, w1) ∨ naccept′(m2, w2)←

nmanpropose′(m2, w1) ∨ naccept′(m2,m2)←

manpropose′(m2, w2)←

accept′(m2, w2) ∨ accept′(m2,m2) ∨manpropose′(m2, w1)←

nwomanpropose′(m1, w1) ∨ naccept′(m2, w1)←

nwomanpropose′(m2, w1) ∨ naccept′(m1, w1)←

accept′(m1, w1) ∨ womanpropose′(m2, w1)←

accept′(m2, w1) ∨ womanpropose′(m1, w1)←

womanpropose′(m1, w2)←

nwomanpropose′(m1, w3) ∨ naccept′(m2, w3)←

womanpropose′(m2, w3)←

accept′(m2, w3) ∨ womanpropose′(m1, w3)←

nmanpropose′(m2, w3)←

nwomanpropose′(m2, w2)←

sat← manpropose′(X,Y ), nmanpropose′(X,Y ),man(X),

woman(Y )

sat← womanpropose′(X,Y ), nwomanpropose′(X,Y ),

man(X), woman(Y )

sat← accept′(X,Y ), naccept′(X,Y ),man(X), woman(Y )

sat← accept′(X,X), naccept′(X,X),man(X)

sat← accept′(X,X), naccept′(X,X), woman(X)

mancost′(1, 1)← accept′(m1, w1), womancost′(1, 1)← accept′(m1, w1)

mancost′(1, 2)← accept′(m1, w2), womancost′(1, 1)← accept′(m2, w1)

mancost′(1, 2)← accept′(m1, w3), womancost′(1, 2)← accept′(w1, w1)

mancost′(1, 4)← accept′(m1,m1), womancost′(2, 1)← accept′(m1, w2)

mancost′(2, 2)← accept′(m2, w1), womancost′(2, 2)← accept′(w2, w2)

mancost′(2, 1)← accept′(m2, w2), womancost′(3, 2)← accept′(m1, w3)

mancost′(2, 2)← accept′(m2,m2), womancost′(3, 1)← accept′(m2, w3)

womancost′(3, 3)← accept′(w3, w3)

manmax′(2, X)← mancost′(2, X)

manmax′(J,X)← manmax′(I,X),mancost′(J, Y ), X >= Y,#succ(J, I)
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manmax′(J,X)← manmax′(I,X),mancost′(J, Y ), X >= Y,#succ(J, I)

manregret′(Z)← manmax′(1, Z)

womanmax′(3, X)← womancost′(3, X)

womanmax′(J,X)← womanmax′(I,X), womancost′(J, Y ), X >= Y,

#succ(J, I)

womanmax′(J,X)← womanmax′(I,X), womancost′(J, Y ), X >= Y,

#succ(J, I)

womanregret′(Z)← womanmax′(1, Z)

regret′(X)← manregret′(X), womanregret′(Y ), X > Y

regret′(Y )← manregret′(X), womanregret′(Y ), X <= Y

sat← regret(X), regret′(Y ), X <= Y

← not sat

manargcost′1(1..2)←, womanargcost′1(1..3)←

manargcost′2(1..4)←, womanargcost′2(1..3)←

mancost′(X,Y )← sat,manargcost′1(X),manargcost′2(Y )

womancost′(X,Y )← sat, womanargcost′1(X), womanargcost′2(Y )

manpropose′(X,Y )← sat,man(X), woman(Y )

nmanpropose′(X,Y )← sat,man(X), woman(Y )

womanpropose′(X,Y )← sat,man(X), woman(Y )

nwomanpropose′(X,Y )← sat,man(X), woman(Y )

accept′(X,Y )← sat,man(X), woman(Y )

accept′(X,X)← sat,man(X)

accept′(X,X)← sat, woman(X)

naccept′(X,Y )← sat,man(X), woman(Y )

naccept′(X,X)← sat,man(X)

naccept′(X,X)← sat, woman(X)

Computing the unique answer set of this disjunctive ASP program with DLV and

filtering it to the literals accept and regret, yields {accept(m2, w1), accept(m1, w3),

accept(w2, w2), regret(2)}, corresponding exactly to the minimum regret stable

matching S1 of the SMTI instance and the corresponding regret cost.

We prove that there exists a bijective correspondence between the answer sets

of the induced disjunctive ASP program and the optimal stable matchings of the

SMTI (see the online appendix).

Proposition 2

Let the criterion crit be an element of {sexeq, weight, regret, singles}. For every

answer set I of the program Pcrit induced by an SMTI instance the set SI =

{(m,w) | accept(m, w) ∈ I} forms an optimal stable matching of marriages w.r.t.

criterion crit and the optimal criterion value is given by the unique value vI for
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which crit(vI) ∈ I. Conversely for every optimal stable matching S = {(x1, y1), . . . ,

(xk, yk)} with optimal criterion value v there exists an answer set I of Pcrit such

that {(x, y) | accept(x, y) ∈ I} = {(xi, yi) | i ∈ {1, . . . , k}} and v is the unique value

for which crit(v) ∈ I.

Remark 2

If we remove from Psexeq the rules (9) – (10) and replace rule (13) by the rule

sat ← manweight(X), manweight′(Y ), X ≤ Y , then we obtain the M-optimal

stable matchings. Analogously we can obtain the W-optimal stable matchings.

If a criterion is to be maximized, the symbol ≤ in rule (13) is simply replaced

by ≥. E.g. for crit = singles we will get minimum cardinality stable matchings.

5 Conclusion

We have shown how ASP programs can be used to encode a number of variations

and generalizations of the SMP. Apart from the availability of efficient ASP solvers,

the main advantage of our approach is its flexibility, allowing us to find solutions

for a wide range of stable matching problems. We can, for instance, compute stable

matchings of variants such as the three-dimensional stable matching problem, as

well as select stable matchings based on optimality criteria, even for problems with

unacceptable partners and ties. We have illustrated our method for sex-equality,

egalitarity, minimum regret and maximum cardinality, but the approach can read-

ily be adapted to other optimality criteria (e.g. popular matchings) or to different

matching problems (e.g. the roommate problem). To the best of our knowledge,

no other exact algorithms exist to find an optimal stable matching for an SMP

instance with ties, regardless of the presence of unacceptability and regardless of

whether the optimality notion is sex-equality, egalitarity, minimum regret or maxi-

mum cardinality. Therefore, our encoding offers the first exact implementation for

solving the aforementioned problems.
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Manlove, D. 2013. Algorithmics of matching under preferences. Series on Theoretical
Computer Science, vol. 2. World Scientific Publishing.

Manlove, D., Irving, R., Iwama, K., Miyazaki, S., and Morita, Y. 2002. Hard
variants of stable marriage. Theoretical Computer Science 276, 1-2, 261–279.

Marek, V., Nerode, A., and Remmel, J. 1990. A theory of nonmonotonic rule systems
I. Ann. Math. Artif. Intell. 1, 241–273.

McDermid, E. and Irving, R. 2012. Sex-equal stable matchings: Complexity and exact
algorithms. Algorithmica, 1–26.

Ng, C. and Hirschberg, D. 1991. Three-dimensional stable matching problems. SIAM
Journal on Discrete Mathematics 4, 245–252.
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