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Abstract

Trust networks among users of a recommender system (RS) prove beneficial to the
quality and amount of the recommendations. Since trust is often a gradual phe-
nomenon, fuzzy relations are the pre-eminent tools for modeling such networks.
However, as current trust-enhanced RSs do not work with the notion of distrust,
they cannot differentiate unknown users from malicious users, nor represent incon-
sistency. These are serious drawbacks in large networks where many users are un-
known to each other and might provide contradictory information. In this paper, we
advocate the use of a trust model in which trust scores are (trust,distrust)-couples,
drawn from a bilattice that preserves valuable trust provenance information includ-
ing gradual trust, distrust, ignorance, and inconsistency. We pay particular atten-
tion to deriving trust information through a trusted third party, which becomes
especially challenging when also distrust is involved.
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1 Introduction

Collaboration, interaction and information sharing are the main driving forces
of the next generation of web applications referred to as ‘Web 2.0’ [18]. Well-
known examples of this emerging trend include weblogs (online diaries or jour-
nals for sharing ideas instantly), Friend-Of-A-Friend 1 (FOAF) files (machine-
readable documents describing basic properties of a person, including links
between the person and objects/people they interact with), wikis (web appli-
cations such as Wikipedia 2 that allow people to add and edit content col-
lectively) and social networking sites (virtual communities where people with
common interests can interact, such as dating sites or car addict forums).
In this paper, we focus specifically on recommender systems (RSs) [20], i.e.
applications that are designed to suggest items (books, movies, web pages,
travel packages, etc.) to users who might be interested in them, given some
information about users’ profiles and relationships between users. A classical
example is the system employed by Amazon 3 , which offers recommendations
like “Customers who bought this item also bought . . . ”

Apart from opportunities, collaboration also brings some reasons of concern.
As users can freely contribute new information, they affect application results
in an unpredicted, potentially abusive manner. As such, adequate controls are
required to warrant information quality and trustworthiness. An attractive
solution, nicely exploiting the social dynamics that drives this new wave of
web applications, is the deployment of trust networks: collections of agents
(humans or machines) connected by trust relations indicating whether agents
in these networks trust, or distrust, each other. Many researchers have recently
turned to this topic, as witnessed by an increasing amount of publications
in the area (see e.g. [13,21,24,27]); a particular focus of interest is on the
development of gradual models that quantify the degree to which agents may
trust each other [1,2,11,12,15,16]. These models reflect the fact that in real
life, too, trusting someone is seldom a black-or-white phenomenon, and that
people often trust each other “very much”, “somewhat”, . . .

Trust networks can contribute to the success of RSs by allowing users to es-
tablish better-informed opinions about certain items through the judgment
of trusted sources/agents that have evaluated or experienced those items.
Trusted agents can make additional recommendations over the ones gener-
ated by other RS techniques, which especially benefit users who lack a prop-
erly detailed user profile. These recommendations may also achieve higher
quality, as research [23] has pointed out that people tend to rely more on

1 www.foaf-project.org
2 www.wikipedia.org
3 www.amazon.com
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recommendations from people they trust, than on online RSs which gener-
ate recommendations based on anonymous people similar to them. Finally,
trust networks can also be used to prevent malicious insiders from abusing
the system to unnaturally boost some items’ recommendability.

Although the incorporation of a trust model can alleviate some major RS
issues, the existing trust-enhanced RSs still lack the ability to preserve im-
portant provenance information indicating how a suggested trust value has
been derived. As such, users cannot really exercise their right to interpret how
trust is computed, and moreover the quality of recommendations may be af-
fected negatively. For example, in a system that cannot differentiate between
absence of trust caused by presence of distrust (e.g., as towards a malicious
agent) versus by lack of knowledge (e.g., as towards an unknown agent), it is
much more difficult to detect malicious insiders, than in a system in which
an explicit distinction is made between active distrust and ignorance. More-
over, in a system that cannot differentiate between arguments to half trust
or half distrust a person, and (conflicting) arguments to simultaneously trust
and distrust a person completely, users can draw the wrong conclusions.

This paper is organized as follows. In Section 2, we survey existing work on
trust models and their usage in RSs. Section 3 introduces the bilattice-based
trust model BL�, in which the traditional trust degree is sided by a degree of
distrust; we show that the model is able to represent gradual trust, distrust,
ignorance and inconsistency simultaneously, as different but related concepts,
and as such avoids some common pitfalls that single-valued models face. Be-
sides advantages, our approach brings along some new challenges as well; in
Section 4, we discuss possible strategies to support propagation of trust and
distrust in RSs, i.e., the process of inquiring for a trust estimation with a
trusted third party (TTP), who in turn might consult its own TTP, and so
on. The paper is concluded by a discussion of subsequent problems that need
to be addressed (Section 5).

2 Related work

Recommender system technologies and trust models constitute the two pillars
of a trust-enhanced recommender system. We briefly discuss the former in the
following subsection, and describe how trust can be used to improve them.
We then proceed with classifying trust models to position the new approach
that we introduce in Section 3, and explain why current models are not fully
suitable for use in RSs.

3



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

2.1 Recommender systems

Content-based filtering (CB) [22] and collaborative filtering (CF) [19] are well-
known examples of recommendation approaches. CB systems suggest items
similar to the ones that the user previously liked. Such systems tend to have
their recommendation scope limited to the immediate neighbourhood of the
user’s past purchase or rating record; for instance, if a customer of a video
rental store has only ordered romantic movies, the system will continue to
recommend just related items, and not explore other interests of the user. In
this sense, RSs can be improved significantly by (additionally) using CF, which
typically identifies users whose tastes are similar to those of the given user and
recommends items that they have liked; ratings for unseen items are predicted
based on a combination of the nearest neighbours’ ratings. As an additional
benefit over CB RSs, CF RSs do not require that the internal structure of the
items be known, and consequently, can be applied to any domain.

Despite significant improvements on recommendation approaches, some im-
portant problems still remain. For instance, in the context of a CF RS, it is
often difficult for the RS to find similar users, as users typically rate/experience
only a small fraction of available items (the ‘sparsity problem’). Moreover, it
is challenging to generate good recommendations for users that are new to the
system, as they have not rated a significant number of items and hence can-
not properly be linked with similar users (the ‘cold start’ problem). Thirdly,
because RSs are widely used in the realm of e-commerce, there is a natural
motivation for producers of items (manufacturers, publishers, etc.) to abuse
them so that their items are recommended to users more often [28]; a common
‘copy-profile’ attack consists in copying the ratings of the target user, which
results in the system thinking that the adversary is most similar to the target.

In real life, a person who wants to avoid a bad deal may ask a friend, i.e.,
someone he trusts, what he thinks about a certain item i. If this friend does
not have an opinion about i, he can ask a friend of his, and so on until someone
with an opinion about i (i.e., a recommender) is found. Trust-enhanced RSs
work in a similar way, as depicted in Fig. 1: once a path to a recommender
is found, the RS can combine that recommender’s judgment with available
trust information to obtain a personalized recommendation. In this way, a
trust network allows to reach more users and more items. In the CF RS in
Fig. 2, agents a and b will be linked together because they have given similar
ratings to certain items (among which i1); analogously, b and c can be linked
together. Consequently, a prediction of a’s interest in i2 can be made. But in
this scenario there is no link between a (or b) and i3 or, in other words, there is
no way to find out whether i3 would be a good recommendation for agent a.

This situation might change when a trust network has been established among
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a b c

Fig. 1. Recommending an item

the users of the RS. Such trust networks can be generated automatically,
or built by the explicit input of the users. Golbeck’s FilmTrust [11] is an
example of the latter type; it is an online social network combined with a
movie rating and review system in which users are asked to evaluate their
acquaintances on a scale from 1 to 10 according to their movie taste. FilmTrust
is a non commercial venture, but trust-based systems are also being used
in e-commerce applications like Epinions.com 4 , a site that gives users the
opportunity to include other users (based on their quality as reviewers) in their
own ‘web of trust’. A particular novelty of the Epinions system is that users
can maintain a ‘block list’ of reviewers they explicitly distrust too. Including
someone in his web of trust/block list corresponds (implicitly) with issuing a
trust/distrust statement. These statements can be easily updated. An example
of automatic generation of trust values can be found in [16], in which trust
values are inferred from movie rating data, based on a user’s history of making
reliable recommendations.

Figures 2 and 3 illustrate the difference between a classical CF RS and a trust-
enhanced RS. While in the former situation the RS is not able to generate a
prediction about i3 for user a, this could be solved in the latter: if a expresses
a certain level of trust in b, and b in c, by propagation an indication of a’s
trust in c can be obtained. If it indicates that agent a may highly trust c, then
i3 might be a good recommendation for a, and will be highly ranked among
the other recommended items. In this way, the sparsity problem is alleviated.
In particular, as was found in [15], for new users, a few trust statements can
already yield much higher recommendation coverage and reduced prediction
error rates, hence alleviating the cold start problem. Moreover, a web of trust
can be used to produce an indication about the trustworthiness of users and
as such make the system less vulnerable to malicious insiders: a simple copy-
profile attack will only be possible when the target user, or someone who is
trusted by the target user, has indicated that he trusts the adversary to a
certain degree.

It is clear that establishing a trust network among a RS’s users can contribute
to its success, and some attempts in this direction have already been made.
Golbeck [11] investigates the role of trust ratings in FilmTrust. In [29], Ziegler
describes the role of trusted neighbourhoods for RSs on the semantic web [5].

4 www.epinions.com
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Fig. 2. Trust in RS (1)
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!

Fig. 3. Trust in RS (2)

O’Donovan and Smyth’s work [16] focusses on automatically inferring trust
based on a user’s history, while Massa and Avesani [15] examine the effects
of trust propagation through evaluation on a dataset obtained by crawling
Epinions; however, no distrust information is taken into account in [15]. In
fact, all mentioned approaches use a trust model which only considers trusted
sources, and do not distinguish between distrusted and unknown sources.

The ability to propagate trust information is one of the main strengths of all
these trust-enhanced RSs. The rationale behind it is based on the notion of
trust transitivity: e.g., if a trusts b and b trusts c, then a trusts c (see e.g.
[3,11]). Several types of trust transitivity can be distinguished, such as trust
in an agent’s competence to recommend a good item, or trust in an agent’s
competence to recommend/evaluate a good recommender agent (see e.g. [1]).
Although these concepts are essentially different, most practical recommender
applications assume a simplification of the ‘real world’: it is not always possible
for a user a to know whether the scores/ratings he receives from a user b

are made by b explicitely, or inferred via other TTPs, hence a cannot always
distinguish between b as a recommender of good items and b as a recommender
of good agents. In this respect, it might be more appropriate to speak of
‘goodwill’ or ‘benevolence’ instead of ‘trust’, but we chose to work with the
latter term because it is the most accepted one in the trust/RS literature.

2.2 Trust models

Trust models come in many flavours and can be classified in several ways,
among which probabilistic vs. gradual approaches as well as representations
of trust vs. representations of both trust and distrust (see also [26]). This
classification is shown in Table 1, along with some representative references
for each class.

A probabilistic approach deals with a single trust value in a black or white
fashion — an agent or source can either be trusted or not — and computes
a probability that the agent can be trusted. Examples can, among others, be
found in [13] in which Jøsang et al. present a model for quantifying and reason-
ing about trust in IT equipment, in [21] where a path algebra for computing

6
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Table 1
Trust Models, State of the Art

trust only trust and distrust

probabilistic

Kamvar et al. [14]

Jøsang et al. [13]Richardson et al. [21]

Zaihrayeu et al. [27]

gradual

Abdul-Rahman et al. [1]

Falcone et al. [17]

Almenárez et al. [2] De Cock et al. [7]

Tang et al. [25] Guha et al. [12]

Golbeck [11]

Massa et al. [15]

trust on the semantic web is proposed, or in contributions like Kamvar et al.’s
Eigentrust algorithm [14] that focus on peer-to-peer (P2P) networks, or Za-
ihrayeu et al.’s question answering system IWTrust [27]. In such a setting, a
higher suggested trust value corresponds to a higher probability that an agent
can be trusted.

On the other hand, a gradual approach is concerned with the estimation of
trust values when the outcome of an action can be positive to some extent,
e.g. when provided information can be right or wrong to some degree, as op-
posed to being either right or wrong (e.g. [1,2,7,11,12,15,25]). Note that in
real life, too, trust is often interpreted as a gradual phenomenon: humans do
not merely reason in terms of ‘trusting’ and ‘not trusting’, but rather trust-
ing someone ‘very much’ or ‘more or less’. Fuzzy logic is very well-suited to
represent such natural language labels which represent vague intervals rather
than exact values. The last years witnessed a rapid increase of gradual trust
approaches, ranging from socio-cognitive models (e.g. implemented by fuzzy
cognitive maps in [17]), over management mechanisms for selecting good in-
teraction partners on the web [25] or for pervasive computing environments
(Almenárez et al.’s PTM [2]), to RS models [11,15] and general models for
virtual communities [1,12].

Large agent networks without a central authority typically face ignorance and
inconsistency problems. Indeed, it is unlikely that all agents know each other,
and different agents might provide contradictory information. Both ignorance
and inconsistency can have an important impact on the trust estimation.
Models that only take into account trust (e.g. [1,2,14,15,27]), either with a
probabilistic or a gradual interpretation, are not fully equipped to deal with
trust issues in large networks where many agents do not know each other: in

7
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suggesting a trust value to an inquiring agent, valuable information on how
this value has been obtained is lost. This is problematic, as user opinions may
be affected by provenance information exposing how trust values have been
computed. For example, a trust estimation of a source from a fully informed
agent is quite different from a suggested trust value from an agent who does
not know the source too well but has no evidence to distrust it.

A suitable solution to these problems are models that take into account both
trust and distrust; [7,12,13]. To the best of our knowledge, there is only one
probabilistic approach considering trust and distrust simultaneously: in Jøsang
and Knapskog’s subjective logic [13] (SL), an opinion includes a belief b that
an agent is to be trusted, a disbelief d corresponding to a belief that an agent
is not to be trusted, and an uncertainty u. The uncertainty factor leaves room
for ignorance in this model. However, the requirement that the belief b, the
disbelief d and the uncertainty u sum up to 1, rules out options for incon-
sistency even though this might arise quite naturally in large networks with
contradictory sources.

SL is an example of a probabilistic approach, whereas in this paper we will
outline a trust model that uses a gradual approach, meaning that agents can be
trusted to some degree. Furthermore, to preserve provenance information, our
model deals with distrust in addition to trust; hence, our intended approach
is situated in the bottom right corner of Table 1. In this category, as far as we
know, besides our earlier work [7,26], there is only one other existing model,
namely Guha et al.’s [12]. They use a couple (t, d) with a trust degree t and a
distrust degree d, both in [0,1]. To obtain the final suggested trust value, they
subtract d from t. As we explain later on, potentially important information
is lost when the trust and distrust scales are merged into one.

In the next section it will become clear that current gradual trust models are
either not capable of properly handling inconsistency, or cannot differentiate
unknown agents from malicious agents, although these problems can possibly
have a large effect on (the ranking of) the recommendations. To deal with
these issues, we introduce a new trust model which is able to solve “trust
problems”, caused by presence of distrust or lack of knowledge, and provides
insight into “knowledge problems” caused by having too little or too much, i.e.
contradictory, information.

3 A bilattice-based trust model

We propose an extension of [7] in which trust values are derived from a bi-
lattice. Since their introduction by Ginsberg [10] in 1988, much attention has
been paid to bilattices and their applications. It has e.g. been shown that bi-

8
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lattices are useful for providing semantics to logic programs (see e.g. [8]), and
as underlying algebraic structures of formalisms for reasoning with imprecise
information (see e.g. [6,9]). The use of these bilattices results in a new gradual
model for (trust,distrust)-couples. We call such couples trust scores.

Definition 1 (Trust Score) A trust score (x1, x2) is an element of [0, 1]2,
in which x1 is called the trust degree, and x2 the distrust degree.

Trust scores will be used to compare the degree of trust and distrust an agent
may have in other agents in the network. This information can be used in the
ranking mechanisms of the RS, e.g. by giving preference to recommendations
from sources that are trusted more. To this aim, we introduce the trust score
space as a model that allows to compare and preserve information about the
provenance of trust scores.

Definition 2 (Trust Score Space) The trust score space

BL� = ([0, 1]2,≤t, ≤k,¬)

consists of the set [0, 1]2 of trust scores, a trust ordering ≤t, a knowledge
ordering ≤k, and a negation ¬ defined by

(x1, x2) ≤t (y1, y2) iff x1 ≤ y1 and x2 ≥ y2

(x1, x2) ≤k (y1, y2) iff x1 ≤ y1 and x2 ≤ y2

¬(x1, x2) = (x2, x1)

for all (x1, x2) and (y1, y2) in [0, 1]2.

One can verify that the structure BL� is a bilattice in the sense of Ginsberg
[10], that is ([0, 1]2,≤t) and ([0, 1]2,≤k) are both lattices and the negation ¬
serves to impose a relationship between them:

(x1, x2) ≤t (y1, y2) ⇒ ¬(x1, x2) ≥t ¬(y1, y2)

(x1, x2) ≤k (y1, y2) ⇒ ¬(x1, x2) ≤k ¬(y1, y2),

such that ¬¬(x1, x2) = (x1, x2). In other words, ¬ is an involution that reverses
the ≤t-order and preserves the ≤k-order.

Fig. 4 shows BL�, along with some examples of trust scores. These scores
are interpreted as epistemic values: compared to Jøsang and Knapskog’s sub-
jective logic, the trust and distrust degrees are not complementary, but they
reflect the imperfect knowledge we have about the actual trust and distrust
values (which are complementary). The lattice ([0, 1]2,≤t) orders the trust
scores going from complete distrust (0, 1) to complete trust (1, 0). The lattice
([0, 1]2,≤k) evaluates the amount of available trust evidence, ranging from a

9



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

≤

Ignorance (0,0)

Completely inconsistent (1,1)

Very reliable

(1,0.2)

Complete

Distrust (0,1)

Complete trust

(1,0)

(0.5,0.5)

t

k

≤

Fig. 4. Trust score space BL�

“shortage of evidence”, x1 + x2 < 1 (incomplete information), to an “excess
of evidence”, viz. x1 + x2 > 1 (inconsistent or contradictory information). In
the extreme cases, there is no information available: (0, 0); or there is evidence
that says that the agent is to be trusted fully as well as evidence that states
that the agent is completely unreliable: (1, 1). Note that in this state, maximal
knowledge occurs, while optimal knowledge occurs when the trust and distrust
degree sum up to 1 (e.g. in the complete trust state).

The available trust information is modeled as a BL�-fuzzy relation in the set
of agents that associates a score drawn from the trust score space with each
ordered pair of agents. It should be thought of as a snapshot taken at a certain
moment since trust scores can be updated.

Definition 3 (Trust Network) A trust network is a couple (A,R) such that
A is a set of agents and R is an A× A → [0, 1]2 mapping. For every a and b

in A, we write
R(a, b) =

(
R+(a, b), R−(a, b)

)

• R(a, b) is called the trust score of a in b.
• R+(a, b) is called the trust degree of a in b.
• R−(a, b) is called the distrust degree of a in b.

The following examples reveal some important shortcomings of current trust
models which are alleviated by our bilattice model. Without harming general-
ity, and to emphasize that trust is always dependent on a specific goal, task, or
application, we focus on one kind of RSs, namely a movie recommender. The
first example illustrates the need for models working with trust and distrust.

Example 1 (Ignorance without provenance) Agent a wants to know if
he should see a particular movie. Agents c and d have seen the movie, but a

does not know them personally. So, in order to establish an opinion about c

and d, a calls upon b for trust opinions on these agents. Agent b completely
distrusts c when it comes to movies, hence b trusts c to degree 0 in the range
[0,1], where 0 is full absence of trust and 1 full presence of trust. On the other

10
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hand b does not know d, hence b also trusts d to degree 0. As a result, b returns
the same trust opinion to a for both c and d, namely 0, but the meaning of
this value is clearly different in both cases.

With c, the lack of trust is caused by a presence of distrust, while with d, the
absence of trust is caused by a lack of knowledge. This provenance information
is vital for a to make a well-informed decision. For example, if a has a high trust
in TTP b, he will not consider c anymore, but might ask for other opinions
on d. A trust model that takes into account both trust and distrust could be
a possible solution. However, as the scenarios below illustrate, the existing
approaches fall short because they do not allow to model inconsistency.

Example 2 (Contradictory information) A stranger tells you that a par-
ticular movie was very bad. Because you do not know anything about this per-
son, you make inquiries with two of your friends who are acquainted with him.
One of them tells you to trust him, while the other tells you to distrust that
same person. In this case, there are two equally trusted TTPs that tell you
the exact opposite thing. In other words, you have to deal with inconsistent
information.

This example illustrates how inconsistencies may arise: when an agent in the
trust network inquires for a trust estimation about another agent, it often
happens that he does not ask one TTP’s opinion, but several. Then these
pieces of information, coming from different sources and propagated through
different propagation chains, must be combined together into one new trust
value which represents the opinion of all the TTP’s. This is not an easy task
when conflicting evidence has been gathered.

First of all, note that models that work only with trust and not with distrust
are again not expressive enough to represent these cases adequately. Taking
e.g. 0.5 (the average) as an aggregated trust value is not a good solution for
Ex. 2, because then we cannot differentiate this case from the partial trust
situation in which both of your friends trust the recommender to the extent
0.5, which indicates that the recommender is somewhat reliable. Furthermore,
what would you answer if someone asks you if the stranger can be trusted? A
plausible answer is: “I don’t really know, because I have contradictory infor-
mation about him”. Note that this is fundamentally different from “I don’t
know, because I have no information about him”. Hence, an aggregated trust
value of 0 is not a suitable option either, as it could imply both inconsistency
and ignorance.

In our bilattice model, these situations are respectively represented by (1, 1)
and (0, 0). Note that previous models considering both trust and distrust
degrees do not offer the option of representing (partial) inconsistency, even
though this might arise quite naturally in large networks with contradictory

11
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sources. Jøsang’s SL for example can not cope with this scenario because the
belief and disbelief have to sum up to 1. A similar remark applies to our own
previous work [7] in which we proposed to model the trust network as an
intuitionistic fuzzy relation [4]. Guha et al. [12] do not impose a restriction
on the trust and distrust degrees but their approach suffers from yet another
kind of shortcoming, as the following example illustrates.

Example 3 (Ignorance without provenance) Agent a needs to establish
an opinion about agent c to find out whether he should follow c’s recommen-
dation to see a particular movie. Agent a may ask agent b for an opinion of
c because agent a does not know anything about c. Agent b, in this case, is
a TTP that knows how to compute a trust value of c from a web of trust.
Assume that b has evidence for both trusting and distrusting c. For instance,
let us say that b trusts c to degree 0.5 in the range [0,1] where 0 is full absence
of trust and 1 is full presence of trust; and that b distrusts c to degree 0.2
in the range [0,1] where 0 is full absence of distrust and 1 is full presence of
distrust. Another way of saying this is that b trusts c at least to the extent 0.5,
but also not more than 0.8. The length of the interval [0.5,0.8] indicates how
much information b lacks about c.

Note once more that in this scenario, if we would only work with one value,
by getting only the trust degree 0.5 from b, a is losing valuable information
indicating that b has some evidence to distrust c too; this problem is solved by
all models working with two values, and in particular Guha et al’s. However,
their approach has one main disadvantage: b will pass on a value of 0.5 −
0.2 = 0.3 to a, i.e. the difference of the trust degree and the distrust degree,
hence losing valuable trust provenance information indicating, for example,
how much information b lacks about c. Note that a trust value of 0.3 and a
distrust value of 0 also result in 0.3, but this scenario clearly differs from the
former because now a has no reason to distrust b.

An important strength of our bilattice-based approach is that it can distin-
guish full distrust from ignorance. This is an improvement of e.g. [1,14,21,27].
Furthermore, it enables us to deal with both incomplete information and in-
consistency, which is an improvement of [7] and [13]. Moreover, we do not lose
important information because we keep the trust and distrust degree separated
throughout the whole trust process (improvement of [12]). Whereas most of
the other trust approaches assign a trust value of 0 to a malicious agent and
consequently cannot differentiate a malicious agent from an unknown agent, in
our approach a malicious agent gets a trust score of (0, 1), while an unknown
agent corresponds to a trust score of (0, 0), leaving no room for confusion.
Hence, if e.g. agents a, b, . . ., k all think that l is malicious, then the aggre-
gated trust score for l will approach (0, 1), indicating that l is regarded as a
malicious insider. Hence, existing RS techniques may be made less vulnerable
to recommendation attacks.

12
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p q

Fig. 5. Atomic propagation

4 Propagation of trust scores

In large networks, most of the other users are typically unknown to a specific
user. Still there are cases in which it is useful to be able to derive some infor-
mation on whether or not an unknown user can be trusted, and if so, to what
degree. In the context of RSs this is important if none of the known agents
has rated a specific item that the user is interested in, but there are some
ratings available by unknown agents. In virtual trust networks, propagation
operators are used to handle the problem of establishing trust information
in an unknown agent by inquiring through TTPs. The simplest case, atomic
propagation, is depicted in Fig. 5: if the trust score of agent a in agent b is p,
and the trust score of b in agent c is q, what information can be derived about
the trust score of a in agent c that is unknown to him? This is a reflection of
real-life behaviour: to find out whether or not you should see a movie, you can
ask your friend’s opinion about it; if he has not seen the movie, he can ask a
friend of his, and so on.

When dealing with trust only, multiplication is most often used as a propa-
gation operator (see e.g. [11], [21] for a gradual, resp. probabilistic approach).
In other words, when p and q in Fig. 5 are numbers in [0, 1], the resulting
trust value of a in c is p · q. The underlying meaning is that a will trust c iff
a trusts b and b trusts c. For reasons explained above, a model dealing with
trust only, falls short, among other things, in distinguishing between a lack of
trust caused by a lack of knowledge versus by a presence of distrust. Hence in
this section we focus on the design of propagation operators in a model where
p and q are elements of [0, 1]2, i.e. couples of trust and distrust degrees, and
the corresponding propagation operators are of type [0, 1]2 × [0, 1]2 → [0, 1]2.
We start the discussion with some intuitive examples.

Example 4 If a friend whom you fully trust tells you to distrust someone,
and you have no other information about this person, you likely will choose
to distrust him. In other words, from R(a, b) = (1, 0) and R(b, c) = (0, 1) is
derived that R(a, c) = (0, 1), or, using F to denote an operator for trust score
propagation:

F((1, 0), (0, 1)) = (0, 1) (1)

Example 5 If a colleague whom you distrust tells you to trust someone, you
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might decide this is too little information to act on. Indeed, if you distrust
your colleague, it is reasonable not to take into account whatever he is telling
you. Hence, from R(a, b) = (0, 1) and R(b, c) = (1, 0) is derived that R(a, c) =
(0, 0). This means that, if no additional information is available, c remains
unknown to you. Using F to denote an operator for trust score propagation,
this comes down to

F((0, 1), (1, 0)) = (0, 0) (2)

On the other hand, you might think that the colleague you distrust is giving
you wrong information on purpose, or you might conclude that trusted friends
of your distrusted colleague are best also to be distrusted. In this case, from
R(a, b) = (0, 1) and R(b, c) = (1, 0) is derived that R(a, c) = (0, 1), hence we
are confronted with a propagation operator G which is clearly different from F

since

G((0, 1), (1, 0)) = (0, 1) (3)

The examples above serve two purposes: first, (1) and (2) illustrate that a
trust score propagation operator is not necessarily commutative because the
ordering of the arguments matters. Note how this is different from the tradi-
tional case where the commutative multiplication seems sufficient to do the
job. Secondly, (2) and (3) illustrate that different operators yielding different
results are possible depending on the interpretation, thus revealing part of
the complex problem of choosing an appropriate propagation scheme for the
application at hand. Our aim in this paper is not to provide a clear cut answer
to that question, but rather to provide some propagation operators that can
be used in different schemes, as well as to discuss some of their properties.

We call a propagation operator F knowledge monotonic if the arguments can
be replaced by higher trust scores w.r.t. the knowledge ordering ≤k without
decreasing the resulting trust score. Knowledge monotonicity reflects that the
better agent a knows agent b with whom it is inquiring about agent c, the
more informed a will be about how well to trust or distrust agent c.

Definition 4 (Knowledge Monotonicity) A propagation operator F on
[0, 1]2 is said to be knowledge monotonic iff for all x, y, z, and u in [0, 1]2,

x ≤k y and z ≤k u implies F(x, z) ≤k F(y, u)

Knowledge monotonicity is not only useful to provide more insight in the prop-
agation operators but it can also be used to establish a lower bound w.r.t. ≤k

for the actual propagated trust score without immediate recalculation. This
might be useful in a situation where one of the agents has gained more knowl-
edge about another agent and there is not enough time to recalculate the
whole propagation chain immediately, as will be the case for many RS types.
The analogue for the trust ordering ≤t is not a useful property, because it
counteracts normal real-life behaviour as we illustrate next.
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Example 6 If a new colleague tells you to distrust someone, you might decide
not to take into account his opinion because you do not know him sufficiently.
Using F to denote an operator for trust propagation, this comes down to

F((0, 0), (0, 1)) = (0, 0) (4)

However, over time this colleague might become a trusted friend, i.e. your trust
in your colleague increases, and you will start distrusting others because your
colleague tells you to (see (1)). In this case the trust score in one of the links
of the chain goes up from (0,0) to (1,0) while the overall trust score of the
chain drops from (0,0) to (0,1).

Besides atomic propagation, we need to be able to consider longer propagation
chains, so TTPs can in turn consult their own TTPs and so on. For an as-
sociative propagation operator, this extension can be defined unambiguously.
In particular, with an associative propagation operator, the overall trust score
computed from a longer propagation chain is independent of the choice of
which two subsequent trust scores to combine first. Even for non associative
propagation operators, instead of calculating a whole chain, sometimes it is
sufficient to look at only one agent to determine the overall trust score in a
longer propagation chain.

Definition 5 (Knowledge absorption) A propagation operator F on [0, 1]2

is said to be knowledge absorbing iff for all x and y in [0, 1]2,

F((0, 0), y) = F(x, (0, 0)) = (0, 0)

Hence, as soon as one of the agents is ignorant, we can dismiss the entire
chain. As such, for an operator with this property, precious calculation time
can possibly be saved.

The propagation operators we will define below are constructed using the
fuzzy logical operators for conjunction, disjunction and negation. We use T to
denote an arbitrary t–norm, i.e. an increasing, commutative and associative
[0, 1]2 → [0, 1] mapping satisfying T (1, x) = x for all x in [0, 1]. Furthermore
S denotes an arbitrary t–conorm, i.e. an increasing, commutative and associa-
tive [0, 1]2 → [0, 1] mapping satisfying S(0, x) = x for all x in [0, 1]. Finally N
is used to denote a negator, i.e. a decreasing [0, 1] → [0, 1] mapping satisfying
N (0) = 1 and N (1) = 0. In the remainder of this section, we use t1 as an
abbreviation for the trust degree R+(a, b) of agent a in agent b, and d1 for
the corresponding distrust degree R−(a, b). Similarly, we use (t2, d2) to denote
the trust score from agent b in agent c. In other words R(a, b) = (t1, d1) and
R(b, c) = (t2, d2).

People are likely to listen to whom they trust; this attitude is reflected by the
first propagation operator.
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Definition 6 The propagation operator Prop
1

is defined by

Prop
1
((t1, d1), (t2, d2)) = (T (t1, t2),T (t1, d2))

for all (t1, d1) and (t2, d2) in [0, 1]2.

An agent with this profile (Prop
1
) exhibits a skeptical behaviour in deriving

no knowledge through a distrusted or unknown third party. In the upper left
corner of Table 2, the behaviour of Prop

1
for binary inputs is shown. Note

that the results for inconsistency in the last link are also in accordance with
this behaviour. We do not consider results for inconsistency in the first link,
because we assume that all agents behave in a consistent way; in fact, it is
only useful to propagate inconsistency when it occurs in the last link of the
propagation chain (where information is possibly aggregated).

It follows from the monotonicity of T that Prop
1

is knowledge monotonic,
while associativity of the t-norm leads to Prop

1
being associative. If there

occurs a “missing link” (0, 0) anywhere in the propagation chain, the result
will contain no useful information. In other words, the propagation operator
is knowledge absorbing. Note that the same conclusion (i.e. ignorance) can
be drawn if at any position in the chain, except the last one, there occurs
complete distrust (0, 1).

Using the product t-norm TP , defined as TP (x, y) = x · y, Prop
1

takes on the
following form

Prop
1
((t1, d1), (t2, d2)) = (t1 · t2, t1 · d2)

This particular form of Prop
1

has previously been proposed in [13] to combine
pairs of beliefs and disbeliefs. Subtracting the distrust degree from the trust
degree, this propagation operator reduces to t1 ·(t2−d2), a propagation scheme
proposed in [12].

Prop
1

neglects all information coming from an unknown agent. However, some
agents might be willing to take over some information coming from whatever
party, as long as it is not distrusted. For instance, when agent b warns a about
an agent c that is to be distrusted, agent a might listen to the advice even
when he does not know b. In this way we arrive at a propagation operator
reflecting that a trusts c when a trusts b and b trusts c (in other words, the
classical behaviour), and a distrusts c because b distrusts c and a does not
distrust b.

Definition 7 The propagation operator Prop
2

is defined by

Prop
2
((t1, d1), (t2, d2)) = (T (t1, t2),T (N (d1), d2))

for all (t1, d1) and (t2, d2) in [0, 1]2.
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Table 2
Propagation operators, using TTP b with R(a, b) = (t1, d1) (rows) and R(b, c) =
(t2, d2) (columns)

Prop1 (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 1) (0, 0) (0, 0) (0, 0) (0, 0)

(1, 0) (0, 0) (0, 1) (1, 0) (1, 1)

Prop2 (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 1) (0, 0) (0, 1)

(0, 1) (0, 0) (0, 0) (0, 0) (0, 0)

(1, 0) (0, 0) (0, 1) (1, 0) (1, 1)

Prop3 (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 1) (0, 0) (1, 0) (0, 1) (1, 1)

(1, 0) (0, 0) (0, 1) (1, 0) (1, 1)

Prop4 (0, 0) (0, 1) (1, 0) (1, 1)

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(0, 1) (0, 0) (0, 0) (0, 1) (0, 1)

(1, 0) (0, 0) (0, 1) (1, 0) (1, 1)

Note how Prop
2

only differs from Prop
1

in the computation of the propagated
distrust degree. Agents with this second profile (Prop

2
) display a paranoid be-

haviour in taking some distrust information even from an unknown third party:
suppose you meet someone that tells you that movie m was dreadful. Even
though you do not know this person and whether to trust him, it may happen
that you retain some of this negative information. This paranoid behaviour
also occurs when the unknown third party receives inconsistent information.
The following example illustrates that Prop

2
is not knowledge monotonic.

Example 7 In this example we use the standard negator Ns, defined by Ns(x)
= 1− x, and an arbitrary t-norm. To see that Prop

2
is not knowledge mono-

tonic, consider

Prop
2
((0.2, 0.7), (0, 1)) = (0, 0.3)

Prop
2
((0.2, 0.8), (0, 1)) = (0, 0.2)

Going from the first to the second situation, all trust degrees remain the same
but the distrust degree of agent a in agent b has increased slightly. In other
words, a has formed a slightly more informed opinion about b:

(0.2, 0.7) ≤k (0.2, 0.8)

and trivially also (0, 1) ≤k (0, 1). However at the same time the distrust degree
of a in c has dropped slightly; since the trust degree of a in c did not change,
agent a now has slightly less knowledge about c:

(0, 0.3) �k (0, 0.2)

The intuitive explanation behind the non knowledge monotonic behaviour of
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Prop
2

is that, using this propagation operator, agent a takes over distrust
from a stranger b, hence giving b the benefit of the doubt, but when a starts
to distrust b (thus knowing b better), a will adopt b’s opinion to a lesser extent,
or in other words, derive less knowledge. Prop

2
is knowledge absorbing but

not associative as the following example shows.

Example 8 Using the standard negator Ns and the product t-norm TP we
obtain:

Prop
2
((0.3, 0.6), Prop

2
((0.1, 0.2), (0.8, 0.1))) = (0.024, 0.032)

Prop
2
(Prop

2
((0.3, 0.6), (0.1, 0.2)), (0.8, 0.1)) = (0.024, 0.092)

The following example illustrates the effects of gradual trust and gradual dis-
trust.

Example 9 In this example we use the product t-norm TP and the standard
negator Ns. Assume that, although agent a highly trusts b, there is also evi-
dence to slightly distrust b, e.g.

(t1, d1) = (0.8, 0.2)

Furthermore assume that b highly distrusts c, i.e.

(t2, d2) = (0.1, 0.9)

Then, if agent a matches the second profile, we obtain

Prop
2
((t1, d1), (t2, d2)) = (0.08, 0.72)

In other words, agent a takes over most of the information that b provides;
however, the final trust score is mitigated because a also slightly distrusts b.

Unlike the first profiles, it is in fact possible that some agents will use in-
formation coming from a distrusted agent, as is the case in (3). Propagation
operator Prop

3
is an extension of Prop

1
in which agent a assumes that a dis-

trusted agent b gives the wrong information on purpose. Hence, instead of
simply ignoring a distrusted agent b, agent a assumes the opposite of what b

is telling him. To achieve this, the trust and distrust degrees are computed as
disjunctions, modelled by means of a t-conorm S. For example, as in the first
profile, agent a will distrust c when a trusted agent b will tell him to, but in
addition, a will also distrust c when there is an advice to trust c coming from
a distrusted agent b.

Definition 8 The propagation operator Prop
3

is defined by

Prop
3
((t1, d1), (t2, d2)) = (S(T (t1, t2),T (d1, d2)),S(T (t1, d2),T (d1, t2)))
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for all (t1, d1) and (t2, d2) in [0, 1]2.

Agents that fit this profile consider an enemy of an enemy to be a friend:

Prop
3
((0, 1), (0, 1)) = (1, 0)

and a friend of an enemy to be an enemy:

Prop
3
((0, 1), (1, 0)) = (0, 1)

with friend (enemy) denoting a person that is (dis)trusted. Due to the mono-
tonicity of T and S, Prop

3
is knowledge monotonic. Examples can be con-

structed to prove that Prop
3

is not associative. Knowledge absorption holds
for Prop

3
, despite the fact that it is not associative.

Using t-norm TP and the corresponding t-conorm SP , the operator becomes

Prop
3
((t1, d1), (t2, d2)) = (t1 ·t2+d1 ·d2−t1 ·t2 ·d1 ·d2, t1 ·d2+d1 ·t2−t1 ·d2 ·d1 ·t2)

Subtracting the distrust degree from the trust degree, we obtain (t1 − d1) ·
(t2 − d2), the distrust propagation scheme put forward in [12].

The last profile (Prop
4
) is a moderation of Prop

3
in such a way that these

agents do not take over information coming from a distrusted agent c when b

is distrusted. While a friend of an enemy is still considered to be an enemy,
no information is derived about an enemy of an enemy:

Prop
4
((0, 1), (0, 1)) = (0, 0)

Prop
4
((0, 1), (1, 0)) = (0, 1)

In other words, c is only trusted by a when a trusts b and b trusts c. The
properties of the third profile apply to Prop

4
as well.

Definition 9 The propagation operator Prop
4

is defined by

Prop
4
((t1, d1), (t2, d2)) = (T (t1, t2),S(T (t1, d2),T (d1, t2)))

for all (t1, d1) and (t2, d2) in [0, 1]2.

In summary, as Proposition 1 shows, all the proposed propagation operators
copy information from a fully trusted TTP. All of them ignore information
coming from an unknown party, except Prop

2
which takes over the distrust

information from a stranger.

Proposition 1 For all (t, d) in [0, 1]2 it holds that

(1) Prop
1
((1, 0), (t, d)) = (t, d)

(2) Prop
2
((1, 0), (t, d)) = (t, d)
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(3) Prop
3
((1, 0), (t, d)) = (t, d)

(4) Prop
4
((1, 0), (t, d)) = (t, d)

(5) Prop
1
((0, 0), (t, d)) = (0, 0)

(6) Prop
2
((0, 0), (t, d)) = (0, d)

(7) Prop
3
((0, 0), (t, d)) = (0, 0)

(8) Prop
4
((0, 0), (t, d)) = (0, 0)

(9) Prop
1
((0, 1), (t, d)) = (0, 0)

(10) Prop
2
((0, 1), (t, d)) = (0, 0)

(11) Prop
3
((0, 1), (t, d)) = (d, t)

(12) Prop
4
((0, 1), (t, d)) = (0, t)

Furthermore, Prop
3

and Prop
4

allow to derive useful distrust information in
the context of RSs, as the following examples illustrate.

Example 10 Suppose that agent a fully distrusts agent b, and b fully distrusts
c. Trust-enhanced RSs working with only one value will not use this informa-
tion. However, in our approach, e.g., if c rates m highly and agent a fits the
third profile, movie m might be a good recommendation for a.

In this way, these profiles may further help us to alleviate the sparsity and
cold start problem; moreover, they can also be used to filter out false positives
generated by other RS techniques, as illustrated by the next example.

Example 11 Suppose that movie m is highly rated by recommender c and that
b trusts c, while a completely distrusts b. If a fits the third or fourth profile, m

could serve as a negative recommendation for a. Hence, m should be filtered
out if it appears in the list generated by the CF/CB approach.

To illustrate that the different propagation behaviours discussed above appear
in real life trust networks, Table 3 contains relevant statistical information on
a dataset from Epinions. The Epinions’ web of trust graph from the dataset
contains 131 829 users who issued 840 799 trust or distrust statements. About
85% of them are labelled as trust. If user X included user Y in his web of
trust, we assume a trust score (1, 0) of X in Y . Similarly, the fact that X

included Y in his block list, results in a trust score (0, 1) of X in Y . Finally,
if two users in the dataset are not linked by a trust or distrust statement, we
interpret this as a trust score (0, 0), modeling ignorance. Inconsistency links
do not exist in the dataset because users cannot put someone in their web
of trust and block list simultaneously. To investigate the behaviour reflected
by the propagation operators, we focus on triples (X,Y, Z) in which the trust
score of X in Z is either (1, 0) or (0, 1). We do not include chains in which
X − Z represents ignorance because the portion of triples in which X − Z

represents a trust or distrust relation, over the triples with no restriction on
X − Z, is very small. This means that most of these chains would propagate
to (0, 0), which gives a distorted picture of the real, useful, patterns in the
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Table 3
Evaluation propagation profiles

X − Y Y − Z X − Z # (X, Y, Z)

(1,0) (1,0) (1,0) 9 594 233

(1,0) (0,1) (0,1) 271 534

(0,1) (1,0) (0,1) 296 078

(0,1) (0,1) (1,0) 52 385

(0,0) (0,1) (0,1) 3 606 754

dataset.

Results can be found in Table 3. The first column denotes the relation between
X and Y , the second and third column between Y and Z, and X and Z

respectively. The fourth column contains the number of chains that consist of
the given X − Y , Y − Z and X − Z link. The first row shows us that the
behaviour of trusting an agent which is trusted by a TTP is omnipresent; this
is the attitude which is at the basis of all proposed propagation operators.
The second, third and fourth row illustrate that distrust can be used in the
propagation process in several ways. The second row reflects the behaviour
that can be found in all our propagation operators, viz. distrusting agents
who are distrusted by a TTP. The third and fourth row exhibit the behaviour
of Prop

3
and Prop

4
, viz. a friend of an enemy is an enemy, and an enemy of

an enemy is a friend. Evidence in favor of Prop
2

can be found by focussing on
ignorance-distrust chains which retain the distrust information (fifth row).

These results show us that the proposed propagation behaviours occur in the
dataset. Note that the number of chains in the first row of Table 3 is signifi-
cantly higher than the rest. This is due to the fact that the other rows contain
at least one distrust link, while the number of available distrust links in the
dataset is small overall 5 . Taking this into account, the other results (reflect-
ing behaviour of Prop

2
, Prop

3
and Prop

4
) cannot/may not be ignored because

they clearly indicate that distrust can be used in the propagation process, via
the first as well as the second link. These results illustrate one of the main
benefits of our approach: because the bilattice-based model can properly rep-
resent distrust information, we are able to include it in the recommendation
process, while other trust-based algorithms cannot.

5 In the last row of Table 3, this phenomenon is partially compensated by the
abundant number of ignorance links, caused by the sparsity of the web of trust
graph.
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5 Concluding remarks

The incorporation of a trust network among the users of a RS proves beneficial
to the quality and amount of recommendations, thereby alleviating important
problems of collaborative filtering like cold start and sparsity. However, as cur-
rent trust-enhanced RSs do not preserve vital trust provenance information,
they cannot cope with “trust problems” caused by presence of distrust versus
by lack of knowledge, and “knowledge problems” caused by having too little
or too much, i.e. contradictory, information.

To resolve these issues, we represent trust scores as elements (t, d) of the
bilattice BL� = ([0, 1]2,≤t,≤k,¬) in which t corresponds to a trust degree
and d to a distrust degree. As such, to our knowledge, we are the first to
introduce a model that takes into account gradual trust, distrust, ignorance
and inconsistency simultaneously. We have also presented a collection of four
operators for atomic propagation that are generic enough to be used in several
trust schemes, including those where trust and distrust are either binary or
gradual. The ability to handle ignorance and inconsistency and to propagate
trust becomes extremely meaningful in a large web of RS users where the
trustworthiness of many agents is initially unknown to a user, which does not
imply that the user distrusts all of them, but that the user may eventually
gather evidence to trust or distrust some agents and still ignore others.

Apart from the propagation solutions presented in this paper, there are a
number of other issues that need to be addressed, such as further propagation
(longer chains) and aggregation. On another count, existing trust techniques
for RSs require a central authority to propagate and aggregate trust values;
however, as the amount of customers of RSs continues to grow, it will get
more and more difficult to manage all trust information in one place, so a
decentralized approach may be more appropriate. Furthermore, privacy of
data is becoming increasingly important in web applications, and RS users
may refuse to disclose their personal web of trust. A key problem therefore
is how to best combine the available trust scores and recommendations, a
decision that will impact the responsibility and autonomy of the agents in the
network.
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