
U
N

C
O

R
R

EC
TE

D
  P

R
O

O
F

AIC ios2a v.2008/05/27 Prn:1/10/2008; 14:07 F:aic431.tex; VTEX/R p. 1

AI Communications 00 (2008) 1–17 1
DOI 10.3233/AIC-2008-0431
IOS Press1 52

2 53

3 54

4 55

5 56

6 57

7 58

8 59

9 60

10 61

11 62

12 63

13 64

14 65

15 66

16 67

17 68

18 69

19 70

20 71

21 72

22 73

23 74

24 75

25 76

26 77

27 78

28 79

29 80

30 81

31 82

32 83

33 84

34 85

35 86

36 87

37 88

38 89

39 90

40 91

41 92

42 93

43 94

44 95

45 96

46 97

47 98

48 99

49 100

50 101

51 102

Key figure impact in trust-enhanced
recommender systems

Patricia Victor a,∗, Chris Cornelis a, Martine De Cock a and Ankur M. Teredesai b

a Applied Math & CS, UGent, 9000 Gent, Belgium
E-mails: {Patricia.Victor, Chris.Cornelis, Martine.DeCock}@UGent.be
b Institute of Technology, UW Tacoma, Tacoma, WA, USA
E-mail: ankurt@u.washington.edu

Abstract. Collaborative filtering recommender systems are typically unable to generate adequate recommendations for newcom-
ers. Empirical evidence suggests that the incorporation of a trust network among the users of a recommender system can signif-
icantly help to alleviate this problem. Hence, users are highly encouraged to connect to other users to expand the trust network,
but choosing whom to connect to is often a difficult task. Given the impact this choice has on the delivered recommendations, it
is critical to guide newcomers through this early stage connection process. In this paper, we identify several classes of key figures
in the trust network, namely mavens, frequent raters and connectors. Furthermore, we introduce measures to assess the influence
of these users on the amount and the quality of the recommendations delivered by a trust-enhanced collaborative filtering recom-
mender system. Experiments on a dataset from Epinions.com support the claim that generated recommendations for new users
are more beneficial if they connect to an identified key figure compared to a random user.

Keywords: Trust network, recommender system, cold start problem, social network analysis

1. Introduction

Systems that guide users through the vast amounts
of online information are gaining tremendous impor-
tance. Among such applications are recommender sys-
tems (RSs) [1,33], which, given some information
about their users’ profiles and relationships, suggest
items that might be of interest to them. One of the
most widely used recommendation techniques is col-
laborative filtering (CF) [32], which typically works
by identifying users whose tastes are similar to those
of the particular user and by recommending items that
they have liked. However, CF recommender systems
still face important challenges, one of their main weak-
nesses being the cold start problem: new users have not
rated a significant number of items, and cannot prop-
erly be linked with similar users;1 hence, accurate and

*Corresponding author: Patricia Victor, Applied Math & CS,
UGent, Krijgslaan 281 (S9), 9000 Gent, Belgium. E-mail:
Patricia.Victor@UGent.be.

1Note that the phrase cold start has also been used to describe the
situation where recommendations are required for items that have
never been rated (see e.g. [36]). In this paper however, cold start
refers to the situation where recommendations are required for users
that have rated only very few items, the so-called cold start users.

adequately personalized recommendations are difficult
to generate.

The cold start (CS) problem receives a lot of at-
tention from the RS community, see e.g. [2,23,30] for
some recent work. One of the promising directions
suggests that the incorporation of a trust network (in
which the agents are connected by trust scores indicat-
ing how much they trust and/or distrust each other) can
significantly help alleviate the CS problem, primarily
because the information included in trust statements
about a RS’s user can be propagated and aggregated,
and hence more people and products can be matched
[23,42,45].

Since the trust information in such a trust-enhanced
RS has a significant direct influence on the delivered
recommendations (both amount and quality), it is ben-
eficial for users to connect to other users in the trust
network as soon as possible (see e.g. [11,23]). This
is however not straightforward for CS users because
they are new to the system and they often do not know
which users will have the best impact on the generated
recommendations. As research has shown that interac-
tivity and transparency are two key factors to a bet-
ter understanding and acceptance of RSs (see e.g. [15,
37]), it is worthwhile to guide newcomers through this

0921-7126/08/$17.00 © 2008 – IOS Press and the authors. All rights reserved
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connection process by providing suggestions and by
explaining the effect of making trust connections.

In this paper, we identify different user classes in
the RS network as mavens (knowledgeable users who
write a lot of reviews), connectors (with a lot of con-
nections in the trust network), and frequent raters (who
rate a lot of reviews). We claim that it is more benefi-
cial for new users to connect to one of these key figures
as opposed to connecting to a random user. Verifying
this claim involves investigating both the quality (ac-
curacy) as well as the amount (coverage) of the deliv-
ered recommendations. This accuracy-coverage trade-
off is comparable to the precision-recall trade-off in
information retrieval. We deal with the problem on a
local level within the trust network. The main ques-
tions to be answered are:

1. If a cold start user a has a user b in his web
of trust, how does this affect the quality and the
amount of the recommendations generated for a?

2. Based on this, how can we quantify the accuracy
and the coverage impact of user b for cold start
user a?

3. What can we conclude about the impact of a par-
ticular key figure b for the cold start users in a
trust-enhanced recommender system in general?

As shorter propagation chains lead to more accurate
predictions, we propose to measure b’s impact on the
accuracy for a based on how often b is on a shortest
path from a to an item. To this end, we use a modifica-
tion of the well-known betweenness measure from so-
cial network analysis (SNA) [41]. Furthermore, user b
is vital for a when b rates a lot of items and these items
are only rated by b. Omitting such a high impact user
from the web of trust results in a fragmented network
with many items appearing in isolated fragments that
are not accessible anymore from a; hence we propose
a modification of an existing fragmentation measure to
assess the impact of b on the coverage for a.

In Section 2, we describe classical CF RSs and ex-
plain how trust-enhanced RSs can help alleviate the
CS problem. To benefit from these trust algorithms, a
new user needs to know which users are best to con-
nect to. In Section 3, we identify different classes of
key figures: mavens, connectors, and frequent raters.
To investigate the influence of these key figures on the
generated recommendations, in Section 4 we introduce
new measures that are based on the concepts of be-
tweenness and fragmentation. In Section 5, we show
by a number of experiments that it is more beneficial
for new users to connect to key figures rather than mak-

ing random connections. To evaluate the techniques we
propose in this paper, we use a large dataset from Epin-
ions,2 a prominent e-commerce site that gives users the
opportunity to include other users (based on their qual-
ity as reviewers of all kinds of consumer goods) in their
own web of trust (WOT). The results can be gener-
alised to other trust-based RSs. We conclude the paper
with a discussion of future research directions.

In [40], we reflected on a first effort of measuring
the impact of key figures in the Epinions trust network.
Although the dataset and the aim is the same, the re-
sults in this paper are substantially different from those
in [40] because we use different quality and coverage
measures that have a clear foundation in social network
analysis.

2. Related work

Recommender systems [1,33] are often used to ac-
curately estimate the degree to which a particular user
will like a particular item. Such algorithms come in
many flavours, such as content-based, collaborative fil-
tering and trust-based methods; the latter two being the
ones most relevant to our current efforts.

2.1. Classical CF RSs

Content-based systems suggest items similar to the
ones that the user previously liked. They tend to have
their recommendation scope limited to the immediate
neighbourhood of the users’ past purchase or rating
record. For instance, if a customer of a video rental
store has only ordered romantic movies, the system
will continue to recommend related items only, and not
explore other interests of the user. In this sense, RSs
can be improved significantly by (additionally) using
collaborative filtering [32], which typically identifies
users whose tastes are similar to those of the given user
and recommends items that they have liked.

CF algorithms produce a rating for an item i that is
new to a user a. This new rating is based on a com-
bination of the ratings of the nearest neighbours (sim-
ilar users) already familiar with item i. The classical
CF-formula is given by (1). The unknown rating pa,i
for an item i for a user a is predicted based on the mean
ra of ratings by a for other items, as well as on the rat-
ings ru,i by other users u for i. The formula also takes
into account the similarity wa,u between users a and u,

2www.epinions.com.
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usually calculated as Pearson’s Correlation Coefficient
(PCC) [19]:

pa,i = ra +
∑k

u=1 wa,u(ru,i − ru)∑k
u=1 wa,u

. (1)

Throughout this paper, the rating coverage for a
user a, or coverage for short, refers to the ratio of the
amount of items for which pa,i as in (1) can be calcu-
lated versus the total amount of items available in the
RS. For any RS algorithm, an increase in coverage is
only beneficial when the accuracy does not drop signif-
icantly, while an accuracy increase is not useful when
there are too few ratings that can be predicted. Hence,
coverage and accuracy results should be evaluated to-
gether.

The effectiveness (accuracy and coverage) of CF
based RSs is significantly affected by the number of
ratings available for each user: the more ratings are
available, the better the quality of the recommenda-
tions (see e.g. [35]). Moreover, generating recommen-
dations is only possible for users who have rated at
least two items because the PCC requires at least two
ratings per user. An important problem arises with cold
start users: being new users, they have rarely rated
a significant number of items, and since they usually
constitute a sizeable portion of the RS’s user commu-
nity (see e.g. [24]), it is very important to address this
problem. Consequently, it has received considerable at-
tention from the RS community in the last years.

Most of the approaches combine rating data with
content data to alleviate the CS problem, such as Mid-
dleton et al. [25] who work with information delivered
by ontologies, and Park et al. [30] who focus on sim-
ple filterbots. Ahn [2] and Huang et al. [21] only use
rating data: the former introduces a similarity measure
which takes into account the proximity of the ratings,
the rating impact and item popularity, while in the lat-
ter approach the set of CF neighbours is extended by
exploring transitive associations between the items and
users.

2.2. Trust-enhanced RSs

Trust-enhanced RSs can alleviate the CS problem by
using additional information coming from a trust net-
work in which the users are connected by trust scores
indicating how much they trust and/or distrust each
other. Such trust networks can be generated automati-
cally, e.g. inferred through the similarity of rating be-
haviour [29,31,42] or based on a user’s history of mak-

ing reliable recommendations [27]. Another approach
is to ask the RS’s users explicitely to issue trust state-
ments about other users [5,12,16,22,45]. A nice ex-
ample is Golbeck’s FilmTrust [12], an online social
network combined with a movie rating and review sys-
tem in which users are asked to evaluate their acquain-
tances on a scale from 1 to 10. The movie recom-
mender system uses the weighted mean of the item rat-
ings from a selected set of users; the weights represent
the trust that the target user has in the selected users.
FilmTrust is a non commercial venture, but trust-based
systems are also being used in e-commerce applica-
tions.

A well-known trust-enhanced example is
Epinions.com, an e-commerce site where users can
rate products and include users in their personal web
of trust. In [23,24], Massa et al. investigate how trust
can be incorporated into the CF process by conducting
experiments on a dataset from Epinions. They propose
a special case of (1) in which the weights wa,u are re-
placed by trust information ta,u [23]. The formula is
given by (2). In this approach, trust is interpreted as a
numerical value which ranges between 0 and 1, denot-
ing absence and full presence of trust, respectively.

pa,i = ra +
∑k

u=1 ta,u(ru,i − ru)∑k
u=1 ta,u

. (2)

The main strength of trust-enhanced recommender
systems is their use of trust propagation operators;
mechanisms to estimate the trust transitively by com-
puting how much trust an agent a has in another
agent c, given the value of trust for a trusted third party
(TTP) b by a and c by b. Although there is much debate
about the most suitable propagation operator(s), see
e.g. [11,14,18,23,34,44], all of them agree on the case
of atomic direct propagation, namely that if a trusts b
and b trusts c, then it is inferred that a trusts c.

Golbeck’s TidalTrust [11] and Massa’s MoleTrust
[22] are specifically designed for propagation of trust
only. They both choose multiplication as propagation
operator and take into account a maximum propaga-
tion depth and a minimum trust value below which
users are not allowed to interfere in the recommenda-
tion process, but the ways these two thresholds are de-
termined differ significantly.

Another, very recent, research path is the propaga-
tion of trust and distrust, which obviously requires new
propagation operators. For a short discussion we refer
to Section 6.
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By combining (propagated) trust information with
the available ratings, more users and (consequently)
more items get covered by the RS, even if only few
trust statements per user are available [23]. In partic-
ular, a prediction pa,i can be calculated when a trusts
at least one user u to a degree ta,u �= 0 and u already
rated i. It is demonstrated in [23] that the coverage for
CS users increases significantly when they connect to
the trust network.

As shown in e.g. [13,23], the trade-off between ac-
curacy and coverage turns out to be advantageous for
trust-enhanced RSs, and especially for CS users. Gol-
beck [13] and Massa et al. [23] report that using only
the information coming from trusted acquaintances,
and from users who are trusted by trusted people in
turn, makes the recommendations significantly more
accurate and also more personalized. Hence, it is ben-
eficial for a new user to connect to the trust network as
soon as possible. But, as demonstrated in the following
section, it is often the case that CS users in the clas-
sical sense (people who provided only a few product
ratings) are also CS users in the trust sense, meaning
that they issued only a few, or no trust statements at
all. Therefore, we propose to guide the new users dur-
ing the connection process by suggesting to connect to
key figures who have a positive impact on the coverage
while maintaining sufficient accuracy.

To our knowledge, no studies have been conducted
on the influence of key figures in a trust-based RS.
However, there exists some work on the impact of
CF users, in particular studies about identifying users
who influence the buying behaviour of other users and
hence boost the sales of particular items [3,9]. These
approaches differ from ours, as they do not specifically
measure the impact on the coverage and accuracy, and
do not focus on cold start users. Furthermore, we use
characteristics of trust-based CF networks to define the
key figures.

3. Users in the Epinions dataset

Epinions.com is a popular e-commerce site where
users can write reviews about products and assign a rat-
ing to them. Guha et al. [14] compiled a dataset con-
taining 1,560,144 reviews (written by 326,983 users)
that received 25,346,057 ratings by 163,634 different
users. Reviews are evaluated by assigning a helpful-
ness rating which ranges from ‘not helpful’ (1/5) to
‘most helpful’ (5/5). Note that we do not have infor-
mation about consumer products and product ratings,

but work with reviews and review ratings instead; in
other words, we evaluate a ‘review recommender sys-
tem’. Hence, in this context, an item denotes a review
of consumer goods.

3.1. Cold start users

We focus on users who have evaluated at least one
review. In this group, 59,767 users rated only one re-
view, 20,159 only two, 11,216 exactly three and 7322
exactly four. These cold start users constitute about
60% of all review raters in the Epinions community.
The relative numbers of users are given in Table 1
where the cold start users are denoted by CS1 (exactly
one review), CS2 (two reviews), CS3 and CS4.

Besides evaluating reviews, users can also evaluate
other users based on their quality as a reviewer. This
can be done by including them in their WOT (i.e., a list
of reviewers whose reviews and ratings were consis-
tently found to be valuable3) or by putting them in
their block list (i.e. a list of authors whose reviews
were consistently found to be offensive, inaccurate or
low quality,3 thus indicating distrust). These evalua-
tions make up the Epinions WOT graph consisting of
131,829 users and 840,799 non self-referring trust or
distrust relations (see also [14]). About 85% of the
statements are labelled as trust, which is reflected in
the average number of users in a WOT (5.44) and in a
block list (0.94). Due to the large portion of trust state-
ments, we focus on trust information only in the re-
mainder of the paper.

The trust graph consists of 5866 connected compo-
nents (i.e., maximal undirected connected subgraphs).
The largest component (LC) contains 100,751 users,
while the size of the second largest component is
only 31. Hence, in order to receive more trust-en-
hanced recommendations, users should connect to the
largest component. But as shown in Table 1, this cluster
does not even contain half of the cold start users. This,
combined with the fact that cold start users evaluate
only a few users (as shown in the third and fourth row

Table 1

CS users in the dataset

CS1 CS2 CS3 CS4

% of review raters 36.52 12.32 6.85 4.47

% in LC 18.43 30.85 38.34 44.88

Mean # trust rel 0.27 0.51 0.72 0.99

Mean # distrust rel 0.03 0.05 0.06 0.09

3www.epinions.com/help/faq/, accessed on February 12, 2008.
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of Table 1), illustrates that cold start users in the clas-
sical sense are very often cold start users in the trust
sense as well.

Better results can be expected when newcomers con-
nect to a large component of the trust graph, but they
may encounter difficulties in finding the most suitable
people to connect to. Therefore, we define three user
classes and locate them in the network.

3.2. Key figures

The first class of key figures are mavens, people who
write a lot of reviews. This term is borrowed from
Gladwell’s book [10] in which mavens are defined as
knowledgeable people who want to share their wisdom
with others. Out of the three user classes mavens are
the most visible, and hence the ones which are the eas-
iest to evaluate: the more reviews someone writes, the
better a new user can form an opinion on him and de-
cide to put him in his personal WOT or not.

Unlike mavens, frequent raters are not always so
visible. They do not necessarily write a lot of reviews
but evaluate a lot of them, and hence are an important
supplier for the recommender system: it is not possible
to generate predictions without ratings. By including
a frequent rater in a trust network, more items can be
reached, which has a direct influence on the coverage
of the system.

While mavens and frequent raters are not necessar-
ily bound to the trust network, connectors are: they
connect a lot of users and occupy central positions in
the trust network. Such users issue a lot of trust state-
ments (many outlinks) and are often at the receiving
end as well (many inlinks). The strength of connectors
lies not in their rating capacity or visibility, but in their
ability to reach a large group of users through trust
propagation. When a trust-enhanced algorithm has to
find a path from one user to another, a connector will
be part of the propagation chain more often than a
random user, and propagation chains containing con-
nectors will on average be shorter than other chains.
Shorter chains have a positive influence on the accu-
racy of the trust estimations and recommendations, as
discussed in [11].

Figure 1 shows a diagram with examples of each
type: the darker the node, the more reviews the user
wrote (maven). The larger the node, the more reviews
the user evaluated (frequent rater). The trust network is
denoted by the arrows representing trust relations; con-
nectors are characterized by many incoming and out-
going arrows.

Fig. 1. Key figures example.

Fig. 2. Number of reviews written vs. number of authors.

In the Epinions dataset, we define a maven as some-
one who has written at least 100 reviews (M-100+),
a frequent rater as someone who has evaluated at
least 2500 reviews (F-2500+), and a connector as
someone who has an in+out degree of at least 175
(C-175+). With these definitions,4 the community
contains 1925 mavens, 1891 frequent raters and
1813 connectors. These thresholds are chosen for a
number of reasons. Firstly, the characteristics of the
key figures must be distinctive. For example, among
all authors (i.e., users who wrote at least one review),
the average number of reviews written is 4.77 while the
maximum is 1496. Obviously, a user who has written
merely 5 reviews cannot be regarded as a maven. Fig-
ure 2 shows the distribution of the number of reviews
per author; there are over 300,000 authors. The users
who wrote more than 100 reviews constitute about
0.6% of all review writers, which we consider a good
representation of the ‘true’ mavens: they certainly ex-
hibit the desired behaviour and the size of the group is
still large enough to diversify (we refer to Section 5.3
for a further discussion on this topic). The thresholds
for frequent raters and connectors are obtained analo-
gously, each of them representing about 1% of the cor-
responding user sets: the F-2500+ and C-175+ sets

4Note that we cannot refine the definitions by taking into account
additional information such as the length or the class of the reviews,
because the dataset does not contain any other information.
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Fig. 3. Reviews written vs. evaluations received.

constitute about 1.2% of the raters and 1.4% of the trust
graph members respectively. Secondly, the thresholds
are also chosen such that the different key figure sets
have similar sizes; this enables us to perform the analy-
sis in the following paragraph in a fairer way. In Sec-
tion 5, we experiment with other thresholds as well.

The sets of connectors and mavens share a large
number of users, which is not surprising because
mavens are visible through the reviews they write,
making it more likely for others to connect to them
by trust statements. This is illustrated by Fig. 3: the
horizontal axis corresponds to the number of reviews
a user has written; the more to the right a user is,
the more of a maven he is. The vertical axis cor-
responds to the number of evaluations a user has
received. The higher someone is on that axis, the
more inlinks he receives (and the more of a connec-
tor he will be). In particular, the conditional proba-
bility P (M-100+|C-175+) ≈ 0.52. More surprising
is the relation between connectors and frequent raters,
namely P (F-2500+|C-175+) ≈ 0.64. The intersection
of the maven set and the frequent rater set also contains
many users (933), so there clearly is a strong overlap
between the different groups of key figures. This indi-
cates that users who are active on one front are often
active on other fronts as well.

Note that these findings may be influenced by Epin-
ions’ ‘Income Share program’ and the benefits of being
selected as a category lead, top reviewer or advisor.5

Some of these classes are related to the key figures we
defined, though our approach for identifying key fig-

5www.epinions.com/help/faq/show_~faq_recognition, accessed
on February 12, 2008.

ures only relies on objective data, while the selection in
the Income Share program is partially subjective. Note
that Epinions’ interface also has an impact on the visi-
bility and relatedness of the user classes.

Although their characteristics may be influenced by
the specific situation, the three user classes can be de-
tected in many kinds of trust-based RSs, and hence the
results in the remainder of the paper can easily be gen-
eralised. In the following sections, we investigate the
impact of the identified key figure types in the trust net-
work by means of new social network analysis mea-
sures.

4. Measuring the impact of trusted users

In this section we tackle the first two questions
raised in the introduction: we zoom in on a user a and
we inspect a user b in the web of trust of a. More in
particular, we propose a way to quantify the impact of b
on the coverage and the accuracy of the recommenda-
tions generated for a through the trust network. In the
remainder, we use WOT(a) to denote the web of trust
of a. A straightforward approach is to remove b from
WOT(a) and to compare the accuracy and the coverage
in the resulting network with the initial situation.

A classical way to measure the accuracy of rec-
ommendations is by using the leave one out method,
which consists of hiding a rating first and then predict-
ing its value and determining the deviation. In particu-
lar, the mean absolute error (MAE) metric [19] is com-
puted as in Eq. (3): N denotes the number of avail-
able ratings for a, ra,i the actual rating and pa,i the
predicted rating:

MAE(a) =
∑N

i=1 |pa,i − ra,i|
N

. (3)

Better prediction algorithms have lower MAE’s. The
accuracy change AC(b, a) is obtained by subtracting
the MAE after excluding the ratings and trust links pro-
vided by b, from the MAE when taking into account all
available ratings and links.

Definition 1 (Accuracy change). The change in accu-
racy caused by user b for user a is defined as:

AC(b, a) = MAE(a) − MAE(a, −b),

in which MAE(a, −b) denotes the MAE when b is omit-
ted from WOT(a).
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Consequently, a positive AC denotes higher predic-
tion errors when taking into account the ratings and
links provided by user b. Formula (3) only takes into
account items i for which a rating ra,i is available.
Since the problem with cold start users in the first place
is that they have rated only very few items, the value
of N in (3) is typically low. Even worse: for a cold start
user a who rated only one item so far, the leave one
out method can not even be used as it hides the sole
rating available for a, leaving the recommender system
clueless. In Section 4.1, we therefore propose the use
of a betweenness measure as a more informative way
to assess the impact of user b on the accuracy for a.

The coverage for a relates to the number of items
that are accessible from a, either directly or through
trust propagation. In the remainder, let Acc0(a) denote
the set of items that are rated by a, i.e. the set of items
that are accessible from a in zero propagation steps.
Through propagation, more items can become accessi-
ble from a. We use Accn(a) to denote the set of items
that are accessible in n steps from a but not less, i.e.,
items i that have n intermediary nodes on the shortest
path from a to i.

Definition 2 (Accessible items). The set of items ac-
cessible from a in n propagation steps, but not less, is
defined as

Acc0(a) = {i | item i is rated by a},

Accn(a) =
⋃

{Accn−1(u) | u ∈ WOT(a)}

∖ ⋃
{Acck(a) | k = 0, . . . , n − 1}.

Note that |Accn(a)| is the number of new items for
which a rating can be predicted with (2) using n propa-
gation steps. In a similar way we define Accn(a, −b) as
the set of items still accessible from a after omitting b
from a’s web of trust.

Definition 3 (Accessible items after omission).

Acc0(a, −b) = Acc0(a)

Accn(a, −b)

=
⋃

{Accn−1(u) | u ∈ WOT −b(a)}

∖ ⋃
{Acck(a, −b) | k = 0, . . . , n − 1},

in which WOT −b(a) = WOT(a) \ {b}.

Note that normalizing the difference |Acc1(a)| −
|Acc1(a, −b)| by dividing it by the total amount of
items available in the RS results in very small val-
ues as a RS typically contains thousands of items. In-
stead of looking at the number of items still accessi-
ble from a after the removal of b and relating this to
the total amount of items in the RS, we therefore focus
on the number of items that is lost when b is omitted
from a’s web of trust, and relate this to the total number
of items accessible from a. To this end we propose in
Section 4.2 an adaptation of an existing fragmentation
measure.

4.1. Betweenness

As shorter propagation chains yield more accurate
predictions, one way of measuring the impact of users
is by counting how often they are on shortest paths
leading to items. To quantify this, we use the following
measure which is inspired by the well known between-
ness measure, commonly used to locate users who have
a large influence on the flow in a network (see e.g. [7,
8,41]).

Definition 4 (Betweenness). Let a be a user and b a
member of WOT(a). The betweenness of b for a on
level n is defined as:

Bn(b, a) =
1

|Accn(a)|
∑

i∈Accn(a)

(
τai(b)
τai

)
,

in which τai is the number of different shortest paths
from user a to item i and τai(b) is the number of those
shortest paths that contain b.

Note that Bn(b, a) ∈ [0, 1]. Also remark that a short-
est path from a to i containing b always contains the
edge from a to b as its first link.

Example 1. In the first scenario in Fig. 4, 3 items are
accessible from a. b1 is on the only shortest path from a
to i1 as well as on one of the two shortest paths from a

Fig. 4. Example: scenarios 1 and 2.
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to i2, hence we obtain:

B1(b1, a) =
1
3

·
(

1 +
1
2

)
=

1
2
.

Similarly, B1(b2, a) = 1/2. However, when focus-
ing on items reached in an additional propagation step
(scenario 2), the betweenness of b1 and b2 is no longer
equal. Because b1 connects to more users, a can reach
more items through b1 than through b2. In other words,
b1 is more of a connector than b2: B2(b1, a) = 8/11,
while B2(b2, a) = 3/11. In the above we presuppose
that all items on level 2 are different from i1, i2 and i3.
Note that if, e.g., i3 were one of the two items rated
by b5, the betweenness of b1 would decrease (7/10)
because he is not on the shortest path to i3.

This example illustrates that betweenness rewards
connectors. If user b is the only one in a’s web of trust
to have rated a particular item i, then for that i the
maximal value of τai(b)/τai is added, namely 1. In this
sense, betweenness also rewards frequent raters who
contribute to the coverage.

Bn(b, a) gives an indication of the absolute impact
of b on the coverage of the recommendations for a, but
it does not provide information on how b compares to
other members of a’s WOT. However, this is a deter-
mining factor for the real impact of b on the recommen-
dations generated for a. A strong WOT contains strong
users who rate many items and link to other strong
users. Adding b to such a WOT is less beneficial than
adding b to a weak WOT: in the latter case, a will of-
ten reach more previously unreachable items through b,
whereas less items are unreachable in a strong WOT
(thanks to the strong members). In other words, b will
have a more significant influence when a has a weak
WOT. We can represent the WOT strength by the be-
tweenness of the best user of the WOT besides the key
figure, and compare this value to the betweenness of
the key figure.

Definition 5 (Betweenness utility). The betweenness
utility of user b for user a on level n is defined as:

BUn(b, a) = Bn(b, a) − max
u∈WOT −b(a)

Bn(u, a).

4.2. Fragmentation

Instead of focusing on shortest paths, user b’s influ-
ence can also be measured by the reduction in cohe-
sion of the network which occurs if b is deleted from
a’s WOT. User b is vital for a when he rates a lot of
items and when a lot of these items are only rated by b.

Deleting such a high impact user from a WOT results
in a fragmented network with many items appearing
in isolated fragments. For a user a we study the frag-
mentation in the undirected graph corresponding to the
network like the ones depicted in Fig. 4, i.e., the graph
that contains as its nodes all users and items accessible
from a in zero or more propagation steps, and the links
that lead to them as its edges.

Example 2. In the first as well as in the second sce-
nario of Fig. 4 all items are initially in one fragment. If
we remove b1 from WOT(a) in the first scenario, two
fragments arise, namely {i1} and {i2, i3}. Similarly, in
the second scenario, 9 fragments (of which 8 are is-
lands, i.e. containing only 1 item) are obtained after
deleting the edge from a to b1.

To quantify the fragmentation impact, we count the
number of pairs of items that become disconnected
from each other, i.e., items that are in separate frag-
ments after removal of b. Note that a fragment contain-
ing s items contains exactly s · (s − 1) connected item
pairs, since all items in the same fragment are con-
nected to each other. The following measure, which is
a modification of the traditional fragmentation measure
(see e.g. [4,6]), is based on this.

Definition 6 (Fragmentation). Let a be a user and b a
member of WOT(a). The fragmentation of b for a on
level n is defined as

Fn(b, a) = 1 −
∑k

j=1 sj(sj − 1)

|Accn(a)| · (|Accn(a)| − 1)
,

in which k is the number of fragments after removing b
from WOT(a), and sj is the number of items in the jth
fragment.

The numerator describes the situation after the re-
moval of b: there are k fragments and each jth frag-
ment contains sj · (sj − 1) pairs of connected items,
hence the numerator is the total number of connected
item pairs after removal of b. The denominator on the
other hand describes the original state of the network,
i.e. before omitting b from WOT(a): all |Accn(a)| items
are in the same fragment (i.e. minimal fragmentation)
and this fragment contains |Accn(a)| · (|Accn(a)| − 1)
connected item pairs.

A user b who has only rated items that are also reach-
able through other users will yield Fn(b, a) = 0, be-
cause the situation after deletion does not differ from
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the minimal fragmentation situation. In other words,
the fragmentation measure rewards b’s original con-
tribution to the coverage for a: when b is removed
from WOT(a), items that have only been rated by b be-
come separate fragments. The more islands, the more
Fn(b, a) approaches 1, the ideal situation. Note that
Fn(b, a) ∈ [0, 1].

Example 3. In the first scenario of Fig. 4 it holds that

F1(b1, a) = F1(b2, a) =
2
3
.

In the second scenario of Fig. 4, we obtain F2(b1, a) =
104/110 ≈ 0.95 while F2(b2, a) = 54/110 ≈ 0.49,
which reflects that b1 plays a more vital role than b2 in
the web of trust of a.

Much work has been done on the vulnerability
of networks to disconnection. A large part of it fo-
cuses on cutpoint problems, such as the min-k-cut or
the min-k-vertex sharing problem (e.g. [26]). The lat-
ter tries to minimize the number of deleted users to
achieve a k-way partition. This problem is complemen-
tary to ours, as we know the number of users to be
deleted: in our experiments we typically remove one
user from the WOT and study the effect.

When assessing the influence of a particular user, it
is best to take into account fragmentation and between-
ness together: users that have an equal fragmentation
score might still be distinguished based on between-
ness, and vice versa.

Example 4. For scenario 3 in Fig. 5 we obtain:

F1(b1, a) = 6/12, B1(b1, a) = 3/8,

F1(b2, a) = 0, B1(b2, a) = 2/8,

F1(b3, a) = 6/12, B1(b3, a) = 3/8

while in scenario 4 it holds that:

F1(b1, a) = 0, B1(b1, a) = 3/8,

F1(b2, a) = 0, B1(b2, a) = 1/8,

F1(b3, a) = 6/12, B1(b3, a) = 4/8.

If we focus on fragmentation only, then the influence
of b3 is the same in both scenarios. However, it is clear
that b3 in scenario 4 is more beneficial, because he has
rated more items, and more item ratings help to obtain
more accurate predictions. This is reflected in the be-
tweenness value for b3, which is higher in scenario 4.

Fig. 5. Example: scenarios 3 and 4.

Analogously, although b1 has the same betweenness in
both scenarios, it is clear that he is more beneficial in
scenario 3, since in scenario 4 all items rated by b1 can
also be reached through other users. This is reflected
by a higher fragmentation value for b1 in scenario 3.

Although in theory the fragmentation impact of b
for a can range from 0 to 1, in practice its upper bound
is determined by the behaviour of all users in a’s web
of trust, more in particular by the number of items that
they rated in common. While for the betweenness mea-
sure different users can score well simultaneously by
occurring frequently on (different) shortest paths, for
the fragmentation score they are in competition with
each other. Fragmentation rewards original contribu-
tions, so the more items are rated by more than one
user, the harder it is for individual users to achieve a
high fragmentation score. We call the practical upper
bound on Fn(b, a) the room for originality. It is defined
as:

F max
n (a) = 1 − |Comn(a)| · (|Comn(a)| − 1)

|Accn(a)| · (|Accn(a)| − 1)
,

in which Comn(a) represents the set of items in
Accn(a) that are accessible through more than one user
of a’s WOT:

Comn(a) =
⋂

{Accn(a, −x) | x ∈ WOT(a)}.

Note that F max
n is the same for all users in a’s web of

trust. F max
n is reached when a single user of WOT(a)

reaches all non common items. This corresponds to the
maximal fragmentation situation possible in practice.

Example 5. In scenario 4 of Fig. 5, there is only one
non common item, which is reached by b3. Com1(a) =
{i1, i2, i3}, hence

F max
1 (a) = 1 − 3 · 2

4 · 3
=

1
2
.

This value is indeed reached at F1(b3, a) = 1/2. In sce-
nario 1 of Fig. 4 on the other hand, Com1(a) = {i2}.
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In this case F max
1 (a) is 1 which indicates that there is

more room for original contribution than in scenario 4.
Even though in absolute terms F1(b1, a) = 2/3 from
scenario 1 is higher than F1(b3, a) = 1/2 from sce-
nario 4, user b3 from scenario 4 exhibits a stronger be-
haviour as he filled the room for original contribution
maximally while user b1 from scenario 1 only managed
to fill two thirds.

We take these considerations into account by nor-
malizing the fragmentation utility w.r.t. the room for
originality. Note that FUn as well as BUn range
from −1 to 1.

Definition 7 (Fragmentation utility). The fragmenta-
tion utility of user b for user a on level n is defined
as:

FUn(b, a)

=
Fn(b, a) − maxu∈WOT −b(a) Fn(u, a)

F max
n (a)

.

5. Results and discussion

To answer the third question raised in the introduc-
tion, we performed two kinds of experiments to in-
vestigate the influence of key figures on the coverage
and accuracy of CS recommendations. Table 2 gives an
overview of the measures we evaluated.

5.1. Contribution of key figures

In the first experiment, we analyse the role of key
figures in a cold start user’s WOT and compare them
with random WOT members. To this aim, we only con-
sider CS users who have exactly one key figure of a
specific type in their WOT. For instance, the set of CS2
users who are connected with exactly one maven of
type M-1000+. We denote such a set as U and repre-
sent a user of U by a. The corresponding key figure is
denoted by ka, and a randomly chosen member of a’s
WOT by ra, i.e., ra ∈ WOT(a) \ {ka}. The results for
the SNA measures in this experiment can be found in
Tables 3–5. A column (row) corresponds to a specific

Table 2

Notations used in Sections 4 and 5

k Superscript for key figure r Superscript for random WOT user

a Superscript for best alternative WOT user

AC(b, a) Accuracy change AAC Average accuracy change

Bn(b, a) Betweenness Fn(b, a) Fragmentation

ABn Average betweenness AFn Average fragmentation

BUn(b, a) Betweenness utility FUn(b, a) Fragmentation utility

DBU(a) Betweenness utility difference between DFU(a) Fragmentation utility difference between

BU(random key, a) and BU(random active, a) FU(random key, a) and FU(random active, a)

ADBU Average betweenness utility difference ADFU Average fragmentation utility difference

Table 3

Evaluation for frequent raters (F), mavens (M) and connectors (C) on L1. Experiment 1, average betweenness and fragmentation for the key
figure

Type (#) ABk
1 (σB ) AFk

1 (σF )

CS1 CS2 CS3 CS4 CS1 CS2 CS3 CS4

F-100000 (2) 0.90 (0.20) 0.86 (0.25) 0.85 (0.27) 0.85 (0.24) 0.94 (0.20) 0.88 (0.26) 0.88 (0.28) 0.90 (0.21)

F-50000 (36) 0.85 (0.26) 0.83 (0.25) 0.80 (0.26) 0.80 (0.29) 0.89 (0.25) 0.88 (0.24) 0.87 (0.25) 0.85 (0.28)

F-10000 (459) 0.89 (0.26) 0.85 (0.28) 0.84 (0.28) 0.83 (0.28) 0.92 (0.24) 0.89 (0.26) 0.89 (0.26) 0.89 (0.26)

F-2500 (1394) 0.85 (0.31) 0.80 (0.34) 0.73 (0.39) 0.71 (0.38) 0.88 (0.29) 0.84 (0.32) 0.77 (0.37) 0.76 (0.36)

M-1000 (11) 0.75 (0.34) 0.75 (0.31) 0.69 (0.36) 0.72 (0.35) 0.80 (0.33) 0.82 (0.28) 0.75 (0.35) 0.77 (0.35)

M-500 (77) 0.80 (0.33) 0.73 (0.37) 0.68 (0.38) 0.70 (0.36) 0.84 (0.31) 0.78 (0.35) 0.74 (0.36) 0.75 (0.35)

M-100 (1837) 0.91 (0.24) 0.85 (0.30) 0.83 (0.32) 0.81 (0.33) 0.93 (0.22) 0.89 (0.27) 0.87 (0.30) 0.85 (0.30)

C-1000 (47) 0.88 (0.24) 0.82 (0.28) 0.79 (0.30) 0.79 (0.31) 0.92 (0.22) 0.88 (0.23) 0.85 (0.28) 0.85 (0.28)

C-500 (253) 0.81 (0.33) 0.78 (0.34) 0.72 (0.36) 0.74 (0.34) 0.84 (0.31) 0.83 (0.32) 0.78 (0.34) 0.81 (0.31)

C-175 (1513) 0.86 (0.30) 0.80 (0.35) 0.77 (0.36) 0.72 (0.38) 0.89 (0.27) 0.83 (0.33) 0.82 (0.33) 0.77 (0.36)
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Table 4

Evaluation for frequent raters, mavens and connectors on L1. Experiment 1, average betweenness and fragmentation for a random WOT member

Type (#) ABr
1 (σB ) AFr

1 (σF )

CS1 CS2 CS3 CS4 CS1 CS2 CS3 CS4

F-100000 (2) 0.07 (0.19) 0.01 (0.02) 0.05 (0.15) 0.04 (0.15) 0.09 (0.20) 0.06 (0.16) 0.09 (0.22) 0.03 (0.08)

F-50000 (36) 0.14 (0.26) 0.08 (0.15) 0.11 (0.20) 0.13 (0.25) 0.19 (0.27) 0.14 (0.22) 0.14 (0.24) 0.16 (0.26)

F-10000 (459) 0.17 (0.30) 0.16 (0.29) 0.13 (0.24) 0.12 (0.23) 0.21 (0.33) 0.18 (0.28) 0.16 (0.27) 0.17 (0.28)

F-2500 (1394) 0.21 (0.33) 0.23 (0.34) 0.23 (0.34) 0.21 (0.32) 0.27 (0.37) 0.27 (0.37) 0.30 (0.39) 0.24 (0.35)

M-1000 (11) 0.21 (0.33) 0.15 (0.22) 0.17 (0.28) 0.16 (0.28) 0.24 (0.33) 0.21 (0.27) 0.22 (0.32) 0.18 (0.29)

M-500 (77) 0.19 (0.30) 0.20 (0.30) 0.18 (0.29) 0.15 (0.26) 0.26 (0.35) 0.26 (0.33) 0.22 (0.33) 0.20 (0.30)

M-100 (1837) 0.21 (0.33) 0.20 (0.32) 0.23 (0.34) 0.19 (0.32) 0.26 (0.36) 0.26 (0.36) 0.28 (0.38) 0.25 (0.36)

C-1000 (47) 0.13 (0.24) 0.12 (0.21) 0.11 (0.21) 0.14 (0.26) 0.14 (0.25) 0.15 (0.25) 0.14 (0.23) 0.14 (0.25)

C-500 (253) 0.22 (0.33) 0.20 (0.31) 0.17 (0.28) 0.15 (0.24) 0.28 (0.36) 0.26 (0.35) 0.23 (0.32) 0.21 (0.31)

C-175 (1513) 0.25 (0.34) 0.24 (0.35) 0.25 (0.35) 0.25 (0.35) 0.30 (0.39) 0.31 (0.38) 0.29 (0.39) 0.31 (0.39)

Table 5

Evaluation for frequent raters, mavens and connectors on L1. Experiment 1, average betweenness and fragmentation for the best alternative WOT
member

Type (#) ABa
1 (σB ) AFa

1 (σF )

CS1 CS2 CS3 CS4 CS1 CS2 CS3 CS4

F-100000 (2) 0.10 (0.20) 0.08 (0.16) 0.12 (0.22) 0.11 (0.18) 0.11 (0.20) 0.09 (0.17) 0.13 (0.24) 0.10 (0.15)

F-50000 (36) 0.13 (0.24) 0.14 (0.20) 0.16 (0.23) 0.18 (0.27) 0.15 (0.26) 0.18 (0.24) 0.21 (0.25) 0.22 (0.29)

F-10000 (459) 0.10 (0.25) 0.14 (0.27) 0.14 (0.26) 0.15 (0.26) 0.13 (0.28) 0.18 (0.30) 0.18 (0.30) 0.20 (0.30)

F-2500 (1394) 0.13 (0.28) 0.18 (0.32) 0.24 (0.35) 0.26 (0.35) 0.16 (0.32) 0.22 (0.36) 0.29 (0.40) 0.32 (0.39)

M-1000 (11) 0.20 (0.29) 0.20 (0.25) 0.24 (0.30) 0.22 (0.29) 0.24 (0.33) 0.28 (0.32) 0.30 (0.34) 0.26 (0.31)

M-500 (77) 0.17 (0.30) 0.23 (0.32) 0.27 (0.33) 0.24 (0.29) 0.21 (0.34) 0.28 (0.36) 0.33 (0.37) 0.31 (0.35)

M-100 (1837) 0.09 (0.23) 0.14 (0.29) 0.16 (0.30) 0.18 (0.31) 0.11 (0.27) 0.17 (0.32) 0.19 (0.34) 0.22 (0.36)

C-1000 (47) 0.09 (0.20) 0.15 (0.24) 0.17 (0.24) 0.18 (0.27) 0.12 (0.24) 0.19 (0.28) 0.22 (0.29) 0.22 (0.31)

C-500 (253) 0.17 (0.30) 0.19 (0.30) 0.24 (0.32) 0.22 (0.30) 0.21 (0.34) 0.24 (0.35) 0.30 (0.36) 0.29 (0.36)

C-175 (1513) 0.13 (0.28) 0.19 (0.33) 0.21 (0.33) 0.26 (0.36) 0.16 (0.32) 0.22 (0.37) 0.25 (0.38) 0.31 (0.40)

user group (key figure), e.g., a M-100 is a maven who
wrote at least 100 and at most 499 reviews.

Table 3 contains the average betweenness and frag-
mentation values of a key figure (ABk

1 and AFk
1 resp.),

while Table 4 contains the average betweenness and
fragmentation of a random other WOT member (ABr

1
and AFr

1). Finally, Table 5 contains the results for the
best alternative user (ABa

1 and AFa
1 ). Note that ABa

1 and
AFa

1 represent the average WOT strength.
The formula for the average betweenness value of

the key figures for cold start users who are connected
with exactly one key figure of a certain type is given
by (4); the other formulas are analogous:

ABk
1 =

∑
a∈U B1(ka, a)

|U | . (4)

For each table we also included the standard devia-

tions, which are denoted by σB and σF for the be-
tweenness and fragmentation averages respectively.

A key figure is clearly very influential for a CS
user, with an average ABk

1 of 0.80 and an average AFk
1

of 0.84. As expected, the betweenness and fragmenta-
tion values for a random WOT user are significantly
lower. Frequent raters score somewhat higher than con-
nectors and mavens, with an average ABk

1 of 0.83 and
an average AFk

1 of 0.87. This is not surprising because
frequent raters are the real suppliers for the RS. Hence,
it is more difficult for members of such a WOT (con-
taining a frequent rater) to obtain a high betweenness
and fragmentation value, than for members of another
WOT. This explains why ABa

1 and AFa
1 are generally

lower for CS users connected to a frequent rater. For
instance, ABa

1 is on average 0.15 for frequent raters, as
opposed to 0.18 and 0.20 for connectors and mavens,
respectively.
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Fig. 6. Experiment 1, average betweenness and fragmentation utility.

Figure 6 depicts the course of the average between-
ness and fragmentation utility of the different key fig-
ure types. Recall that the utility compares the impact
of the key figure (Bk

1 and F k
1 ) to that of the best al-

ternative user in the WOT (Ba
1 and F a

1 ). For the frag-
mentation utility values, also another contextual factor
is taken into account, namely the room for originality.
We did not include the originality results, as all of them
approach to 1.

The figure clearly shows us that the use of having
a key figure in a WOT decreases as the new user be-
comes more active. Indeed, as is illustrated in Table 1,
more active CS users rate more items and issue more
trust statements; consequently, the WOT sizes become
larger. This means that there is a higher chance that
one of the WOT members is a stronger user, yielding
higher values for Ba

1 and F a
1 , and lower values for the

key figures.
We claimed that including connectors in a WOT

yields shorter propagation chains because they connect
more users and reach more reviews. Therefore, besides
the above experiment (level 1, L1), we also measured
the influence of coverage by propagating trust informa-
tion one step (level 2, L2). Specifically, this means that
if a trusts b and b trusts u, ta,u in (2) equals 1.

For example, the results for CS3 and fragmentation
are shown in Table 6. As can be seen, the average F2
values are actually lower than their L1-counterparts.
However, it is important to realize that the amount of

Table 6

Evaluation of connectors for CS3 users on L2, experiment 1

C-1000 C-500 C-175

AFk
1 0.85 0.78 0.82

AFk
2 0.58 0.66 0.77

AFUk
1 0.63 0.48 0.56

AFUk
2 0.70 0.67 0.71

AFa
1 0.22 0.30 0.25

AFa
2 0.16 0.18 0.18

Avg. F max
1 1.00 1.00 1.00

Avg. F max
2 0.60 0.67 0.77

new items that is provided e.g. by a C-500 via one step
propagation is almost 20 times the amount delivered by
a C-500 on the first level; for instance, for CS3 users
connected to a C-500, Acc1 contains 33,102 reachable
items, while Acc2 contains 641,758 items. Hence, the
lower values can be explained by the fact that more
items reached through the connector are also reached
through other WOT members, which is illustrated by
the lower F max values on level 2.

On the other hand, the average fragmentation utility
AFUk increases compared to level 1. As indicated by
the last four rows of the table, this is due both to weaker
AFa

1 values, and to the fact that there is less room left
for originality on level 2. To conclude, it is clear that
trust propagation and connectors have a strong positive
impact on the coverage of the RS.

As mentioned earlier, an increase in coverage is ben-
eficial only to the extent that the accuracy does not drop
significantly. Therefore, the average AC values (AAC,
see formula (5)), were also computed and are shown in
Table 7:

AAC =
∑

a∈U AC(ka, a)

|U | . (5)

Note that no results are generated for the CS1 group:
formula (2) uses the mean of a user’s ratings, but the
leave one out method already hides the sole rating of a
CS1 user.

Since items are rated on a scale from 1 to 5, the ex-
treme values of AC and AAC are −4 and 4. Because
we use the leave one out method, we can only take
into account items that are rated by the cold start user,
i.e., items of Acc0. Hence, on level 1, AAC measures
the average accuracy change for items that are immedi-
ately accessible through users of a WOT-list, i.e., items
that are in Acc0 and in Acc1. On level 2, we consider
items that become accessible through trust propagation
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Table 7

Experiment 1, average accuracy change

Type AC

CS2 CS3 CS4

F-100000 −0.23 0.04 0.08

F-50000 −0.04 −0.09 0.05

F-10000 0.16 −0.02 0.00

F-2500 −0.06 0.03 −0.03

M-1000 0.05 −0.14 −0.12

M-500 0.02 −0.01 0.04

M-100 0.16 0.08 0.04

C-1000 (L1) 0.01 0.04 0.02

C-500 (L1) 0.06 −0.05 0.05

C-175 (L1) 0.01 0.03 −0.04

C-1000 (L2) 0.07 0.03 0.05

C-500 (L2) −0.01 0.00 0.02

C-175 (L2) −0.01 0.00 −0.04

(items in Acc0 and in Acc2, but not in Acc1); the val-
ues are obtained by subtracting the MAE of the predic-
tions generated by information reached through TTPs
(trusted third parties) other than the connector, from
the MAE of the predictions based on all TTPs (includ-
ing the connector). Hence, positive accuracy changes
denote higher prediction errors when taking into ac-
count the key figure.

The results on level 1 demonstrate that the absence
or presence of a key figure in a WOT does not signifi-
cantly affect the accuracy. In other words, the key fig-
ures have a positive effect on the coverage (as shown
above), while maintaining sufficient accuracy. The re-
sults for L2 lead to the same conclusion.

5.2. Benefit over random users

The number of users in experiment 1 is fairly small
compared to the total number of CS users; for exam-
ple, 84.36% of the CS4 users have no F-2500 in their
WOT, as opposed to 7.34% whose WOT contains ex-
actly one. To take into account a larger group of users,
we also conducted an experiment with groups of cold
start users who have no key figure of a particular type
in their WOT. We denote such a group by U . The goal
of the experiment is then to investigate the effect of
adding a key figure to such a CS user’s WOT. For in-
stance, we connect a M-100, M-500 or M-1000 to each
CS2 user whose WOT does not contain a maven.

In particular, for one experiment, we calculate for
each user a in a given group U the difference DFU(a)
between the fragmentation utilities FU1(b1, a) and

FU1(b2, a), in which b1 represents a randomly chosen
key figure of a given type and b2 a randomly chosen
member of the set of all active users; active users are
those who rated at least one user or one item, hence
this set contains key figures as well. Analogously, DBU
is defined for betweenness. In other words, DFU and
DBU measure the extra gain when connecting to a key
figure instead of to a random user.

Figures 7 and 8 depict the average utility differences
ADFU and ADBU for each user group when a specific
key figure is added to the WOT. The formula for ADFU
is given by (6), the formula for the average between-
ness utility difference is analogous:

ADFU =
∑

a∈U DFU(a)

|U |

=
∑

a∈U (FU1(b1, a) − FU1(b2, a))

|U | . (6)

Connecting to a key figure is clearly more beneficial
than connecting to a random user. For instance, the
fragmentation utility of an added key figure increases
on average with 0.41 compared to the utility of the ran-
domly added user.

The figures also show that, in general, the more ac-
tive the key figure is, the more advantageous it is to
have such a user in a WOT. For instance, users who
are connected with a F-10000+ have a larger DFU
and DBU than users connected with a F-2500. This
phenomenon also occurs with mavens and connectors,
which confirms once again that users who are active on
one front (being a maven or connector) are often ac-
tive on other fronts as well (being a frequent rater, i.e.,
boosting the number of accessible items).

Note that the differences become larger for more ac-
tive cold start users. As Table 8 proves, this is because
the utility of randomly added users decreases more
rapidly than the utility of key figures when the cold
start user rates more items.

Table 8 also provides an explanation why the differ-
ences for betweenness in Fig. 8 are much smaller than
those for fragmentation in Fig. 7. Indeed, recall that
WOT users only receive a strictly positive fragmenta-
tion value when they deliver new items, while the cor-
responding betweenness value still increases when de-
livering items for which a prediction can already be
generated (in other words, common items). This ex-
plains why random users will yield higher BU values
than FU values.

The accuracy change for the second experiment is
calculated as the mean of all AC(b, a) values over one
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Fig. 7. Experiment 2, average fragmentation difference between key figures and random users.

Fig. 8. Experiment 2, average betweenness difference between key figures and random users.

Table 8

Experiment 2, average fragmentation and betweenness utility

Type AFU1 ABU1

CS1 CS2 CS3 CS4 CS1 CS2 CS3 CS4

F-100000 0.9997 0.9993 0.9992 0.9990 0.9998 0.9997 0.9995 0.9994

F-50000 0.9991 0.9982 0.9978 0.9973 0.9995 0.9990 0.9988 0.9985

F-10000 0.9964 0.9928 0.9909 0.9894 0.9981 0.9962 0.9951 0.9940

F-2500 0.9883 0.9772 0.9716 0.9654 0.9940 0.9878 0.9846 0.9817

Random 0.7298 0.5516 0.4432 0.3209 0.9076 0.8350 0.7892 0.7408

M-1000 0.9917 0.9849 0.9798 0.9794 0.9960 0.9917 0.9908 0.9891

M-500 0.9794 0.9595 0.9500 0.9398 0.9898 0.9801 0.9738 0.9700

M-100 0.9574 0.9210 0.9059 0.8739 0.9783 0.9591 0.9501 0.9363

Random 0.7402 0.5640 0.4459 0.3451 0.9106 0.8403 0.7976 0.7489

C-1000 0.9876 0.9975 0.9703 0.9136 0.9934 0.9880 0.9842 0.9812

C-500 0.9832 0.9677 0.9615 0.9524 0.9912 0.9837 0.9808 0.9723

C-175 0.9705 0.9490 09329 0.9598 0.9855 0.9732 0.9653 0.9573

Random 0.7463 0.5772 0.4650 0.3453 0.9132 0.8470 0.8035 0.7558

experiment. Note that the WOT of the CS users now
contains an extra user, viz. the added key figure. The
results are shown in Table 9. Because we compute the
MAE by predicting existing ratings and CS users rate
very few items, there is only a small chance that an
added key figure will provide a rating for an item which
is rated by the CS user but not by other members of his
WOT. The small accuracy changes may therefore indi-
cate that the extra ratings provided by the key figure do

not significantly affect the predictions (that can already
be generated by the ratings of actual WOT members).

5.3. Discussion

For new users, choosing the right WOT members
can come as an overwhelming task. Therefore, the rec-
ommender system can guide and interact with such CS
users by proposing a (random) list of members which
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Table 9

Experiment 2, accuracy change

Type AC2

CS2 CS3 CS4

F-100000 0.014 −0.008 −0.002

F-50000 0.009 0.010 −0.001

F-10000 0.006 0.002 0.001

F-2500 0.003 0.005 0.001

M-1000 0.005 0.010 0.007

M-500 0.004 0.006 0.006

M-100 0.001 0.005 0.01

C-1000 (L1) −0.009 0.000 −0.001

C-500 (L1) 0.005 0.011 0.000

C-175 (L1) 0.000 0.004 0.001

are worth exploring because they have an immediate
and positive impact on the generated recommenda-
tions. Such ‘suggestion lists’ are a common technique
in social networking sites. For example, in FilmTrust,6

Golbeck encourages users to expand their network by
showing two lists of users which people can connect
to: a set of random users and a set of random peo-
ple with no friends in the network. LinkedIn7 and Live
QnA8 provide similar services with their ‘Just joined
LinkedIn’ and ‘Meet a QnA superstar’ lists respec-
tively.

Such systems can be further refined. Because not
every user has the same likes and dislikes, the system
can propose several types of (random) users, think for
instance of a ‘mainstream’ key figure who rates a lot of
popular items, or one with more distinct preferences.
Furthermore, the system could narrow down the selec-
tion and present more ‘tailor-made’ key figures if the
user has indicated that he is only interested in some
specific item categories. Of course, the key figures only
appear as suggestions; a new user can always check
whether the candidates are worth to be included in his
web of trust.

A possible consequence of our technique is that
mavens and frequent raters eventually become connec-
tors too, since the more people connect to key figures,
the higher the number of inlinks they will have and
hence the more of a connector they will be. Note that
we showed in Section 3.2 that this phenomenon al-
ready occurs in a moderate form in the original dataset.

A related side effect is the appearance of clusters
around established users in the trust network. If this

6http://trust.mindswap.org/FilmTrust/.
7www.linkedin.com.
8http://qna.live.com/.

clustering is undesirable, it can be restricted by choos-
ing appropriate thresholds for the key figure selec-
tion. If one chooses high thresholds, a small number of
‘true’ key figures are obtained, which might lead to a
small number of star-like clusters. This can be avoided
by low thresholds, yielding many key figures. By gen-
erating random suggestion lists of these key figures, the
network can remain more equally connected. In other
words, the occurrence of strong clusters diminishes,
but along with it also the power of the selected key fig-
ures, because we have shown that less active key fig-
ures yield lower betweenness and fragmentation val-
ues. Hence, it is clear that the thresholds must be cho-
sen carefully in agreement with the characteristics of
the RS’s network, and that a trade-off should be made
between the desired performance and network topol-
ogy.

The results clearly illustrate that generated recom-
mendations for new users are more beneficial if they
connect to mavens, frequent raters or connectors com-
pared to random users. Hence, aside from interaction
and personalization, another benefit of our technique
is the ability to better explain the effect of WOT users
on coverage and accuracy of the system, which is a
new step in the development of more transparant rec-
ommender systems. For this reason, we think that the
incorporation of our technique might be a good asset
for existing and future trust-enhanced RSs.

6. Conclusions and future work

The key figures we have identified, and the measures
we have proposed to evaluate their influence on CS rec-
ommendations, can provide useful clues to the RS for
optimizing the process of guiding new users through
the connection phase. Each key figure has its own char-
acteristics; mavens are easy to evaluate, frequent raters
provide a lot of ratings, and connectors help to reach
more users and items. The new measures each reflect a
different aspect of the influence on coverage: between-
ness focuses on a key figure’s ability to reach items via
short propagation chains, while fragmentation focuses
on its capacity for delivering new items. The utility
measures take into account environmental factors such
as the strength of the web of trust. The experimental re-
sults that we obtained clearly show that connecting to
an identified key figure is more beneficial than includ-
ing a randomly chosen user, with respect to coverage
as well as accuracy.
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Our future work goes in several directions. First we
want to investigate the potential of other key figures
like hubs and authorities by using well-known evalua-
tion measures such as HITS [20] and PageRank [28].
Another research path is the incorporation of distrust
information into the recommendation process. Distrust
could e.g. be used to debug a web of trust: suppose
that a trusts b completely, b fully trusts c and a com-
pletely distrusts c. The latter information ensures that
the propagated trust result (viz. a trusts c) is invalid
and that a will not use information coming from c in
the future. As such, trust and distrust-enhanced algo-
rithms could be used to filter out false positives gener-
ated by other techniques such as CF. Distrust can also
be exploited to alleviate the sparsity problem: through
specific propagation operators that can handle trust as
well as distrust, more users and items could be reached.
But so far, only a few researchers have focused on
trust (propagation) models that take into account dis-
trust [14,18,38,44]. Guha et al. [14] and Ziegler et al.
[44] use one propagated value that incorporates both
trust and distrust, but, as explained in [39], potentially
important information is lost when trust and distrust
scales are merged into one. Jøsang et al. [18] and Vic-
tor et al. [38] keep trust and distrust values separated
throughout the complete propagation process, the for-
mer by using a probabilistic subjective logic approach
[17], and the latter by using a gradual approach with
fuzzy logic concepts [43]. But despite these advances,
much ground remains to be covered in this domain.
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