
Computing Attractors of Multi-Valued
Gene Regulatory Networks using
Fuzzy Answer Set Programming

Mushthofa Mushthofa∗,†,,¶ Steven Schockaert‡ and Martine De Cock∗,§
∗Department of Applied Mathematics, Statistics and Informatics, Ghent University, Ghent, Belgium,

Email: {Mushthofa.Mushthofa, Martine.DeCock}@UGent.be
†Department of Computer Science, Bogor Agricultural University, Bogor, Indonesia,

Email: mush@ipb.ac.id
‡School of Computer Science & Informatics, Cardiff University, UK,

Email: SchockaertS1@cardiff.ac.uk
§Institute of Technology, University of Washington Tacoma, USA,

Email: mdecock@uw.edu
¶Bioinformatics Institute Ghent, Ghent University, 9052 Ghent, Belgium

Abstract—Fuzzy Answer Set Programming (FASP) extends the
popular Answer Set Programming (ASP) paradigm to model-
ing and solving combinatorial search problems in continuous
domains. The recent development of FASP solvers has turned
FASP into a practical tool for solving real-world problems. In this
paper, we propose the use of FASP for modeling the dynamics
of Gene Regulatory Networks (GRNs), an important kind of
biological network. A commonly used simplifying assumption to
model the dynamics of GRNs is to assume only Boolean levels of
activation of each node. ASP has been used to model such Boolean
networks. Our work extends this Boolean network formalism
by allowing multi-valued activation levels. We show how FASP
can be used to model the dynamics of such networks. We also
experimentally assess the plausibility of our method using real
biological networks found in the literature.

I. INTRODUCTION

Answer Set Programming (ASP) is a popular declarative
programming paradigm [1] which allows for an easy and intu-
itive encoding of many combinatorial search and optimisation
problems. The availability of fast and efficient solvers for ASP,
such as clasp [2] and DLV [3], allows for the application of
ASP in various fields [4]. Despite its flexibility and expressive
power, ASP lacks the ability to directly encode problems in the
continuous domain, due to the fact that it is based on Boolean
logic.

Fuzzy Answer Set Programming (FASP) [5] is an extension
of ASP in which multi-valued semantics is used for evaluating
propositions. Recent progress, both in theoretical aspects [6]
and the development of solvers [7]–[10] has made it possible
to apply FASP to solve real-world problems. To demonstrate
this claim, in this paper we look at one particular application,
viz. modelling the stable states of biological networks.

Several authors have looked at using ASP for modelling
biological networks [11]–[13], and in particular for computing
the so-called attractors [14]. An attractor in the context of
biological networks represents the states to which the dy-

namics of the network converges, and usually corresponds to
the observed characteristics/phenotypes in biological systems
[14], [15]. For example, the attractors of a Gene Regulatory
Network (GRN) usually correspond to the expression patterns
of the genes in the network for specific types of cells [16],
[17]. It is thus of importance to study the dynamics of such
network and to be able to identify the attractors of a given
network.

A commonly used simplifying assumption to model the
dynamics of biological networks is to assume only Boolean
levels of activation of each node, i.e., a node in the network
is either on or off. Dynamic networks with Boolean levels
of activation are commonly referred to as Boolean networks.
Many tools have been developed to model the dynamics and
to compute the attractors of BNs [18]–[22], including using
ASP [11], [23]. While considering Boolean levels of activation
may be enough for many cases, there are cases where having
only two levels of activation is not enough to fully understand
the dynamics of the real biological systems, e.g., when the
observed attractors of the network have multi-valued activation
levels [17], [24]–[27].

In this paper, we consider the extension of the notion
of Boolean networks in the fuzzy/multi-valued domain. In
particular, we propose a method to simulate the dynamics
of the multi-valued networks and to compute the attractors
using FASP. We provide an encoding of the problem in the
language of FASP that can be executed/solved using the
currently available FASP solver, and prove the correctness
of such encoding. We also perform a benchmark test of the
encoding using real biological networks.

II. PRELIMINARIES

A. Boolean networks

A Boolean network [14] is a tuple G = 〈X,F 〉, where
X = 〈x1, . . . , xn 〉 is a tuple of Boolean variables representing

a

b

c

Fig. 1. A Boolean network model with three genes. Edges with arrowed tips
are activating interactions and edges with blunt tips are repressing (inhibiting)
links.

the nodes of the network, while F = 〈f1, . . . , fn〉 is a tuple of
Boolean functions. An assignment V : X → {0, 1} is called
a network state. The set of all 2|X| network states is called
the state space of the Boolean network, denoted by S. Each
function fi is a Boolean expression over the constants 0 and 1
and the set of variables in X . The value of the expression fi,
given the assignment V for the variables in X is denoted by
fi(V). The tuple F of functions defines the network update
function f : S → S as follows: the state f(V) for a state V
is the state W such that W (xi) = fi(V) for any xi ∈ X .

The dynamics of a Boolean network are defined by the
transitions between the network states as determined by the
given update rule used in the network. Two types of update
rules are usually discussed in the literature: synchronous and
asynchronous update [14], [28]. Furthermore, we can differen-
tiate between two types of asynchronicity: 1-asynchronous and
*-asynchronous. To further explain the concept of update rules,
we first define the following. The Hamming distance function
over pairs of valuations/states, ∆ : S × S → {1, . . . , n} is
defined as follows .

∆(v, w) = |{x ∈ X | v(x) 6= w(x)}|

The dynamics of a Boolean network are represented as a
directed graph 〈S, ↪→〉, called the State Transition Graph
(STG), where the edge relation ↪→ is determined by the update
rule used, as follows:

(i) For the synchronous update rule: v ↪→ w iff f(v) = w.
(ii) For the 1-asynchronous update rule: v ↪→ w iff either

v = w and f(v) = v, or ∆(v, w) = 1 and ∆(w, f(v)) <
∆(v, f(v))

(iii) For the *-asynchronous update rule: v ↪→ w iff either
v = w and f(v) = v, or 1 ≤ ∆(v, w) ≤ |X| and
∆(w, f(v)) < ∆(v, f(v))

Intuitively, in the synchronous update rule, the network transi-
tions from a state to another state by applying all of the update
functions to all of the nodes. Conversely, in the asynchronous
state, the transition from a state to another is done by applying
the update functions to only some of the nodes. Specifically, in
the 1-asynchronous case, only one update function is applied,
while in the *-asynchronous case, any (non-zero) number of
update functions are applied. The condition ∆(w, f(v)) <
∆(v, f(v)) intuitively means that after applying the update
functions to one node (in the case of 1-asynchronous) or some
nodes (in the case of *-asynchronous), the new state w should
be at least as close to f(v) as v, since the updated node(s) in
w should have the same values as in f(v).

Given an STG 〈S, ↪→〉, a path is a sequence of states
(s1, s2, . . . , sk) where si ↪→ si+1 for every i ∈ {1, . . . , k−1}.
A non-empty set T ⊆ S is a trap set if for every s ∈ T and
t s.t. s ↪→ t, it holds that t ∈ T . A minimal trap set w.r.t.
set-inclusion is called an attractor of the Boolean network. If
T = {x} is a single state attractor, then x is called a steady
state. Otherwise, T is usually called a cyclic attractor. Note
that, in general, the attractors of a Boolean network under
different update rules are also different. Steady states, however,
do not depend on the particular choice of update rule. This is
due to the fact that in a steady state x, f(x) = x, which means
that {x} is an attractor w.r.t. all three update rules.

Traditionally, Boolean networks have been used to model
the dynamics of gene regulatory networks [14], [29], [30].
Nodes in the network represent the genes, while the network
states represent the activation levels of the genes at a par-
ticular point in time. The interactions between genes (both
activating and inhibiting interactions) can be encoded using
the update function of the Boolean network. The dynamics
of the Boolean network then represent the dynamics of the
regulations between the genes, while (some of) the attractors
of the network correspond to the observed state of the genes
in a gene regulatory network. In particular, the states in an
attractor usually capture the expression levels of the genes to
which the dynamics of the regulation in the network converges,
and thus hint towards the functional modes of the regulatory
network [14], [15].

Example 1. Consider the Boolean network G1 =
〈{a, b, c}, F 〉, depicted in Figure 1. The Boolean functions F
describing the interaction between nodes in the network are
given by

at+1 = bt ∨ ct
bt+1 = bt ∧ at
ct+1 = ct ∧ ¬bt

The dynamics of the network under the synchronous update
rule can be described using the STG given in Figure 2. For
example, starting from the state 〈0, 1, 0〉, we move to the state
〈1, 0, 0〉, i.e., f(〈0, 1, 0〉) = 〈1, 0, 0〉. From the figure, we can
see that the Boolean network has 3 attractors, all of which
coincidentally have size = 1, giving us exactly 3 steady states:
〈0, 0, 0〉, 〈1, 0, 1〉, and 〈1, 1, 0〉.

From the definition of asynchronous updates, we can de-
rive that the STG of a Boolean network may no longer be
deterministic, since from a state x, there can be more than
one outgoing edge. Figure 3 depicts part of the STG of the
example Boolean network when the 1-asynchronous and *-
asynchronous update rules are used (corresponding only to the
outgoing transitions of states 〈0, 0, 0〉, 〈0, 0, 1〉 and 〈0, 1, 0〉).
We can also verify that when using the 1-asynchronous or
the *-asynchronous update, the states 〈0, 0, 0〉, 〈0, 1, 0〉 and
〈0, 0, 1〉 are also steady states of the network.

Fig. 2. State Transition Graph of the example Boolean network under the
synchronous update rule

Fig. 3. Part of the State Transition Graph of the example Boolean network
under the asynchronous update rule. The labels on the edges represent the
choices of the nodes that are updated. For example, the label abc, ab for a
transition x ↪→ y means that updating either all of the nodes a, b, c or just a
and b will result in a transition from state x to y. For 1-asynchronous update,
only single-variable labels are relevant.

B. Answer Set Programming

Answer Set Programming (ASP) is a logic-based program-
ming paradigm commonly used to solve combinatorial search
and optimisation problems [1]. An ASP program consists of
a set of rules of the form

r ≡ a1 ∨ . . . ∨ an ← b1 ∧ . . . ∧ bk ∧ not c1 . . . ∧ not cm

where each ai, bi and ci is a Boolean propositional sym-
bol taken from the universal set of symbols B, and not
is the negation-as-failure operator. A literal is either an
atomic proposition a (positive literal) or a Negation-As-
Failure (NAF) literal not a (negative literal). We also write
H(r) = {a1, . . . , an}, B+(r) = {b1, . . . , bk} and B−(r) =
{c1, . . . , cm} to indicate the sets of literals appearing in a rule
r.

An interpretation I ⊆ B is said to model a rule r iff I ∩
H(r) 6= ∅ whenever B+(r) ⊆ I and B−(r) ∩ I = ∅. An
interpretation is a model of a program P iff it is a model of
every rule r ∈ P .

If B−(r) = ∅, the rule r is said to be positive. If all of
the rules of an ASP program P are positive, we say that P is
a positive program. For a positive program P , we define the
answer sets of P as the minimal models (w.r.t. set inclusion)
of P . For non-positive programs P , the Gelfond-Lifschitz [31]
transform of P w.r.t. an interpretation I is obtained by:

(i) deleting all rules r s.t. B−(r) ∩ I 6= ∅
(ii) deleting any of the remaining expressions of the form

not a in the program.
In general, an interpretation I is an answer set of P iff it is
an answer set of the Gelfond-Lifschitz reduct of P w.r.t. I .

Example 2. Consider the ASP program P1 having the follow-
ing rules:

r1 : open← not close
r2 : close← not open

The program has exactly two answer sets: A1 = {open} and
A2 = {close}.

An ASP program is usually written to describe/encode
a problem that needs to be solved, and then submitted to
an ASP solver, such as Potassco [2] and DLV [3]. The
solver will then produce/compute the answer set(s) of the
program, which in turn correspond to the intended solution(s)
of the problem. ASP has found applications in many different
fields [32], including planning [33], Semantic Web [4] and
bioinformatics/computational biology [11], [12], [23].

C. Fuzzy answer set programming

Fuzzy Answer Set Programming (FASP) [5] is an extension
of ASP into the fuzzy domain, where atomic propositions in B
can take a graded truth value and rules are defined using fuzzy
logic connectives. In this case, an interpretation is defined as
a function I : B → [0, 1]. In this paper, we will only consider
the Łukasiewicz connectives [6], [7], [34], defined as follows:,
• I(α⊗ β) = max(I(α) + I(β)− 1, 0).
• I(α⊕ β) = min(I(α) + I(β), 1).
• I(α Y β) = max(I(α), I(β)).
• I(α Z β) = min(I(α), I(β)).
• I(¬α) = 1− I(α).
• I(β → α) = min(1− I(β) + I(α), 1).

In a FASP program, a head expression is an expression of the
form a1⊕ a2⊕ . . .⊕ an, where ai’s are literals, while a body
expression is an expression defined recursively as follows:
• A constant term c where c ∈ {0, 1}, a positive literal a

and a negative literal not a are body expressions.
• If a and b are body expressions, then so are a⊕ b, a⊗ b,
a Y b and a Z b.

A FASP program consists of rules of the form

α← β

where α is a head expression and β is a body expression. We
sometimes write Head(r) and Body(r) to denote the head
and body expressions of the rule r, respectively. A FASP rule
is said to be positive iff it contains no applications of the
not operator. A FASP program is positive iff it only contains
positive rules.

An interpretation I is a model of a rule r iff I(r) = 1,
and I is a model of a program P iff I(r) = I(Body(r) →
Head(r)) = 1 for every r ∈ P . We write I ≤ J for two
interpretations I and J iff I(a) ≤ J(a) for any a ∈ B.

Furthermore, we define I = J whenever I ≤ J and J ≤ I ,
while I < J is defined as I ≤ J but I 6= J . A model I
of a positive program P is an answer set of P iff there is
no model J of P s.t. J < I . For a non-positive program
P , a generalization of the so-called Gelfond-Lifschitz reduct
is defined in [35] as follows: the reduct of a rule r w.r.t. an
interpretation I is the positive rule rI obtained by replacing
each occurrence of not a by the constant I(not a). The reduct
of a FASP program P w.r.t. an interpretation I is then defined
as the positive program PI = {rI | r ∈ P}. A model I
of P is called an answer set of P iff I is an answer set of
PI . Although the development of solvers for FASP is still
not on par with the development of ASP solvers, the recent
availability of FASP solvers such as the ones in [7]–[10] opens
the door to real-world applications.

Following [7], we consider the finite-valued answer sets of a
FASP program P , by restricting the values of the interpretation
function I to the set Qk = {0, 1k , . . . ,

k−1
k , 1}. Any answer

set derived by using this restriction is called a k-answer set of
the program. Formally, we call an interpretation of a program
P a k-interpretation, iff I(a) ∈ Qk for every proposition a.
Consequently, a k-interpretation is a k-model of a program P
iff it satisfies every rule of P . For a positive program P , a k-
model of P is a k-answer set of P iff there is no k-model J of
P such that J < I . For a non-positive program P , a k-model
P is a k-answer set of P iff it is a k-answer set of P I . Note
that every answer set of a FASP program is necessarily a k-
answer set of the program for some finite k, but the converse
is generally not true: a k-answer set of a program may not be
an answer set of that program [7], [36].

Example 3. Consider the FASP program P2 having the same
rules as program P1 from Example 2. This program has
infinitely many answer sets Ix having Ix(open) = x and
Ix(close) = 1−x, where x ∈ [0, 1]. Furthermore, the program
has exactly k + 1 k-answer sets for each positive integer k,
where each answer set Ix is of the form Ix(open) = x and
Ix(close) = 1− x, with x ∈ Qk.

III. RELATED WORK

Although Boolean networks provide a useful simplification
to study the dynamics of gene regulatory networks, a deeper
analysis requires the expression levels of the genes to take
on more than two values (on or off) [17], [24]–[26], [29].
Indeed, using only Boolean levels of activation may cause
one to miss many of the important attractors that are relevant
for the understanding of the biological system. It is thus
of importance to be able to extend the notion of Boolean
networks to allow more levels of activation for each of the
nodes. In [25], an extension of Boolean networks into multi-
valued networks in which each node is allowed to have k
levels of activation (where k ≥ 2) is considered. Using the
so-called 1-hot encoding, these multi-valued networks are
reduced into a representation which allows techniques already
used in Boolean networks, such as Binary Decision Diagrams
(BDD), to be applied. However, the use of encoding scheme

such as 1-hot encoding can make the representation quite
cumbersome, especially for larger values of k, since it requires
the explicit definition of the logical operators at each value of
k. As we will show later, the use of FASP can overcome this
problem by using the computation of k-answer sets, which is
a feature built into FASP.

ASP has been successfully applied to model the dynamics of
gene regulatory networks in the Boolean setting, see e.g. [11],
[23]. In these works, the encoding of the update function is
restricted to two specific types (denoted as r∗ ans r+ in [23]),
due to the particular way that the encoding of the dynamics is
written (i.e., encoding the update function at a meta-level). In
this paper, we propose a new method to encode the dynamics
of multi-valued networks using FASP which incorporates two
things:
• allowing the graded activation levels in the nodes of the

networks, and
• allowing a more flexible definition of the network update

function. In [37], it was suggested that each of the node’s
update function of a Boolean network can be directly
encoded as a rule in ASP. This allows for a more generic
encoding of the network update function. Furthermore,
it was shown that the steady states of the network are
directly obtainable using the semantics of ASP. The
obtain the cyclic attractors, however, [37] proposes an
extension of the ASP semantics. Since such an extension
is not practical for the purpose of this paper, we choose
to use a more direct approach: by encoding the dynamics
of the network using a time argument, as will be shown
in the next section.

IV. MULTI-VALUED NETWORKS

We first formally define the concept of a multi-valued
network as follows. A multi-valued network is a tuple G =
〈X,F, k〉 where X is a tuple of multi-valued variables de-
noting the nodes of the network, F is a tuple of update
functions associated to each x ∈ X , and k ≥ 1 is a
parameter describing the number of activation levels for each
node. Specifically, for each node x ∈ X , we allow k + 1
activation levels, i.e., the value for each x is taken from the
set Qk = {0, 1k , . . . ,

k−1
k , 1}. The state space of the network

is thus the set of all (k + 1)n valuations for the nodes in
X . Furthermore, the functions fi ∈ F are defined using
the Łukasiewicz connectives ⊗,⊕,YZ, and ¬, instead of the
Boolean connectives.

Note that Boolean networks correspond to the special case
of multi-valued networks where k = 1. The network update
function, the update rule, the state transition diagram and the
attractors are then defined similarly as in Boolean networks.

Example 4. Consider any network G2 = 〈{a, b, c}, F, k〉,
where the update functions F are given as follows

at+1 = bt ⊕ ct
bt+1 = bt ⊗ at
ct+1 = ct ⊗ ¬bt

It can be verified that this network “generalises” the Boolean
network G1 from Example 1, in the sense that all the attractors
of the network from the Boolean case are also still attractors
for every k > 1. Furthermore, we can check that there are
additional attractors in the multi-valued setting that cannot
be expressed using Boolean values. For example, when k = 2,
we obtain that 〈0, 0, 12 〉 and 〈 12 , 0,

1
2 〉 are also attractors of

this network under the synchronous update rule, since in this
case, f(〈0, 0, 12 〉) = 〈0, 0, 12 〉 and f(〈 12 , 0,

1
2 〉) = 〈 12 , 0,

1
2 〉.

A. Modeling multi-valued networks using FASP

In this section, we describe our FASP encoding to model
the dynamics of multi-valued networks and to compute the
steady-states and attractors of the networks.

1) Finding steady states: We first tackle the easy case of
finding the single state attractors – also called steady states
– of a multi-valued network. Recall that the steady states are
identical for the synchronous and asynchronous update rules.

Let G = 〈X,F, k〉 be a multi-valued network. First, for
every node x ∈ X in the network, we consider two fuzzy
propositional atoms px and nx, and write the following FASP
rules

px ⊕ nx ←
0← px ⊗ nx

Define GU(G) as the set of all such rules. Intuitively, the rules
in GU(G) are used to generate the state space of the multi-
valued network. Specifically, each px encodes the activation
level of variable x ∈ X , while the atom nx is needed in the
encoding to generate all possible values for px.

We then encode the interaction between nodes by creating
a rule for every node x, where the head of the rule is the
propositional atom p′x associated with the node, while the
body corresponds to the direct translation of the fuzzy logic
function for the update rule of x, replacing the occurrences
of the negation symbol ¬ with FASP’s default negation not .
Formally, let fi be the update function in a node xi of the
network. The corresponding FASP node update rule of that
node, denoted by NU(fi) is a FASP rule defined as follows:

NU(fi) ≡ p′xi
← BU(fi)

where BU(fi) is a FASP expression defined recursively as
follows:
• BU(fi) = val if fi(xi) = val and val ∈ [0, 1]
• BU(fi) = px if fi(xi) = x for a node x
• BU(fi) = BU(exp1) ◦ BU(exp2) if fi(xi) =
exp1 ◦ exp2 for some expressions exp1, exp2 and ◦ ∈
{⊕,⊗,min,max}

• BU(fi) = not px if fi(xi) = ¬x
Define NU(G) as the set of rules created in this step (i.e.,
NU(G) = {NU(fi) | fi ∈ F}). Intuitively, the atom p′xi

holds the activation value of the node xi after the update
function is applied. To ensure that we have a steady-state,
we need to enforce the condition that the activation level of

each node is the same after the update. This can be done by
using the following rules CS(i) for each node xi

0← pxi ⊗ not p′xi

0← p′xi
⊗ not pxi

Define CS(G) as the set of all rules combined from CS(i)
for all i = 1, . . . , |X|. We have the following results.

Proposition 1. The program P (G) = GU(G) ∪ NU(G) ∪
CS(G) captures all the steady states of the multi-valued
network G, i.e., for every k-answer set I of P (G), the state
S s.t. S(x) = I(px) for every x ∈ X is a steady state of G,
and for every steady state S of G, there is a corresponding
k-answer set I of G s.t. S(x) = I(px) for every x ∈ X .

Proof. First, it can be easily seen that in any answer set I
of P (G), we have that I(p′x) = I(px), due the rules in
CS(G). Suppose that S is a steady-state of the multi-valued
network G. By definition, we have that fi(X) = S(xi) for
every xi ∈ X . We will show that the interpretation I s.t.
I(px) = S(x) and I(nx) = 1 − S(x) for every x ∈ X is a
k-answer set of the program P (G). First, by the definition of
GU(G), it is clear that I is a model of GU(G). For every
rule r in NU(G) corresponding to the update function fi,
from the fact that I(px) = I(p′x) = S(x) for every x ∈ X , it
can be shown that the recursive definition of BU(fi) entails
that I(Body(r)) = fi(X). Since we have fi(X) = S(xi),
we also have that I(Body(r)) = S(xi). This means that
I(Head(r)) = I(p′xi

) = S(xi) = I(Body(r)), which means
that I is also a model of the rule r. Consequently, I is a model
of NU(G), and thus also of P (G) = GU(G)∪NU(G). It is
easy to see that I is a minimal k-model of GU(G), since any
k-model J < I will not satisfy at least one rule in GU(G).

Conversely, if we have a k-answer set I of P (G), we
can show that the state S s.t. S(x) = I(px) for every
x ∈ X is a steady state of the network. It is sufficient
to show that fi(X) = S(xi) = I(px) = I(p′x) for every
xi ∈ X . Since I is a model of the rule NU(fi), we have that
I(p′x) ≥ I(Body(NU(fi)) = I(BU(fi)). From the definition
of BU(fi) it can be shown that I(BU(fi)) = fi(X). Hence
we have that I(p′xi

) ≥ fi(X). Suppose that I(p′xi
) > fi(X),

for some xi ∈ X . Consider the k-interpretation J such
that J(p′a) = I(p′a) for every a ∈ X s.t. a 6= xi, and
J(p′xi

) = fi(X). We have that J < I , and it can be seen
that J is also a k-model of P (G) (since it satisfies all the
rules in P (G)), contradicting the minimality of I . Hence, we
must have that I(p′xi

) = fi(X) for every xi ∈ X .

Example 5. Consider the multi-valued network G2 given in

Example 4. In this case, GU(G2) is given as

pa ⊕ na ←
0← pa ⊗ na

pb ⊕ nb ←
0← pb ⊗ nb

pc ⊕ nc ←
0← pc ⊗ nc

while the node update rules NU(G2) are given as follows:

pa ← pb ⊕ pc
pb ← pb ⊗ pa
pc ← pc ⊗ not pb

One can check that the k-answer sets of the program coin-
cide with the steady states of the multi-valued network with
k + 1 activation levels. For example, for k = 2, the an-
swer set {(pa, 0), (pb, 0), (pc, 0), (na, 1), (nb, 1), (nc, 1)} cor-
responds to the attractor 〈0, 0, 0〉, while the answer set
{(pa, 12), (pb, 0), (pc,

1
2), (na,

1
2), (nb, 1), (nc,

1
2)} corresponds

to the attractor 〈 12 , 0,
1
2 〉.

2) Finding fixed-size cyclic attractors: For finding the
attractors that consist of more than one state, it is clear that the
previous approach will not work, since the proposed encoding
does not represent different values of each node at different
update times, which would be needed to check for cyclicity.
Furthermore, it is clear that we will need to explicitly take
into account the time dimension to be able to distinguish
between the different update rules. This can be achieved by
adding a parameter t, representing time, to each of the fuzzy
propositional atom px and nx. The initial guessing rules (we
call them GU0(G)) are now written as

px(0)⊕ nx(0)←
0← px(0)⊗ nx(0)

where the parameter 0 encodes the fact that we are guessing
at the initial time point t = 0.

We then define a new encoding of the node update rule that
incorporates a time parameter t. In particular, we consider the
rule TNU(fi, t) defined as

pxi(t+ 1)← upi(t)⊗ TBU(fi, t)

where TBU(fi, t) is defined as follows:
• TBU(fi, t) = val if fi(xi) = val and val ∈ {0, 1}
• TBU(fi, t) = px(t) if fi(xi) = x for a node x
• TBU(fi, t) = TBU(exp1, t)◦TBU(exp2, t) if fi(xi) =
exp1 ◦ exp2 for some expressions exp1, exp2 and ◦ ∈
{⊕,⊗,min,max}

• TBU(fi, t) = not px(t) if fi(xi) = ¬x
The literal upi(t) intuitively denotes a flag that determines

whether node xi should be updated at time t. To select which
update rule to be used, we define a set of rules, SELu(s)
(where u indicates the type of update rule used), as follows.
For the synchronous update rule, SELs(s) simply consists of

the rules upi(t) ← 1 for t = 1, . . . , s. For the 1-synchronous
update rule, SEL1(s) contains the following rules for each t:

up1(t)⊕ up2(t) . . .⊕ upn(t)← 1

up1(t)← up1(t)⊕ up1(t)

...
upn(t)← upn(t)⊕ upn(t)

where n = |X|.
For the *-asynchronous update rule, SEL∗(s) consists of

the following set of rules for each i, t

upi(t)⊕ ¬upi(t)← 1

upi(t)← upi(t)⊕ upi(t)
0← not upi(t)⊗ not up2(t)⊗ . . .⊗ not upn(t)

Lemma 1. For any programs R not containing any rules
having propositions of the form upi(t) in the head, we have
that for any k-answer set I of the program R ∪ SELu(s):
• I(upi(t)) = 1 for any i, t, if u = s. Intuitively, in such a

case, all rules will be selected for updates at each time
step.

• I(upi(t)) = 1 for exactly one i for every t, if u = 1.
Intuitively, in such a case, exactly one rule will be
selected for updates at each time step.

• I(upi(t)) = 1 for at least one i for every t, if u = ∗.

Proof. For u = s, it is trivial that I(upi(t)) = 1 for any i, t.
It is easy to see that in any FASP program P , if there is a
rule a ← a ⊕ a, then in any (k-)answer set J of P , either
J(a) = 0 or J(a) = 1. Thus, we can see that in any answer
set I , either I(upi(t)) = 0 or I(upi(t)) = 1. For u = 1, the
first rule in SELs(G) forces that there should be at least one
among upi(t) d.t. I(upi(t)) > 0. For this, we should conclude
that I(upi(t)) = 1. For u = ∗, we can see that any number of
i can satisfy I(upi(t)) > 0. Due to the last rule of SEL∗(s)
however, for at least one i this should be true.

To find a cyclic attractor of size s, consider a FASP
program that contains the rules TNU(fi, t) for each i and
t = 0, 1, . . . , s, as well as the following rules for each xi ∈ X

0← pxi(s)⊗ not pxi(0)

0← pxi(0)⊗ not pxi(s)

These constraints verify that after s steps, each node is back
to its initial state. Call the set of all update rules generated for
network G up to time step s as TNU(G) (i.e., TNU(G) =
{TNU(fi, t) | xi ∈ X, t = 0, 1, . . . , s}), and the set of rules
to check the cyclic attractor of size s as CC(G, s). We can
show the following result.

Proposition 2. The program P (G, s) = GU0(G)∪TNU(G)∪
CC(G, s) captures the cyclic attractors of the network G
whose size is exactly s, i.e., that any interpretation I of
P (G, s) is a k-answer set of P (G, s) iff the states St,
t = 1, . . . , s s.t. St(xi) = I(pxi

(t)) and 1−St(xi) = I(nxi
(t))

form a cyclic attractors, with Ss = S0.

Proof Sketch. With the help of Lemma 1, one can show
by induction in t that in any k-answer set I of P (G, s),
I(pxi(t)) = St(xi) for every xi ∈ X for some states St reach-
able after t transition by the appropriate update rule (either
1-asynchronous or *-asynchronous). The rules in CC(G, s)
then rule out the models for which I(pxi

(s)) 6= I(pxi
(0)),

i.e., when Ss(xi) 6= S0(xi) for some xi ∈ X . This means that
{St | t = 0, 1, . . . , s− 1} is a cyclic attractor of size s.

Example 6. For the example network G2 given in Example 4,
the following is the set of time-respecting node update rules:

a(t+ 1)← up1(t)⊗ b(t)⊗ c(t)
b(t+ 1)← up2(t)⊗ b(t)⊗ a(t)

c(t+ 1)← up3(t)⊗ c(t)⊗ ¬b(t)

To find attractors of size 3, for example, we need to instantiate
that set of rules for t = 0, 1, 2, 3, and add the appropriate
selection rules for upi(t).

V. BENCHMARK AND EXPERIMENTS

To validate our method, we applied it to known logic-based
biological network models obtained from the literature. Table 1
represents the summary of the data collected. In the referred
paper for each of these networks, the node update functions
have been specified for a certain k (either k = 2 or k = 3).
Furthermore, each node is modelled as either Boolean-valued,
3-valued or 4-valued, depending the on the available biological
data supporting such models. In encoding the regulatory
relationships between the nodes in the network, we assign
values from Qk to any (k + 1)-valued nodes. Consequently,
in these network models, we only consider attractors reached
from the set of states where the Boolean-valued nodes are
assigned either 0 or 1, and 3-valued and 4-valued nodes are
assigned values from Q2 and Q3, respectively. To do this,
we use the appropriate k value required (either 2 or 3), and
then enforce Boolean interpretation for the Boolean nodes, by
adding the saturation rule px ← px ⊕ px The steady-states
of the network are then computed, and compared to the ones
reported in their respective reference(s).

For the A. thaliana flowering network, the network update
functions are listed in [17] as name-values pairs indicating the
input-output pairs of the update function on each node. Such
a representation can always be written into a Łukasiewicz
function through the use of combinations of the operators
Y,Z,⊗ and ⊕. For the Th cell regulatory network, [40]
proposed different versions of the network. For our purpose,
we use the logical rules presented in Equation 2 in that paper,
and evaluate them as 3-valued Łukasiewicz functions (i.e.,
treating ∨ and ∧ as ⊕ and ⊗, respectively), which is equivalent
to the 1-hot encoding used in [16]. Nodes that do not have an
explicit update function are given a “default” update function
of p′x ← px. For the P. aeruginosa mucus development
network and the D. melanogaster segmentation network, the
network update functions are represented using the notation

used in [29]. By ignoring the time-delay parameter of this
representation and assumpting the basal-expression levels of
the genes to be 0 (as also done in [26]), we can faithfully
represent each of the update functions given using Łukasiewicz
logic.

The benchmark is conducted on an Apple MacBook Pro
with 2.4GHz Intel i5 processor and 4GB of memory, running
OS X Yosemite. We used the latest version of our solver ffasp
version 0.8 [8] available at https://github.com/mushthofa/ffasp,
and clingo v4.5.3 as the back-end ASP solver. From the result
given in Table 1, we can see that the proposed method finds
the steady-states in an efficient manner.

VI. CONCLUSION

Boolean networks are a popular modeling technique to
analyze the dynamic behaviour of GRNs. Using Boolean
networks, we can capture the steady states/attractors of the
network, which are often useful to understand the biological
function of such networks. Many tools, including approaches
based on ASP, have been devised to model such dynamics.
Multi-valued networks extend Boolean networks by allowing
the representation of different levels of activation for the nodes.
In this paper, we have proposed the use of FASP, an extension
of ASP in the continuous domain, as the language for encoding
the dynamics of multi-valued networks. We showed that any
network model represented as multi-valued networks in any k
can be faithfully encoded in FASP. Furthermore, our encoding
in FASP reasonably captures the different assumptions usually
required in the modeling of biological networks. To the best
of our knowledge, this is the first real-world application of
FASP that goes beyond small toy examples and synthetic
FASP programs. We showed the correctness of our encoding,
and we evaluated its efficiency in computing the steady-states
of real biological networks found in the literature.

REFERENCES

[1] C. Baral, Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press, 2003.

[2] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub, and
M. Schneider, “Potassco: The Potsdam answer set solving collection,”
AI Communications, vol. 24, no. 2, pp. 107–124, 2011.

[3] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The DLV system for knowledge representation and reasoning,”
ACM Transactions on Computational Logic, vol. 7, no. 3, pp. 499–562,
2006.

[4] T. Eiter, G. Ianni, and T. Krennwallner, “Answer set programming: A
primer,” in Reasoning Web. Semantic Technologies for Information Sys-
tems, ser. Lecture Notes in Computer Science, S. Tessaris, E. Franconi,
T. Eiter, C. Gutierrez, S. Handschuh, M.-C. Rousset, and R. Schmidt,
Eds. Springer Berlin Heidelberg, 2009, vol. 5689, pp. 40–110.

[5] D. Van Nieuwenborgh, M. De Cock, and D. Vermeir, “Fuzzy answer
set programming,” in Proceedings of the 10th European Conference on
Logics in Artificial Intelligence, 2006, pp. 359–372.

[6] M. Blondeel, S. Schockaert, D. Vermeir, and M. De Cock, “Complex-
ity of fuzzy answer set programming under Łukasiewicz semantics,”
International Journal of Approximate Reasoning, vol. 55, no. 9, pp.
1971–2003, 2014.

[7] M. Mushthofa, S. Schockaert, and M. De Cock, “A finite-valued solver
for disjunctive fuzzy answer set programs,” in Proceedings of European
Conference in Artificial Intelligence 2014, 2014, pp. 645–650.

[8] ——, “Solving disjunctive fuzzy answer set programs,” in Proceedings
of the 13th International Conference on Logic Programming and Non-
monotonic Reasoning, 2015, pp. 453–466.

TABLE I
BENCHMARK RESULT

No. A B C D E F

1 P. aeruginosa mucus development network [38], [39] 2 1 3 2 0.3
2 A. thaliana flowering network [17] 15 7 3 10 5.6
3 Th cell regulatory network [16], [40] 23 9 3 4 8.1
4 D. melanogaster segmentation network [26] 7 4 4 4 4.2
A = name and reference for the network model
B = number of nodes
C = number of Boolean nodes
D = number of levels of activation (k + 1)
E = number of attractors
F = computation time (in seconds)

[9] M. Alviano and R. Peñaloza, “Fuzzy answer sets approximations,”
Theory and Practice of Logic Programming, vol. 13, no. 4-5, pp. 753–
767, 2013.

[10] ——, “Fuzzy answer set computation via satisfiability modulo
theories,” Theory and Practice of Logic Programming, vol. 15, pp.
588–603, 7 2015. [Online]. Available: http://journals.cambridge.org/
article S1471068415000241

[11] T. Fayruzov, M. De Cock, C. Cornelis, and D. Vermeir, “Modeling
protein interaction networks with answer set programming,” in Pro-
ceedings of the IEEE International Conference on Bioinformatics and
Biomedicine, 2009, 2009, pp. 99–104.

[12] M. Gebser, A. Konig, T. Schaub, S. Thiele, and P. Veber, “The BioASP
library: ASP solutions for systems biology,” in Proceedings of the
22nd IEEE International Conference on Tools with Artificial Intelligence
(ICTAI), 2010, vol. 1. IEEE, 2010, pp. 383–389.

[13] S. Dworschak, S. Grell, V. J. Nikiforova, T. Schaub, and J. Selbig,
“Modeling biological networks by action languages via answer set
programming,” Constraints, vol. 13, no. 1-2, pp. 21–65, 2008.

[14] S. A. Kauffman, The origins of order: Self-organization and selection
in evolution. Oxford university press, 1993.

[15] H. De Jong and M. Page, “Search for steady states of piecewise-linear
differential equation models of genetic regulatory networks,” IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 5,
no. 2, pp. 208–222, 2008.

[16] L. Mendoza, “A network model for the control of the differentiation
process in Th cells,” Biosystems, vol. 84, no. 2, pp. 101–114, 2006.

[17] C. Espinosa-Soto, P. Padilla-Longoria, and E. R. Alvarez-Buylla, “A
gene regulatory network model for cell-fate determination during ara-
bidopsis thaliana flower development that is robust and recovers experi-
mental gene expression profiles,” The Plant Cell Online, vol. 16, no. 11,
pp. 2923–2939, 2004.

[18] A. Garg, I. Xenarios, L. Mendoza, and G. DeMicheli, “An efficient
method for dynamic analysis of gene regulatory networks and in
silico gene perturbation experiments,” in Research in Computational
Molecular Biology. Springer, 2007, pp. 62–76.

[19] G. Arellano, J. Argil, E. Azpeitia, M. Benitez, M. Carrillo, P. Gongora,
D. Rosenblueth, and E. Alvarez-Buylla, “”antelope”: a hybrid-logic
model checker for branching-time boolean grn analysis,” BMC
Bioinformatics, vol. 12, no. 1, p. 490, 2011. [Online]. Available:
http://www.biomedcentral.com/1471-2105/12/490

[20] F. Ay, F. Xu, and T. Kahveci, “Scalable steady state analysis of boolean
biological regulatory networks,” PLoS ONE, vol. 4, no. 12, p. e7992, 12
2009.

[21] E. Dubrova and M. Teslenko, “A SAT-based algorithm for finding
attractors in synchronous boolean networks,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics (TCBB), vol. 8, no. 5, pp.
1393–1399, 2011.

[22] D. Zheng, G. Yang, X. Li, Z. Wang, F. Liu, and L. He, “An efficient
algorithm for computing attractors of synchronous and asynchronous
boolean networks,” PloS one, vol. 8, no. 4, p. e60593, 2013.

[23] M. Mushthofa, G. Torres, Y. Van de Peer, K. Marchal, and M. De Cock,
“ASP-G: an ASP-based method for finding attractors in genetic regula-
tory networks,” Bioinformatics, p. btu481, 2014.

[24] G. Didier, E. Remy, and C. Chaouiya, “Mapping multivalued onto
boolean dynamics,” Journal of Theoretical Biology, vol. 270, no. 1, pp.
177 – 184, 2011.

[25] A. Garg, L. Mendoza, I. Xenarios, and G. DeMicheli, “Modeling of
multiple valued gene regulatory networks,” in Proceedings of the 29th
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBS 2007). IEEE, 2007, pp. 1398–1404.

[26] L. Sanchez and D. Thieffry, “Segmenting the fly embryo:: a logical
analysis of the pair-rule cross-regulatory module,” Journal of Theoretical
Biology, vol. 224, no. 4, pp. 517–537, 2003.

[27] A. Bockmayr and H. Siebert, Programming Logics: Essays in Memory
of Harald Ganzinger. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, ch. Bio-Logics: Logical Analysis of Bioregulatory Networks, pp.
19–34.

[28] R. Thomas, “Boolean formalization of genetic control circuits,” Journal
of Theoretical Biology, vol. 42, no. 3, pp. 563–585, 1973.

[29] ——, “Regulatory networks seen as asynchronous automata: a logical
description,” Journal of Theoretical Biology, vol. 153, no. 1, pp. 1–23,
1991.

[30] E. Dubrova, M. Teslenko, and A. Martinelli, “Kauffman networks:
Analysis and applications,” in Proceedings of the 2005 IEEE/ACM
International Conference on Computer-aided Design (ICCAD 2005),
Washington, DC, USA, 2005, pp. 479–484. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1129601.1129670

[31] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming,” in Proceedings of the Fifth International Conference and
Symposium on Logic Programming, vol. 88, 1988, pp. 1070–1080.

[32] E. Erdem, “Theory and applications of answer set programming,” Ph.D.
dissertation, The University of Texas at Austin, 2002, the University of
Texas at Austin.

[33] T. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres, “Planning
under incomplete knowledge,” in Proceedings of the 1st International
Conference in Computational Logic (CL 2000), 2000, pp. 807–821.

[34] S. Schockaert, J. Janssen, and D. Vermeir, “Fuzzy equilibrium logic:
Declarative problem solving in continuous domains,” ACM Transactions
on Computational Logic, vol. 13, no. 4, pp. 33:1–33:39, 2012.

[35] T. Lukasiewicz and U. Straccia, “Tightly integrated fuzzy description
logic programs under the answer set semantics for the semantic web,”
in Proceedings of the 1st International Conference on Web Reasoning
and Rule Systems, 2007, pp. 289–298.

[36] S. Aguzzoli and A. Ciabattoni, “Finiteness in infinite-valued
Łukasiewicz logic,” Journal of Logic, Language and Information, vol. 9,
no. 1, pp. 5–29, 2000.

[37] K. Inoue, “Logic programming for boolean networks,” in Proceedings
of the Twenty-Second International Joint Conference on Artificial Intel-
ligence (IJCAI 2011), 2011, pp. 924–930.

[38] J. Guespin-Michel and M. Kaufman, “Positive feedback circuits and
adaptive regulations in bacteria,” Acta Biotheoretica, vol. 49, no. 4, pp.
207–218, 2001.

[39] S. Peres and J.-P. Comet, “Contribution of computational tree logic to bi-
ological regulatory networks: Example from pseudomonas aeruginosa,”
in Proceedings of the First International Workshop on Computational
Methods in Systems Biology (CMSB 2003), 2003, pp. 47–56.

[40] L. Mendoza and I. Xenarios, “A method for the generation of standard-
ized qualitative dynamical systems of regulatory networks,” Theoretical
Biology and Medical Modelling, vol. 3, no. 1, p. 13, 2006.

