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Fuzzy Rough Sets: The Forgotten Step
Martine De Cock, Chris Cornelis, and Etienne E. Kerre

Abstract—Traditional rough set theory uses equivalence rela-
tions to compute lower and upper approximations of sets. The
corresponding equivalence classes either coincide or are disjoint.
This behaviour is lost when moving on to a fuzzy T-equivalence
relation. However, none of the existing studies on fuzzy rough set
theory tries to exploit the fact that an element can belong to some
degree to several “soft similarity classes” at the same time. In
this paper we show that taking this truly fuzzy characteristic into
account may lead to new and interesting definitions of lower and
upper approximations. We explore two of them in detail and we
investigate under which conditions they differ from the commonly
used definitions. Finally we show the possible practical relevance
of the newly introduced approximations for query refinement.

Index Terms—Fuzzy rough set, lower and upper approximation,
query refinement, transitivity.

I. INTRODUCTION

SINCE its introduction in the 1960s, fuzzy set theory has
had a significant impact on the way we represent and com-

pute with vague information. More recently it has become part
of the larger paradigm of soft computing, a collection of tech-
niques that are tolerant of typical characteristics of imperfect
data and knowledge—such as vagueness, imprecision, uncer-
tainty, and partial truth—and hence adhere closer to the human
mind than conventional hard computing techniques. During the
last decades new approaches have been developed that gener-
alize the original fuzzy set theory (which is also called type-1
fuzzy set theory in this context). Type-2 fuzzy sets, intuition-
istic fuzzy sets, interval-valued fuzzy sets and fuzzy rough sets
have in common that they can all be formally characterized by
membership functions taking values in a partially ordered set

, which is no longer the same (but an extension of) the set of
membership degrees used in fuzzy set theory. The intro-
duction of such new, generalizing theories is often accompanied
by lengthy discussions on issues such as the choice of termi-
nology and the added value of the generalization.

In this paper we focus on fuzzy rough set theory. Pawlak [23]
launched rough set theory as a framework for the construction
of approximations of concepts when only incomplete informa-
tion is available. The available information consists of a set
of examples (a subset of a universe being a nonempty set
of objects we want to say something about) of a concept ,
and a relation in . models “indiscernibility” or “indistin-
guishability” and therefore generally is a tolerance relation (i.e.,
a reflexive and symmetrical relation) and in most cases even an
equivalence relation (i.e., a transitive tolerance relation).
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After a public debate reflecting rivalry between rough set
theory and the slightly older fuzzy set theory, many researchers
started working towards a hybrid theory (e.g., [11], [18], [20],
[25], [26], [28], and [30]). In doing so, the central focus moved
from elements’ indistinguishability (objects are indistinguish-
able or not) to their similarity (objects are similar to a certain de-
gree), represented by a fuzzy relation . As a result, objects are
categorized into classes with “soft” boundaries based on their
similarity to one another; abrupt transitions between classes are
replaced by gradual ones, allowing that an element can belong
(to varying degrees) to more than one class.

Soon, researchers started exploring possible applications of
the new paradigm of fuzzy-rough hybridization. For a compre-
hensive literature review up to 1999, we refer to [15]. Among
the more recent work is that of Drwal [10] and Jensen and Shen
[13], [14], who studied extensions of the well-known rough set
approaches to data reduction and classification.

In Section II, we recall the necessary background leading to
the definition of a fuzzy rough set as presented in [26]. This
definition is an elegant fuzzification of the concept of a rough
set and at the same time absorbs earlier suggestions in the same
direction. The most striking aspect of all the studies on fuzzy
rough set theory mentioned above however is that none of them
tries to exploit the fact that an element of can belong to
some degree to several “soft similarity classes” at the same time.
This property does not only lie at the heart of fuzzy set theory but
is also crucial in the decision on how to define lower and upper
approximations. For instance, in traditional rough set theory,
belongs to the lower approximation of if the equivalence class
to which belongs is included in . But what happens if
belongs to several “soft similarity classes” at the same time?
Do we then require that all of them are included in ? Most of
them? Or just one? And then, which one? In Sections III and
IV, we continue this discussion touched upon for the first time
in [5].

As such it becomes clear that there is still significant room
for improvement and generalization of the definition of a fuzzy
rough set, beyond the most “obvious” fuzzification established
so far. Furthermore Section V reveals that this generalization
is not just of theoretical interest but becomes crucial in a top-
ical application such as query refinement for searching on the
WWW.

II. FROM ROUGH SETS TO FUZZY ROUGH SETS

Rough set analysis makes statements about the membership
of some element of to the concept of which is a set of ex-
amples, based on the indistinguishability between and the el-
ements of . To arrive at such statements, is approximated in
two ways. An element of belongs to the lower approxima-
tion of if the equivalence class to which belongs is included
in . On the other hand belongs to the upper approximation
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Fig. 1. Lower and upper approximation of a set A. The dark shaded area is the
boundary region.

of if its equivalence class has a non-empty intersection with
.
Formally, let be a universe and an equivalence relation.

The lower and the upper approximation (in the sense of Pawlak
[23]) of a subset of in the approximation space are
the sets and such that for all in

(1)

(2)

In other words

(3)

(4)

The underlying meaning is that is the set of elements nec-
essarily satisfying the concept (strong membership), while
is the set of elements possibly belonging to the concept (weak
membership); for belongs to if all elements of in-
distinguishable from belong to (hence, there is no doubt
that also belongs to ), while belongs to as soon
as an element of is indistinguishable from . It holds that

. If belongs to the boundary region ,
then there is some doubt, because in this case is at the same
time indistinguishable from at least one element of and at least
one element of that is not in . This is illustrated graphically
in Fig. 1. We call a rough set (in ) as soon as
there is a set in such that and (see
e.g., [26]).

For completeness we mention that a second stream con-
cerning rough sets in the literature was initiated by Iwinski [12]
who did not use an equivalence relation or tolerance relation
as an initial building block to define the rough set concept.
Although his formulation provides an elegant mathematical
model, the absence of the equivalence relation makes his model,
as well as the fuzzy rough set theoretical models developed in
the same spirit (see, e.g., [21]), hard to interpret. Therefore, we
do not deal with it in this paper.

In the context of fuzzy rough set theory, is a fuzzy set in
, i.e., an mapping, while is a fuzzy relation in
, i.e., a fuzzy set in . Recall that for all in , the
-foreset of is the fuzzy set defined by

TABLE I
WELL-KNOWN T-NORMS; x AND y IN [0; 1]

TABLE II
WELL-KNOWN S-IMPLICATORS; x AND y IN [0; 1]

TABLE III
WELL-KNOWN RESIDUAL IMPLICATORS; x AND y IN [0; 1]

for all in . The fuzzy logical counterparts of the connectives
in (3) and (4) play an important role in this paper; we there-
fore recall some preliminaries in detail. Throughout this paper,
let and denote a triangular norm and an implicator, respec-
tively. Recall that a triangular norm (t-norm for short) is any
increasing, commutative and associative map-
ping satisfying , for all in . A negator is
a decreasing mapping satisfying and

. is called involutive if for all in
. Finally, an implicator is any -mapping

satisfying , for all in . More-
over we require to be decreasing in its first, and increasing in
its second component. If is a t-norm, the mapping defined
by, for all and in [0, 1],

and (5)

is an implicator, usually called the residual implicator (of ). If
is a t-norm and is an involutive negator, then the mapping

defined by, for all and in [0, 1],

(6)

is an implicator, usually called the S-implicator induced by
and . In Tables I–III, we mention some well known t-norms,
S- and residual implicators. The S-implicators in Table II are
induced by means of the standard negator which is defined
by , for all in .

Because equivalence relations are used to model equality,
fuzzy -equivalence relations are commonly considered to rep-
resent approximate equality or similarity. Recall that a fuzzy re-
lation in is called a fuzzy -equivalence relation iff for all

and in

reflexivity

symmetry

transitivity
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Paraphrasing statements (3) and (4) and absorbing earlier
suggestions in the same direction, the following definition of
the lower and upper approximation of a fuzzy set in was
given in [26], constructed by means of an implicator , a t-norm

and a fuzzy -equivalence relation in

(7)

(8)

for all in . is called a fuzzy rough set (in )
as soon as there is a fuzzy set in such that
and . Formulas (7) and (8) for and can
also be interpreted as the degree of inclusion of in and the
degree of overlap of and respectively, which indicates the
semantical link with (1) and (2).

III. THE FORGOTTEN STEP

A. New Approximations

The role of the equivalence class in the crisp case [see
(1) and (2)] is subsumed by the more general concept of the

-foreset in the fuzzy case [see (7) and (8)]. It is well known
that in the crisp case, if we consider two equivalence classes
then they either coincide or are disjoint. It is therefore not pos-
sible for to belong to two different equivalence classes at the
same time. If is a fuzzy relation in —in particular a fuzzy

-equivalence relation—then it is quite normal that, because
of the intermediate degrees of membership, different foresets
are not necessarily disjoint, as the following examples illustrate.
Recall that two (fuzzy) sets are disjoint iff their intersection is
empty, and that the -intersection of fuzzy sets and in
is defined by

for all in .
Example 1: Let be an arbitrary t-norm. One can verify that

for the fuzzy -equivalence relation on given by

it holds that

(9)

(10)

hence, for any t-norm

(11)

The latter shows that the foresets and are not disjoint,
since their intersection contains both and to degree 0.2.

Example 2: In applications is often used as a t-norm be-
cause the notion of fuzzy -equivalence relation is dual to that

Fig. 2. Fuzzy similarity classes.

of a pseudo-metric [4]. Let the fuzzy -equivalence relation
in be defined by

for all and in . Fig. 2 depicts the -foresets of 1.3, 2.2, 3.1,
and 4. The -foresets of 3.1 and 4 are clearly different. Still one
can easily see that

Since belongs to degree 0.1 to the
-intersection of the -foresets of 3.1 and 4, i.e., these

-foresets are not disjoint.
From now on, whenever the fuzzy relation models approx-

imate equality, we will call the “fuzzy similarity class” of
. From the previous examples, it is clear that does not only

belong to but can also belong to other, different fuzzy sim-
ilarity classes to a certain degree. Recall that, by the definition
used so far, belongs to the lower approximation of to the
degree to which is included in [see (7)]. In view of the
discussion above however it makes sense to consider also the
other fuzzy similarity classes to which has a non-zero mem-
bership degree, and to assess their inclusion into as well for
the lower approximation, and their overlap with for the upper
approximation. Informally, this immediately results in the fol-
lowing (inexhaustive) list of candidate definitions for the lower
and the upper approximation of .

1) belongs to the lower approximation of to the degree to
which

a) all fuzzy similarity classes containing are included
in ;

b) at least one fuzzy similarity class containing is in-
cluded in ;

c) is included in .
2) belongs to the upper approximation of to the degree to

which
a) all fuzzy similarity classes containing have a

nonempty intersection with ;
b) at least one fuzzy similarity class containing has a

nonempty intersection with ;
c) has a nonempty intersection with .
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Paraphrasing these expressions, we obtain the following
definitions.

Definition 3: Let be a fuzzy relation in and a fuzzy
set in .

1) The tight, loose and (usual) lower approximation of are
defined as

a)
;

b)
;

c) ;
for all in .

2) The tight, loose and (usual) upper approximation of are
defined as

a)
;

b)
;

c) ;
for all in .

The terminology “tight” refers to the fact that we take “all” fuzzy
similarity classes into account, giving rise to a strict or tight re-
quirement. For the “loose” approximations, we only look at “the
best one” which is clearly a more flexible demand. Options (1c)
and (2c) correspond to the well known definition from the lit-
erature on fuzzy rough set theory [see (7) and (8)], while (1b)
and (2a) correspond to the generalized opening and closure op-
erators defined in [1]. Furthermore in the crisp case options (1a)
through (1c) coincide, as well as options (2a) through (2c) be-
cause then there is exactly one equivalence class to which be-
longs, namely . As mentioned previously, however, different
fuzzy similarity classes are not necessarily disjoint, hence, a fur-
ther investigation on the relationships between the tight, loose
and usual approximations is in order.

In the remainder of this paper we will assume that is a re-
flexive and symmetrical fuzzy relation in , which are basic
requirements if is supposed to model similarity. Some prop-
erties require additional -transitivity of ; whenever this is the
case we mention it explicitly.

B. Links Between the Approximations

We start with the following proposition which follows imme-
diately from the definitions due to the symmetry of and proves
to be very useful.

Proposition 4: For every fuzzy set in

(12)

(13)

(14)

(15)

The following proposition supports the idea of approximating a
concept from the lower and the upper side.

Proposition 5: [26]: For every fuzzy set in

(16)

The tight and loose approximations should exhibit a similar be-
haviour. To show that this is indeed the case, we recall that the
lower and the upper approximation are monotonic operations
due to the monotonicity of the fuzzy logical operators involved.
This is reflected in the next proposition.

Proposition 6: [26]: For every fuzzy set and in

(17)

(18)

Combining this with Proposition 5 we conclude that the tight
lower and the loose upper approximation are indeed a subset of

and a superset of , respectively, which justifies the
terminology.

Proposition 7: For every fuzzy set in

(19)

Note that in [6] it is suggested to use and
as representations of the modified linguistic expressions

extremely very more or less , and roughly respec-
tively (for being a fuzzy relation modelling approximate
equality).

From Propositions 4–6, we obtain

(20)

(21)

but no immediate information about a direct relationship be-
tween the loose lower and the tight upper approximation in
terms of inclusion, and about how itself fits in this picture.
The following proposition sheds some light on this matter.

Proposition 8: [1]: If is a left continuous t-norm and its
residual implicator then for every fuzzy set in

(22)

Proposition 8 does not hold in general for other choices of
t-norms and implicators that do not fulfill the properties

(23)

(24)

as Example 9 illustrates.
Example 9: Let and be defined as in Example 1 and let
be the fuzzy set in defined as and .

Furthermore let and be its S-implicator.
Then, and , hence

(25)

which makes it clear that .
From all of the above, we obtain

provided that is left continuous and is its residual impli-
cator. We stress that this holds for any reflexive and symmetric
fuzzy relation . This justifies the name “lower” and “upper”
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for the new tight and loose approximations. Furthermore the fol-
lowing example illustrates that the new approximations indeed
differ from the existing ones.

Example 10: Let and the fuzzy set in defined
as , for all in . Let the reflexive and symmetrical
fuzzy relation in be defined as

if
otherwise

for all and in . One can verify that for in

Hence, . Furthermore

hence . We verify

and

In the same way, one can verify that and
. This illustrates that all the approxima-

tions from Definition 3 are different.

C. Maximal Expansion and Reduction

Taking an upper approximation of in practice corresponds
to expanding , while a lower approximation is meant to re-
duce . However this refining process does not go on forever.
The following property says that with the loose lower and the
tight upper approximation maximal reduction and expansion is
achieved within one approximation phase.

Proposition 11: [1]: If is a left continuous t-norm and
its residual implicator, then for every fuzzy set in

and (26)

To investigate the behaviour of the loose upper and tight lower
approximation w.r.t. expansion and reduction, we first establish
links with the composition of with itself. Recall that in general

the round composition of fuzzy relations and in is the
fuzzy relation in defined by

(27)

for all and in .
Proposition 12: If is a left continuous t-norm then for every

fuzzy set in

(28)

Proof: For all in

Proposition 13: If is left continuous in its first component
and right continuous in its second component, and if and
satisfy the shunting principle

(29)

then for every fuzzy set in

(30)

The proof of Proposition 13 is analogous to the proof of
Proposition 12. Regarding the restrictions placed on the fuzzy
logical operators involved, recall that the shunting principle
is satisfied both by a left continuous t-norm and its residual
implicator [22] as well as by a t-norm and an S-implicator
induced by it [26].

Let us use the following notation, for :

From Proposition 12 it follows that taking times successively
the upper approximation of a fuzzy set under corresponds to
taking the upper approximation once under the composed fuzzy
relation . Proposition 13 states a similar result for the lower
approximation. Recall the following important proposition that
holds for reflexive and -transitive fuzzy relations.
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Proposition 14: [26]: If is a fuzzy -equivalence relation
in , then

In other words, using a -transitive fuzzy relation , options
(1a) and (1c) of Definition 3 coincide, as well as options (2b) and
(2c). The following property shows that under these conditions,
they also coincide with (1b), respectively, (2a).

Proposition 15: [1], [2], [26]: If is a fuzzy -equivalence
relation in is a left continuous t-norm and its residual
implicator then for every fuzzy set in

and (31)

This means that, using a fuzzy -equivalence relation to model
approximate equality, we will obtain maximal reduction or ex-
pansion in one phase, regardless of which of the approximations
from Definition 3 is used. As Example 10 illustrates, this effect
is not always exhibited by non- -transitive fuzzy relations.

When is not -transitive and the universe is finite, it
is known that the -transitive closure of is given by
(assuming ) [19], hence

In other words with the lower and upper approximation, max-
imal reduction and expansion will be reached in at most
steps, while with the tight lower and the loose upper approxi-
mation it can take at most steps.

IV. RELATED WORK AND FURTHER COMMENTS

Although—to our knowledge—the tight and loose lower and
upper approximations have never been considered in the frame-
work of fuzzy rough set theory, their crisp counterparts have al-
ready surfaced in classical rough set theory, albeit from different
angles of interpretation. The first one is due to [3]. His approach
to rough sets is remarkably different from others because it does
not revolve around a notion of indistinguishability or similarity,
but around a dual notion of discernibility. This discernibility is
represented by a so-called preclusivity relation, which is an ir-
reflexive and symmetrical relation. It can be obtained as the set
theoretical complement of an equivalence relation, or more
generally of that of a tolerance relation . Apart from the usual
set-theoretical complement of a set , defined by

(32)

for all in , Cattaneo also defines the preclusive orthocom-
plement of :

(33)

is the set of elements that are discernible from all ele-
ments of . Using also

(34)

Cattaneo introduces the mappings and
defined by

necessity

interior

closure

possibility

for all in . Applying the law of contraposition (
if and only if ) to (33) it is easy to see that

(35)

Now, for every crisp relation and every crisp set
and holds. This

allows us to derive the following:

(36)

and

(37)

(38)

(39)

(40)

In [3] Cattaneo himself gives the full expressions of the crisp
counterparts of Definition 3, parts 1(c) and 2(c) for and

, respectively.
In [15] and are linked to expressions corre-

sponding to the crisp counterparts of Definition 3, parts 1(b)
and 2(a), respectively, i.e., what we call tight lower approxima-
tion and loose upper approximation. In the crisp case, it makes
sense to differentiate between and , and between

and if one is dealing with a tolerance relation
which is not an equivalence relation. In [15] it is also suggested
to work with “tolerance classes of some iterations of tolerance
relations,” most likely referring to the composition of relations.

In general in the crisp case the difference between using a tol-
erance relation and an equivalence relation is clear at first sight,
because with the former different similarity classes need not to
be disjoint, while with the latter equivalence classes are either
equal or disjoint. This implies that when using an equivalence
relation, it makes no sense to differentiate between “all classes
containing ” and “at least one class containing ” because there
is exactly one class containing , namely . Hence, the tight,
the usual and the loose upper approximation coincide, and so do
the lower approximations.

Fuzzy -equivalence classes are known as the fuzzy coun-
terpart of equivalence relations, but as we illustrated at the be-
ginning of the previous section, they do no longer satisfy the
property that fuzzy similarity classes are equal or disjoint; in
fact can at the same time belong to different fuzzy similarity
classes to a certain degree. Hence it is not possible at first sight
to rule out the usefulness of the tight and loose lower and upper
approximations introduced in Definition 3 as alternatives to the
existing lower and upper approximation for fuzzy rough sets.
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Fig. 3. Fuzzy thesaurus.

However careful investigation of the properties of the newly
defined approximations show that interplay between suitably
chosen fuzzy logical operators and the -transitivity of the
fuzzy relation forces the new approximations to coincide with
the existing ones anyway. In the next section we will illustrate
that this is not always a desirable property in applications,
because it does not allow for gradual expansion or reduction of
a fuzzy set by iteratively taking approximations. Omitting the
requirement of -transitivity is precisely the key that allows
for a gradual expansion process.

Other undesirable effects of -transitivity w.r.t. approximate
equality were pointed out in [7], [8]. More in particular it is ob-
served there that fuzzy -equivalence relations can never satisfy
the so-called Poincaré paradox. A fuzzy relation in is com-
patible with the Poincaré paradox iff

This is inspired by Poincaré’s [16] experimental observation
that a bag of sugar of 10 grammes and a bag of 11 grammes can
be perceived as indistinguishable by a human being. The same
applies for a bag of 11 grammes w.r.t. a bag of 12 grammes,
while the subject is perfectly capable of noting a difference be-
tween the bags of 10 and 12 grammes. Now if is a fuzzy

-equivalence relation, then implies
[11]. Since , also
which is in conflict with . The fact that they are not
compatible with the Poincaré paradox makes fuzzy -equiva-
lence relations less suited to model approximate equality. The
main underlying cause for this conflict is -transitivity.

V. QUERY REFINEMENT

One of the most common ways to retrieve information from
the WWW is keyword based search: the user inputs a query con-
sisting of one or more keywords and the search system returns a
list of web documents ranked according to their relevance to the
query. The same procedure is often used in e-commerce appli-
cations that attempt to relate the user’s query to products from
the catalogue of some company.

In the basic approach documents are not returned as search
results if they do not contain (one of) the exact keywords of the
query. To satisfy the user who expects search engines to come
up with “what they mean and not what they say”, more sophis-
ticated techniques are needed. One option are so-called query
refinement techniques that adapt the original query by adding
terms that are related to the initial keywords. This requires the
use of a fuzzy term-term relation, called a fuzzy thesaurus. An

overview of approaches to automatically construct such fuzzy
thesauri based on the co-occurrences of terms in documents is
presented in [9].

Let us think of a query as a fuzzy set of keywords. If the user
cares to give weights to indicate the importance of the individual
keywords, these will be taken into account as the membership
of the terms in the query. However we expect that in many cases
the user does not want to be bothered with the need to specify his
query in such detail. In these cases 1 will be used as the default
membership degree of a term appearing in the query. One of the
advantages of our query refinement approach is that these initial
weights will be gradually adapted during the search process.

Formally, let denote the universe of terms and let the orig-
inal query be a fuzzy set in . Furthermore let be a fuzzy
thesaurus, then query can be expanded by taking its upper ap-
proximation under . In [17] a formally similar idea is promoted
to expand the fuzzy set of terms associated with a document (in-
stead of a query); there it is also suggested to use the transitive
closure of . In [27] the connection between query expansion
and fuzzy rough sets is established.

In this section we will show that using a -transitive fuzzy
thesaurus may result in adding too many irrelevant keywords.
However even with a non -transitive fuzzy thesaurus we can
easily run into the same problem when using the upper or the
loose upper approximation. We therefore promote the use of the
newly introduced tight upper approximation.

To illustrate our point, we constructed the small fuzzy the-
saurus shown in Fig. 3 by taking into account the number of
web pages found by a search engine for each pair of terms, as
shown in Fig. 4. Let and denote the number of web
pages that contain term , respectively term ; these numbers
can be found on the diagonal in Fig. 4. On the WWW there is
a strong bias towards computer science related terms, hence the
absolute number of web pages containing both term and
cannot be used directly to express the strength of the relation-
ship between and . To level out the difference, we used the
following measure:

as shown in Fig. 5. Finally we normalized the result using the
S-function (cfr. Fig. 6), giving rise to the fuzzy
thesaurus of Fig. 3. To compute its transitive closure, depicted in
Fig. 7, we used t-norm as we will do throughout this section.
Furthermore we will keep on using because it is at the same
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Fig. 4. Number of thousands of web pages found by Google.

Fig. 5. Unnormalized fuzzy thesaurus.

time a residual and an S-implicator. Now, let us consider the
query

as shown in the 2nd column in Fig. 8. The meaning of the am-
biguous word “apple,” which can refer both to a piece of fruit
and to a computer company, is clear in this query. The disadvan-
tage of using a -transitive fuzzy thesaurus becomes apparent
when we compute the upper approximation , shown in the
fifth column. All the terms are added with high degrees, even
though terms like “mac” and “computer” have nothing to do
with the semantics of the original query. This process can be
slowed down a little bit by using the non -transitive fuzzy the-
saurus and computing which allows for some gradual re-
finement. However, an irrelevant term such as “emulator” shows
up to a high degree in the second iteration, i.e., when computing

.
The main problem with the query expansion process, even if

it is gradual, is a fast growth of the number of less relevant or
irrelevant keywords that are automatically added. This effect is
caused by the use of a flexible definition of the upper approx-
imations in which a term is added to a query as soon as it is
related to one of its keywords. Therefore, we suggest the use of
the tight upper approximation : a term will only be added
to a query if all the terms that are related to are also related to
at least one keyword of the query. First, the usual upper approx-
imation of the query is computed but then it is stripped down
by omitting all terms that are also related to other terms not be-
longing to this upper approximation. In this way terms that are
sufficiently relevant, hence related to most keywords in , will
form a more or less closed context with few or no links outside,
while a term related to only one of the keywords in in general
also has many links to other terms outside and hence is
omitted by taking the lower approximation. The last column of

Fig. 6. S-function; x; �; and  in ; � <  .

Fig. 8 shows that the tight upper approximation performs clearly
better: irrelevant words such as “mac,” “computer,” and “hard-
ware” are still added to the query, but to a significantly lower
degree.

VI. CONCLUSION

Exploiting the truly fuzzy characteristic that an element can
belong to some degree to different fuzzy similarity classes at
the same time, we have defined the tight lower approximation

, the loose lower approximation , the tight upper
approximation and the loose upper approximation
of a fuzzy set under a reflexive and symmetrical fuzzy relation

. For any left continuous t-norm and its residual implicator
it holds that
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Fig. 7. Transitive closure of fuzzy thesaurus.

Fig. 8. Original and expanded queries.

which justifies the names of the new approximations. When is
in addition -transitive, the new approximations coincide with
the existing ones. However when is not -transitive, the ap-
proximations can be different and allow for a gradual expansion
process. We have shown the practical relevance of our results
for query refinement.
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