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Abstract

In this paper we state that fuzzy equivalence relations in general are not suitable to model approximate
equality, since then the notion of transitivity is counter-intuitive. To substantiate this we investigate some of
the undesirable results caused by transitivity, among other things in the case of approximate reasoning. We
then introduce a new framework to model approximate equality, i.e. the concept of a pseudometric based
resemblance relation. We go into the properties of this new kind of fuzzy relation and illustrate it by means
of some examples. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

An equivalence relation, i.e. a re;exive, symmetric and transitive relation, can be considered as
a basic concept of mathematics. The most popular example of an equivalence relation is the crisp
equality (see Fig. 1, 1←). The fuzzy counterpart of crisp equality is approximate equality (Fig. 1,
↓3), while the concept of a crisp equivalence relation can be fuzzi<ed to that of a fuzzy equivalence
relation (Fig. 1, 2↓). Unlike in the crisp case, however, where crisp equality is intuitively a crisp
equivalence relation, we will show that in the fuzzy case approximate equality is intuitively not
always a fuzzy equivalence relation. Taking into account the strong intuitive connection between ap-
proximate equality and distance, in this paper we replace the “problematic” condition of transitivity
by a pseudometric based condition. Thus we come to the notion of resemblance relation, which is
a suitable framework to model approximate equality.
After recalling some basic concepts from fuzzy set theory (Section 2), we go into paradoxical

results that appear when representing approximate equality by fuzzy equivalence relations, among
other things in the case of approximate reasoning (Section 3). Next, a study of the links between
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Fig. 1. Crisp relations and their fuzzy/approximate counterpart

distance functions and fuzzy equivalence relations will also indicate their counter-intuitive shortcom-
ings for modelling approximate equality (Section 4). To overcome them, we de<ne the concept of
pseudometric based resemblance relation. We state and prove some of its properties and we conclude
with some examples of resemblance relations in diGerent universa (Section 5).

2. Basic concepts

Throughout this paper we will use the following triangular norms: the minimum operator M , the
algebraic product P, the vukasiewicz t-norm W and the drastic product D de<ned by (for x and y
in [0; 1]): M (x; y)= min(x; y), P(x; y)=x :y, W (x; y)= max(0; x + y − 1) and D(x; y)=min(x; y) if
max(x; y)=1, D(x; y)=0 otherwise. These t-norms are ranked as: D⊆W⊆P⊆M . Furthermore we
will use the following triangular conorms: the maximum operator M ∗, the probabilistic sum P∗, the
bounded sum W ∗ and the drastic sum D∗ de<ned by (for x and y in [0; 1]): M ∗(x; y)=max(x; y),
P∗(x; y)=x+y−x :y, W ∗(x; y)= min(1; x+y) and D∗(x; y)=max(x; y) if min(x; y)=0, D∗(x; y)=1
otherwise. These t-conorms are ranked as: M ∗⊆P∗⊆W ∗⊆D∗. We recall that a negation N is called
involutive iG N(N(x))=x, for all x in [0; 1]. We will use the involutive standard negation Ns
de<ned by Ns(x)=1 − x, for all x in [0; 1]. The dual w.r.t. a negation N of a ([0; 1]2 − [0; 1])-
mapping f is the ([0; 1]2−[0; 1])-mapping f↔N de<ned by f↔N(x; y)=N−1(f(N(x);N(y))), for
all x and y in [0; 1]. If N is an involutive negation and T is a t-norm then T↔N is a t-conorm.
Examples are M↔Ns =M ∗, P↔Ns =P∗, W↔Ns =W ∗, D↔Ns =D∗.
Furthermore throughout this paper, let X denote a universe and F(X ) the class of fuzzy sets on

X . For R a fuzzy relation on X (i.e. R∈F(X ×X )) and for x in X , the R-afterset of x is a fuzzy
set on X denoted by xR and de<ned by

(xR)(y) = R(x; y)

for all y in X [1]. For T a triangular norm and R and G fuzzy relations on X , the T-composition
of R and G is a fuzzy relation on X , denoted by R◦TG and de<ned as usual by

(R ◦T G)(x; z) = sup
y∈X

T(R(x; y); G(y; z)):

De�nition 1 (Fuzzy T-equivalence relation, fuzzy T-equality). Let T be a triangular norm. A
fuzzy relation E on X is called a fuzzy T-equivalence relation on X iG for all x, y and z in X :

(FE.1) E(x; x)=1 (re;exivity)
(FE.2) E(x; y)=E(y; x) (symmetry)
(FE.3) T(E(x; y); E(y; z))6E(x; z) (T-transitivity).

If also E(x; y)=1 iG x=y (separation), then E is called a fuzzy T-equality.
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The de<nition of fuzzy T-equivalence relation is very popular and can be found e.g. in [2, 3, 7]
(under the name “equality relation”) and [11] (under the name “indistinguishability operator”). Note
that for T=M this de<nition reduces to Zadeh’s similarity relation and for T=W to Zadeh’s
likeness relation (see [13, 6]).

3. Problems and paradoxes

Similarities, approximate equalities play a very important part in human reasoning. Even nat-
ural languages are based on them: we use similarities to construct concepts such as “game”
[12]:

Consider for example the proceedings that we call ‘games’. [..] For if you look at them you
will not see something that is common to all, but similarities, relationships, and a whole series
of them at that. [..] Look for example at board-games with their multifarious relationships.
Now pass to card-games; here you <nd many correspondences with the <rst group, but many
common features drop out, and others appear. When we pass next to ball-games, much that is
common is retained, but much is lost. Are they all ‘amusing’? Compare chess with noughts
and crosses. Or is there always winning and losing, or competition between players? Think of
patience. [..] Look at the parts played by skill and luck; and at the diGerence between skill in
chess and skill in tennis. [..]
And the result of this examination is: we see a complicated network of similarities overlapping

and criss-crossing: sometimes overall similarities, sometimes similarities of detail. I can think of
no better expression to characterize these similarities than ‘family resemblances’; for the various
resemblances between members of a family: build, features, colour of eyes, gait, temperament,
etc. overlap and criss-cross in the same way.

Approximate equality is a truly vague concept: some objects are de<nitely approximately equal,
others are not, but in between is a group of objects for which it is hard to tell whether they are
or are not approximately equal. In fact: they can be considered to be approximately equal to some
extent.
Furthermore approximate equality is not transitive. Referring to the example of Wittgenstein

above, a girl may be similar to her mother, the mother may be similar to the grandmother, but
it is still possible that the girl and the grandmother have nothing in common at all! This is
an example of the so-called PoincarRe paradox [9, 10], which is usually symbolized
as

A = B; B = C; A 	= C; (1)

in which the equality sign should be interpreted as indistinguishability. Although it is very clear
from the intuitive perspective, in fuzzy set theoretical contexts approximate equality is usual mod-
elled by fuzzy equivalence relations that respect some kind of transitivity. In this section we discuss
counter-intuitive results arising from this representation.
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3.1. The consequence of a lower boundary

Zadeh originally generalized the notion of a crisp equivalence relation to that of a fuzzy
M -equivalence relation, also called similarity relation.

Example 1. Consider the ages 50, 52 and 56.

x0 : z0 : : : y0

= = =

50 52 56

If a similarity relation E is used to model “approximately equal” then we would expect intuitively

E(50; 56)¡ E(50; 52) (2)

because 50 and 52 are more alike than 50 and 56. Analogously

E(56; 52)¡ E(50; 52): (3)

Eqs. (2) and (3) do not con;ict with M -transitivity

M (E(50; 56); E(56; 52))6 E(50; 52):

Example 2. Now consider the ages 20, 22 and 24.

x1 : y1 : z1

= = =

20 22 24

We expect intuitively

E(20; 22)¿ E(20; 24) (4)

because 20 and 22 are more alike than 20 and 24. Analogously

E(22; 24)¿ E(20; 24): (5)

Both (4) and (5) however con;ict with M -transitivity

M (E(20; 22); E(22; 24))6 E(20; 24):

In general, it is not acceptable to put as a lower boundary on the degree to which two objects x and
z are equal, the minimum of the degrees to which they are equal to a third object y. In particular
when the object y is intermediate between x and z this lower boundary leads to counter-intuitive
results.
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It is neither acceptable to put a similar upper boundary on the degree to which x and z are alike.
This is done in [8] under the name of M ∗-transitivity

M ∗(E(x; y); E(y; z))¿ E(x; z):

It is clear that in this case the intuitive expectations (1) and (2) from Example 1 will con;ict with

M ∗(E(50; 56); E(56; 52))¿E(50; 52):

3.2. All objects are approximately equal to each other?

In the previous section we have illustrated the intuitive shortcomings of M -transitive relations to
model approximate equality. In this section we will show that for every t-norm T the T-transitivity
leads to undesirable results.

Example 3. Let X be the universe of possible heights of men, T a t-norm and E a fuzzy
T-equivalence relation on X . If E is used to represent “approximately equal”, we could expect
intuitively

E(1:50m; 1:51m) = 1; (6)

E(1:51m; 1:52m) = 1; (7)

E(1:52m; 1:53m) = 1; (8)

E(1:53m; 1:54m) = 1; (9)

...

Now we derive from the T-transitivity of E

T(E(1:50m; 1:51m); E(1:51m; 1:52m))6 E(1:50m; 1:52m)

and hence

E(1:50m; 1:52m) = 1: (10)

Combining (10) with (8) and using T-transitivity, we can derive in a similar way that

E(1:50m; 1:53m) = 1: (11)

Combining (11) with (9) leads to

E(1:50m; 1:54m) = 1; (12)

etc. Finally, we can prove that all heights are approximately equal to degree 1.
In general we have to be very careful with every fuzzy T-equivalence (for an arbitrary(!) t-norm

T) relation E on a universe X , that is not a fuzzy T-equality. For then the intuitive very acceptable
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Fig. 2. M -transitivity

Fig. 3. Intuitive expectation

Fig. 4. P-transitivity

situation in which we have diGerent objects x; y and z in X

x : : y : : z

such that E(x; y)=1 and E(y; z)=1 whereas E(x; z)¡1, con;icts with T-transitivity. Clearly in this
case the representation of approximate equality by E is not compatible with the PoincarRe Paradox
(Formula 1).
In the case of a M -transitive relation, a similar problem occurs on each �-level (�∈[0; 1]). If

for x; y and z in X : E(x; y)=� and E(y; z)=� then M -transitivity implies that E(x; z)¿M (E(x; y);
E(y; z))=� (see Fig. 2). However, if y is an intermediate object between x and z, we would
intuitively expect E(x; z)¡� (see Fig. 3). The lower boundary on E(x; z) is obviously too high.
M is the largest t-norm. The smaller the t-norm T we use to model T-transitivity, the lower the
boundary on E(x; z) will be, and the more the derived result will agree with our intuition (see
Figs. 4 and 5).
This could explain the success of W -transitive relations in relational databases [6, p. 123]. Never-

theless, even by using the smallest t-norm D we cannot avoid the paradoxical results in Example 3.
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Fig. 5. W-transitivity

The M ∗-transitivity mentioned by Kundu in [8] can be generalized to negative S-transitivity for
an arbitrary t-conorm S [4]

S(E(x; y); E(y; z))¿ E(x; z):

This de<nition of transitivity unfortunately gives rise to similar (or “dual”) counter-intuitive results.
E.g. for a negative-S-transitive relation, from E(20; 70)=0 and E(70; 20)=0 we can now derive
that E(20; 20)=0. This makes E certainly unsuitable to model approximate equality.
In [5] it is proven that vukasiewicz logic is compatible with the PoincarRe Paradox. It should be

noted however that in the proof the author uses a very speci<c relation to model equality, namely
E(x; y)=1−min((1=�)|x − y|; 1), for all x and y in R and � denoting a <xed positive real number.
Note that E(x; y)=1 iG x=y. In the same paper an alternative kind of fuzzy relation to model
equality is de<ned:

De�nition 2 ([0; 1]-Valued equality). A fuzzy relation E on X is called a [0; 1]-valued equality on
X iG for all x, y and z in X :

(E.1) E(x; y)6min(E(x; x); E(y; y))
(E.2) E(x; y)=E(y; x)
(E.3) E(x; y)− E(y; y) + E(y; z)6E(x; z).

The <rst condition is a weakened re;exivity. We feel that in the case of approximate equality it
is justi<ed to demand full re;exivity, i.e. E(x; x)=1, for all x in X , or “every object is de<nitely
approximately equal to itself”. The last condition is a variant of W -transitivity. It can easily be
proven that the PoincarRe Paradox is not satis<ed for re;exive [0; 1]-valued equalities that are not
separated in a trivial way. I.e. if there exists x, y and z such that E(x; y)=1 and E(y; z)=1, due to
condition (E.3) also necessarily E(x; z)=1.

3.3. Paradox in approximate reasoning

Since the intuitive shortcomings of fuzzy T-equivalence relations in modelling approximate equal-
ity already become apparent when simply studying the de<ning characteristic of T-transitivity, it is
not very surprising that we will also meet them on a higher level, in case when we use them for
approximate reasoning purposes.
Let us take a closer look at a particular form of the compositional rule of inference [15]. Let

X1; X2 and X3 be 3 universes. v1 is a variable in X1, v2 is a variable in X2, v3 is a variable in X3,
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R1∈F(X1×X2), R2∈F(X2×X3), T is a t-norm. From (1) and (2) we can derive (3):

(v1; v2) is R1 (1)

(v2; v3) is R2 (2)

(v1; v3) is R1 ◦T R2 (3)

Zadeh originally stated this rule of inference for T=M .

Example 4. We study the inference:

The age of Alberik (26) and the age of Bart (23) is approximately equal:

The age of Bart (23) and the age of Chris (20) is approximately equal:

The age of Alberik and the age of Chris is ???

This inference is clearly a special case of the compositional rule of inference mentioned above
with X1=X2=X3=[0; 150], v1=age of Alberik, v2=age of Bart and v3=age of Chris. Furthermore,
R1 and R2 both represent “is approximately equal to”. Let us choose R1=R2=E with E a fuzzy
T1-equivalence relation for some t-norm T1. If we use a t-norm T2 to model the composition in the
compositional rule of inference, we obtain:

(v1; v2) is E

(v2; v3) is E

(v1; v3) is E ◦T2 E:

If T1=T2 (a popular choice is T1=T2=M), then E ◦T2 E=E (this equality is a result of the re;ex-
ivity and the T2-transitivity of E). In other words the conclusion is: v1 and v3 are “approximately
equal” in the same manner as v1 and v2 are approximately equal, and in the same manner as v2
and v3 are approximately equal. Now if we keep making similar inferences (e.g. by adding the
proposition “The age of Wouter (29) and the age of Alberik (26) are approximately equal”), we
obtain a similar paradox as in the previous section. Note that this is the case for every t-norm!

4. On the links between distance functions and fuzzy equivalence relations

Fuzzy equivalence relations are obviously not very suitable to represent approximate equality.
To model approximate equality in a proper way, we could start by taking the very clear intuitive
relationship between distance and equality into account:

Assumption 1. The closer two objects are to each other (i.e. the smaller the distance between them),
the more they are (approximately) equal.

The concept of resemblance relation that will be introduced in the next section is indeed directly
pseudometric based. However to enlighten the reader who is still not convinced about the unsuitability
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of fuzzy equivalence relations to model approximate equality we will <rst study the relationship
between distance functions and fuzzy equivalence relations. Once more we will meet problems on
the intuitive level.
Throughout this section we will assume that X is a universe, and that d is a X 2− [0; 1] mapping.

De�nition 3 (Pseudometric). d is a pseudometric on X iG for all x, y and z in X :

(PM.1) d(x; x)=0,
(PM.2) d(x; y)=d(y; x),
(PM.3) d(x; y) + d(y; z)¿d(x; z):

The couple (X; d) is called a pseudometric space. If also d(x; y)=0 implies x=y, then d is called
a metric and (X; d) is a metric space.

For simplicity, we restrict ourself to [0; 1]-valued pseudometrics. Note that every pseudometric d′
can be turned into a [0; 1]-valued pseudometric d by de<ning d(x; y)=min(1; d′(x; y)), for all x and
y in X .
The concept of a pseudometric re;ects our intuitive understanding of the notion of distance. The

third condition (PM.3) can be replaced by one that involves a t-conorm S, which gives rise to the
de<nition of a S-pseudometric [11].

De�nition 4 (S-pseudometric). d is a S-pseudometric on X , iG for all x, y and z in X :

(SPM.1) d(x; x)=0,
(SPM.2) d(x; y)=d(y; x),
(SPM.3) S(d(x; y); d(y; z))¿d(x; z).

If also d(x; y)=0 implies x=y, then d is called a S-metric.

Especially the case where S=M ∗ is well known.

De�nition 5 (Pseudo-ultrametric). A pseudo-ultrametric on X is a M ∗-pseudometric on X .

Note that a pseudo-ultrametric is a very counter-intuitive concept to represent distance. Indeed, if
y is some intermediate point between x and z, then M ∗(d(x; y); d(y; z))¿d(x; z) does not correspond
to our intuition. On the other hand for a D∗-pseudometric, the condition (SPM.3) gives almost no
information at all: if neither d(x; y) nor d(y; z) is 0, then (SPM.3) corresponds to 1¿d(x; z) which
is trivial considering the de<nition of distance functions we use (namely [0; 1]-valued).
Some S-metrics are however intuitively useful to model distance. Namely the class of

W ∗-pseudometrics on X coincides with the class of pseudometrics on X . Taking into account that
every S1-pseudometric on X is also a S2-pseudometric on X for S1⊆S2, the second diagram in
Fig. 6 depicts the class of S-pseudometrics with its subclasses. As we stated before, the condition
imposed by M ∗-pseudometrics is too severe from the intuitive point of view. Leaving the sub-
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Fig. 6. a) T-equivalence relations. b) S-pseudometrics

set of M ∗-pseudometrics and approaching to the borderline of the class of W ∗-pseudometrics, this
condition relaxes. Once we cross the border and leave the set of W ∗-pseudometrics however, the
S-pseudometrics are no longer pseudometrics. Therefore, in our opinion the best S-pseudometrics
to model distance are the pseudometrics in the neighbourhood of the W ∗-border.
The links between fuzzy equivalence relations and the S-pseudometrics are well known. We recall

a very important one.

Proposition 1 (Valverde [11]). For T a t-norm and N an involutive negation, the following state-
ments are equivalent:

(1) E is a fuzzy T-equivalence relation on X ,
(2) coN E is a T↔N–pseudometric on X .

For the standard negation Ns this proposition is visualized in Fig. 6. At <rst sight it seems to re;ect
the intuitive reverse connection between distance and approximate equality (Assumption 1) very
good. An immediate result of Proposition 1 however is that E is a fuzzy M -equivalence relation
on X iG coNs E is a pseudo-ultrametric on X . In other words Proposition 1 shows the link between
fuzzy M -equivalence relations with a counter-intuitive concept to model distance! Likewise E is a
fuzzy W-equivalence relation on X iG coNs E is a pseudometric on X , which indicates that fuzzy
W -equivalence relations are more natural. Or as Valverde puts it [11]

...in fact that property is used as one of the major arguments to introduce likeness relations
because the triangle inequality re<nes the ultrametric inequality given by the similarity relations.

In Section 3.2 we already came to a similar conclusion (cfr. their success in database applications).
Nevertheless as we have explained in Sections 3.2 and 3.3, problems on the intuitive level remain
even for fuzzy W-equivalence relations. Therefore, we feel the need to introduce a new kind of
relation to model approximate equality.
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5. Resemblance relations

Instead of making a straightforward generalization of crisp equivalence relations to fuzzy ones
and then trying to <nd the most suitable t-norm to have the least of problems on the intuitive level
for representing approximate equality, we suggest using a kind of relation that immediately satis<es
Assumption 1, e.g. resemblance relations.

De�nition 6 ((g; d)-resemblance relation). For X a universe, (M; d) a pseudometric space and g a
X −M mapping, a fuzzy relation E on X is called a (g; d)-resemblance relation on X iG for all
x; y; z and u in X :

(R.1) E(x; x)=1,
(R.2) E(x; y)=E(y; x);
(R.3) d(g(x); g(y))6d(g(z); g(u)) implies E(x; y)¿E(z; u).

The de<nition above is directly inspired by general intuitive expectations about approximate equal-
ity. The <rst two de<ning criteria are obvious: every object x resembles to itself to degree 1 ((R.1)
re;exivity). Furthermore an object x resembles to an object y to the same degree as y resembles to
x ((R.2) symmetry). The third criterion (R.3) expresses Assumption 1.
If X is already equipped with a suitable pseudometric—as is the case for most numerical univer-

ses —then g can be the identical mapping on X , i.e. IX (x)=x, for all x in X . In this case (R.3)
reduces to

d(x; y)6 d(z; u) implies E(x; y)¿ E(z; u):

Later on, however, we will also provide an example in which the use of a non-trivial mapping g is
useful.

5.1. Related concepts

In [4] a kind of fuzzy relation on the unit interval is de<ned, that is related to that of a resemblance
relation on [0; 1], namely “equivalence”. In the following propositions we relate the concept of
resemblance relation to those of crisp equality, fuzzy equivalence relation and point fuzzi<cation.
Let X be a universe, (M; d) a pseudometric space and g a X −M mapping.

Proposition 2. If (M; d) is a metric space and g is injective then the crisp equality “=” is a
(g; d)-resemblance relation on X .

Proof. The crisp equality “=” is re;exive and symmetric, so (R.1) and (R.2) are trivial. To
prove (R.3), we consider a quadruple (x; y; z; u) in X 4 with d(g(x); g(y))6d(g(z); g(u)). If z 	= u
(E(z; u)=0) then (R.3) is automatically satis<ed. On the other hand if z=u then g(z)=g(u) and
hence d(g(z); g(u))=0. Then d(g(x); g(y))=0 must hold and hence g(x)=g(y). Since g is injective
this implies x=y. This means that if z=u (E(z; u)=1) we obtain x=y (E(x; y)=1) and hence
(R.3).
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Proposition 3. Let T be a t-norm such that W⊆T. If E is a fuzzy T-equivalence relation on X
then E is a (IX ; coNs (E))-resemblance relation on X .

Proof. Since E is a fuzzy T-equivalence relation on X and W⊆T, coNs (E) is a pseudometric on X
(cf. Proposition 1). A fuzzy T-equivalence relation is re;exive and symmetric, so (R.1) and (R.2)
are trivial. Let (x; y; z; u) in X 4. Furthermore from

coNs (E)(x; y)6 coNs (E)(z; u)

we obtain (since coNs is decreasing):

coNs (coNs (E))(x; y)¿ coNs (coNsE)(z; u)

and hence (since coNs is involutive)

E(x; y)¿ E(z; u):

In [14], Zadeh describes a process of point fuzzi<cation which transforms a singleton {x} of X
into a fuzzy set on X that is concentrated around x. Following Kerre [6], we will name this fuzzy
set after the process used to generate it, and thus de<ne the concept of “point fuzzi<cation centered
around x∈X w.r.t. a distance function d”.

De�nition 7 (Point fuzzi<cation). For (X; d) a pseudometric space and x in X , a fuzzy set K on X
is called a d-point fuzzi<cation of x iG for all a and b in X :

(PF.1) K(x)=1,
(PF.2) d(x; a)¡d(x; b) implies K(a)¿K(b).

Proposition 4. Let x in M. If E is an (IM; d)-resemblance relation on M then the E-afterset of x
is a d-point fuzzi;cation of x.

Proof. (xE)(x)=E(x; x)=1. Furthermore, since E is an (IX ; d)-resemblance relation for all a and
b in M: if d(x; a)¡d(x; b) then E(x; a)¿E(x; b). Applying the de<nition of afterset we obtain
(xE)(a)¿(xE)(b).

5.2. Properties

Let X be a universe, (M; d) a pseudometric space and g an X −M mapping. Let T be a t-norm,
S a t-conorm and N a negation.

Proposition 5. If E is a (g; d)-resemblance relation on X then d(g(x); g(y))=d(g(z); g(u)) implies
E(x; y)=E(z; u), for all x; y; z and u in X .
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Proof. From d(g(x); g(y))=d(g(z); g(u)) we obtain

d(g(x); g(y))¿ d(g(z); g(u))

and hence E(x; y)6E(z; u). Similarly we obtain E(x; y)¿E(z; u) and hence the equality.

The following three propositions are straightforward: 1

Proposition 6. coN d ◦ (g× g) is a (g; d)-resemblance relation on X .

Proposition 7. For a¿1, the fuzzy relation R de;ned by R(x; y)=max(0;min(1; a − d(x; y)), for
all x and y in M, is an (IM; d)-resemblance relation on M.

Proposition 8. If E is a (g; d)-resemblance relation on X and f is an increasing [0; 1] − [0; 1]
mapping satisfying f(1)=1 then: f ◦E is a (g; d)-resemblance relation on X .

Proposition 9. If E1 and E2 are (g; d)-resemblance relations on X then

(1) E1∩TE2 is a (g; d)-resemblance relation on X .
(2) E1∪SE2 is a (g; d)-resemblance relation on X .

Proof. E1∩TE2 and E1∪SE2 are indeed fuzzy relations on X . We check that (R.1), (R.2) and
(R.3) hold for E1∩TE2. (The proofs for E1∪SE2 are analogous.) For all x; y; z and u in X :

(E1 ∩T E2)(x; x) =T(E1(x; x); E2(x; x)) =T(1; 1) = 1 (R:1):

Furthermore,

(E1 ∩T E2)(x; y) =T(E1(x; y); E2(x; y))

=T(E1(y; x); E2(y; x))

= (E1 ∩T E2)(y; x) (R:2):

Finally, d(g(x); g(y))6d(g(z); g(u)) implies (E1(x; y)¿E1(z; u)) and (E2(x; y)¿E2(z; u)) and hence
since T is increasing:

T(E1(x; y); E2(x; y))¿T(E1(z; u); E2(z; u)):

Applying the de<nition of ∩T we obtain:

(E1 ∩T E2)(x; y)¿ (E1 ∩T E2)(z; u) (R:3):

1 ◦ without an index is used to denote the common composition of mappings: for X; Y and Z universa, f a mapping from
X to Y and g a mapping from Y to Z , the composition g ◦f is a mapping from X to Z with (∀x∈X )((g ◦f)(x)=g(f(x))):
This should not be confused with the T-composition of fuzzy relations.
The product f1×f2 of a X1 − Y1 mapping f1 and a X2 − Y2 mapping f2 is a (X1×X2)− (Y1× Y2) mapping de<ned by
f1×f2(x1; x2) =(f1(x1); f2(x2)), for all (x1; x2) in (X1×X2).
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Corollary 10. coN d is an (IM; d)-resemblance relation on M.

5.3. Examples

Comparing ages: X =[0; 150] is a universe of ages. The X 2 − R-mapping d de<ned by

d(x; y) =
|x − y|
10

for all x and y in X , is a pseudometric on X , so E de<ned by E(x; y)= max(0;min(1; 1:1−d(x; y)))
for all x and y in X , is an (IX ; d)-resemblance relation on X (see Proposition 7). We compute some
degrees of membership

E(50; 56) = 0:5;

E(50; 52) = 0:9;

E(56; 52) = 0:7:

Clearly E(50; 56)¡E(50; 52) and E(56; 52)¡E(50; 52). This corresponds to the intuitive expectations
we stated in Example 1 of Section 3.1.

E(20; 22) = 0:9;

E(22; 24) = 0:9;

E(20; 24) = 0:7:

Clearly E(20; 22)¿E(20; 24) and E(22; 24)¿E(20; 24). This also corresponds to our intuition. Notice
that we could not obtain these results if E was a fuzzy M -equivalence relation (see Example 2 of
Section 3.1). Furthermore,

E(20; 20) = 1;

E(20; 20:5) = 1:

Hence diGerent ages can be approximately equal to degree 1. The paradoxical situation in which all
objects are approximately equal to degree 1 (see Section 3.2) however does not arise.

Comparing heights: X =[1:00; 2:50] is a universe of heights of men (expressed in meters). The
X 2 − R-mapping d de<ned by

d(x; y) =
|x − y|
5

for all x and y in X , is a pseudometric on X , so E de<ned by

E(x; y) = max(0;min(1; 1:2− d(x; y)))
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for all x and y in X , is an (IX ; d)-resemblance relation on X (see Proposition 7). We compute some
degrees of membership

E(1:50; 1:51) = 1;

E(1:51; 1:52) = 1;

E(1:50; 1:52) = 0:8:

It is clear from this example that E is not a fuzzy equivalence relation since for any t-norm T we
have ¬(T(E(1:50; 1:51); E(1:51; 1:52))6E(1:50; 1:52)).
Comparing beauty: X is a universe of fairytale characters

X = {snowwhite; witch; wolf ; dwarf ; prince; little-red-riding-hood}
The fuzzy sets beautiful, average and ugly in X are given as follows:

Beautiful Average Ugly

Snowwhite 1.00 0.00 0.00
Witch 0.00 0.30 0.70
Wolf 0.00 0.00 1.00
Dwarf 0.10 0.70 0.20
Prince 0.80 0.20 0.00
Red-hood 0.50 0.50 0.00

g is an X − [0; 1]3 mapping de<ned by
g(x) = (beautiful(x); average(x); ugly(x))

for all x in X . d is a [0; 1]3× [0; 1]3 − [0; 1] mapping de<ned by
d((x1; y1; z1); (x2; y2; z2)) = max(|x1 − x2|; |y1 − y2|; |z1 − z2|)

for all (x1; y1; z1) and (x2; y2; z2) in [0; 1]3. Now we can model approximate equality by the (g; d)-
resemblance relation E on X with (see Proposition 6)

E = coNs d ◦ (g× g):

The matrix representation of E is

E Snowwhite Witch Wolf Dwarf Prince Red-hood

Snowwhite 1.00 0.00 0.00 0.10 0.80 0.50
Witch 0.00 1.00 0.70 0.50 0.20 0.30
Wolf 0.00 0.70 1.00 0.20 0.00 0.00
Dwarf 0.10 0.50 0.20 1.00 0.30 0.60
Prince 0.80 0.20 0.00 0.30 1.00 0.70
Red-hood 0.50 0.30 0.00 0.60 0.70 1.00
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The elements on the diagonal are 1 because of the re;exivity of E. The fact that E is symmet-
ric causes the matrix to be symmetric. Furthermore, E respects the separation characteristic, i.e.
E(x; y)=1 iG x=y. By applying a contrast intensi<er to E we can construct a resemblance relation
E1 that is not separated, i.e. two diGerent fairy tale characters can be approximately equal in beauty
to degree 1. In general a contrast intensi;er on the unit interval [0; 1] is a [0; 1]− [0; 1] mapping f
satisfying for x in [0; 1]

x 6 1
2 ⇒ f(x)6 x;

x ¿ 1
2 ⇒ f(x)¿ x:

A possible contrast intensi<er on [0; 1] is the mapping L depending on a parameter �: for �∈[0; 12 [:

L(:; �) : [0; 1]→ [0; 1]

x �→ 0; ∀x ∈ [0; �];

x �→ 2
(
x − �
1− 2�

)2
; ∀x ∈

[
�;
1
2

]
;

x �→ 1− 2
(
x − 1 + �
1− 2�

)2
; ∀x ∈

[
1
2
; 1− �

]
;

x �→ 1; ∀x ∈ [1− �; 1]:

L(:; 0:3) is increasing and satis<es L(1; 0:3)=1, hence we <nd with Proposition 8 that the fuzzy
relation E1 de<ned by

E1 = L(:; 0:3) ◦ E
is also a (g; d)-resemblance relation on X .

E1 Snowwhite Witch Wolf Dwarf Prince Red-hood

Snowwhite 1.00 0.00 0.00 0.00 1.00 0.50
Witch 0.00 1.00 1.00 0.50 0.00 0.00
Wolf 0.00 1.00 1.00 0.00 0.00 0.00
Dwarf 0.00 0.50 0.00 1.00 0.00 0.88
Prince 1.00 0.00 0.00 0.00 1.00 1.00
Red-hood 0.50 0.00 0.00 0.88 1.00 1.00

It is easy to see that T-transitivity does not hold, for any t-norm T. For e.g. snowwhite and the
prince are approximately equal to degree 1, the prince and little-red-riding-hood are approximately
equal to degree 1, but snowwhite and little-red-riding-hood are approximately equal only to degree
0.5.
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6. Conclusion

In this paper we showed that the representation of approximate equality by means of a fuzzy
equivalence relation gives raise to paradoxical situations. In this perspective some fuzzy equivalence
relations are even worse than others. Similarity relations are generally useless, while likeness relations
are clearly better. It is however preferable to use another framework that corresponds more to
intuition. For this purpose we introduced the concept of a (g; d)-resemblance relation. We stated
some properties of this new type of relations and we illustrated the concept in several kinds of
universa.
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