
Complexity of fuzzy answer set programming
under Lukasiewicz semantics: First results

Marjon Blondeel1 ?, Steven Schockaert2 ??, Martine De Cock2, and Dirk
Vermeir1

1 Dept. of Computer Science, Vrije Universiteit Brussel, Belgium
{mblondee,dvermeir}@vub.ac.be

2 Dept. of Applied Mathematics and Computer Science, Ghent University, Belgium
{steven.schockaert,martine.decock}@ugent.be

Abstract. Fuzzy answer set programming (FASP) has recently been
proposed as a generalization of answer set programming in which propo-
sitions are allowed to be graded. Little is known about its computational
complexity. In this paper we present some results and reveal a connection
to an open problem about integer equations, suggesting that character-
izing the complexity of FASP may not be straightforward.

1 Introduction

Answer set programming (ASP) is a form of declarative programming. Basically,
a problem is translated to a logic program under the stable model semantics [6],
also called an ASP program. The answer sets (i.e. the stable models) of the
program then correspond to the solutions of the initial problem. A disjunctive
ASP program is a set of rules of the form r : a1∨ . . .∨an ← b1∧ . . .∧bm∧not c1∧
. . . ∧ not ck, with ai, bj , cl atoms and “not ” the negation-as-failure operator,
denoting that “not a” is true if there is no proof to support a. A disjunctive ASP
program is called positive if there occurs no negation-as-failure in the program.
A normal ASP program is a set of rules with n = 1 and a normal program which
is positive is called a simple ASP program. For a disjunctive ASP program P
and an atom a, deciding whether a occurs in an answer set of P is ΣP

2 -complete
[4]. For normal programs this problem is NP-complete and for simple problems
it is P-complete [1].

Although ASP has been successfully applied, e.g. to solve combinatorial op-
timization problems, it is not directly suitable for modeling problems with con-
tinuous domains. Fuzzy answer set programming (FASP) [7], a generalization of
ASP, allows to model continuous systems by using an infinite number of truth
values, which correspond to intensities of properties. To define relationships be-
tween the atoms, we will restrict to the connectives of Lukasiewicz logic, one of
the most widely-used fuzzy logics. In this setting, FASP relates to Lukasiewicz
logic as ASP does to classical logic. For Lukasiewicz logic, satisfiability is an

? Funded by a joint Research Foundation-Flanders (FWO) project
?? Postdoctoral fellow of the Research Foundation-Flanders (FWO)

2

NP-complete problem [10]. Since this problem has the same complexity for clas-
sical logic, one would expect ASP and FASP to have the same complexity as
well. In the case of probabilistic ASP, the complexity of finding some stable
model of a disjunctive program has been shown to be ΣP

2 -complete [8]. In [9],
complexity results are shown when restricting to minimum in the body and max-
imum in the head. In our paper, for disjunctive FASP programs we will show
ΣP

2 -completeness by using the complexity of fuzzy equilibrium logic [11], but
for simple and normal programs we can only show coNP- and ΣP

2 -membership
respectively. We furthermore show that characterizing the complexity of simple
programs is equivalent to an existing open problem about integer equations [5],
which in turn relates to an open problem about the complexity of optimizing
pseudo-boolean functions [2]. This suggests that the problem of characterizing
the complexity of FASP is not likely to have an easy solution. However, we
introduce several subclasses of simple programs for which P-membership can
be shown. Furthermore, if restricting the syntax of disjunctive FASP to only
 Lukasiewicz conjunction and maximum in the body and Lukasiewicz disjunction
and minimum in the head, we will be able to show NP-membership.

2 Background

Formulas in Lukasiewicz logic are built from a set of atoms A, the truth con-
stants in [0, 1]∩Q and the connectives conjunction ⊗, disjunction ⊕, max, min,
implication → and negation ¬. An interpretation is a mapping I : A → [0, 1].
We can extend this interpretation to arbitrary formulas as follows.

– [c]I = c, [α⊗ β]I = max([α]I + [β]I − 1, 0), [α⊕ β]I = min([α]I + [β]I , 1)
– [min(α, β)]I = min([α]I , [β]I), [max(α, β)]I = max([α]I , [β]I)
– [α→ β]I = min(1− [α]I + [β]I , 1), [¬α]I = 1− [α]I

for c ∈ [0, 1] and α and β formulas. Let us briefly introduce a fuzzy version of
answer set programming based on [7]. A disjunctive FASP program is a set of
rules of the form r : β ← α, with α and β formulas built from atoms in A,
constants in Q∩ [0, 1], expressions of the form “not a” with a ∈ A (with not the
negation-as-failure operator), the connectives ⊗, ⊕, min and max, but restricting
to formulas β without “not ”. The formula β is called the head of r and α is the
body. Although the rules in disjunctive FASP are not restricted to having only
disjunctions in the head, we will use the label “disjunctive” since in all rules there
is in some sense a disjunctive property: an atom in the body does not necessarily
have an equal influence on the truth values of each atom in the head. We denote
the set of atoms occurring in a disjunctive program P as BP . An interpretation I
of a disjunctive program P is a mapping I : BP → [0, 1], which can be extended
to arbitrary rules in the same manner as for formulas in Lukasiewicz logic, and
for an atom a we define [not a]I = 1 − [a]I . For interpretations I1 and I2 we
say that I1 ≤ I2 iff I1(a) ≤ I2(a) for all a ∈ BP . An interpretation I is called a
model of P iff [r]I = 1 for all r ∈ P . If in each rule the head contains exactly one
atom, the program is called a normal program. A disjunctive program is called

3

positive if it contains no expressions of the form “not a”. A normal program
which is positive is called a simple program. An interpretation I is called an
answer set of a positive disjunctive program P iff it is a minimal model of P .
For disjunctive programs which are not positive, answer sets are defined using a
generalization of the Gelfond-Lifschitz reduct. Specifically, let P be a disjunctive
program and I an interpretation. The reduct P I of the program P is obtained
from P by replacing all expressions “not a” by the interpretation [not a]I . The
reduct is then a positive program. We say that an interpretation I is an answer
set of P iff I is an answer set of P I . Note that without loss of generality, we
may assume that in each rule of a disjunctive program, the head and the body
have exactly two arguments. Indeed, a disjunctive program can be rewritten to
a disjunctive program with the same models and with only rules of the form
g(a1, a2) ← f(l1, l2) with a1 and a2 atoms and/or constants, l1 and l2 atoms,
constants and/or of the form “not a” with a an atom and f and g prefix notations
for ⊗, ⊕, min or max.

3 Complexity results

In this section, we will consider the following decision problem. Given a disjunc-
tive FASP program P , an atom a and a value λa ∈ [0, 1]∩Q, is there an answer
set I of P such that I(a) ≥ λa? We will refer to this decision problem as the
existence problem. Our results are listed in Table 1 and discussed below.

Table 1. Complexity of disjunctive (FASP) programs

simple (3.1) normal (3.2) disjunctive (3.3)

ASP in P NP-complete ΣP
2 -complete

FASP: no restrictions in coNP NP-hard, in ΣP
2 ΣP

2 -complete

FASP: only ⊗ and max in body, in P in NP in NP
only ⊕ and min in head

FASP: only ⊕ in body in P in NP ΣP
2

FASP: cycle free in P in NP n.a.

FASP: polynomially bounded constants in P NP-complete ΣP
2 -complete

3.1 Complexity for simple FASP programs

A rule β ← α in a disjunctive FASP program can be seen as the Lukasiewicz
formula α→ β, which means that the existence problem can be reduced to entail-
ment checking in Lukasiewicz logic, extended with truth constants (i.e. Rational
Pavelka logic). Indeed, a simple program P has a unique minimal model I, thus
checking if I(a) ≥ λa is the same as checking wheter J(a) ≥ λa for all models
J of P , thus the same as checking whether a ← λa can be entailed by P . As
entailment checking in Rational Pavelka logic is known to be coNP-complete, we

4

find that the existence problem belongs to coNP. Although for simple programs
there is coNP-membership, the connection to an existing open problem suggests
that P-membership will be difficult to show. More precisely, the unique mini-
mal model of a simple program P can be found by computing the least solution
of a system of equations over the integers with addition, multiplication with
positive constants, maximum and minimum. In [5], an algorithm is presented
for computing least solutions of such systems of integer equations. Although in
practice it turns out that the algorithm is very efficient, it is still an open prob-
lem (e.g. [2]) whether it has polynomial time complexity. In general, we can use
the immediate consequence operator [3] to find the unique minimal model of a
simple program. The immediate consequence operator for a simple program P
is a function ΠP that maps interpretations to interpretations and is defined as
ΠP (I)(a) = sup{[α]I | (a ← α) ∈ P} for an interpretation I and a ∈ BP . The
minimal model of P equals the least fixpoint of ΠP [3]. Unfortunately, if for
instance the program contains the rule a ← a ⊕ 1

2n , with n the total number
of atoms occurring in P and a not appearing in any other rule in P , then 2n

iterations will be needed to conclude that a should have truth value 1. In gen-
eral, there seems to be a problem if there are “loops” in the program. These
loops are actually the cycles in a directed graph, the so-called depency graph
of the program. For each simple (or normal) program P we define the depency
graph G(P) as follows. The vertices are the atoms in the program and there is a
directed edge from atom a to atom b if a occurs in the body of a rule with head
b.

Polynomially bounded constants or cycle free If the dependency graph of a sim-
ple program P has no cycles, ΠP will need only a polynomial number of iter-
ations to find the least fixpoint. If cycles are allowed but we demand that all
constants in the program are polynomially bounded, i.e. they are elements of
T = {0, 1k , . . . ,

k
k} with k polynomial in the size of the problem n, then the

answer set will be found in polytime as well. Indeed, after every application of
ΠP , either the least fixpoint is found and the procedure terminates, or the truth
value of at least one atom is increased to a new value in T ; hence there are at
most n · k such iterations.

Only disjunction in the body For simple programs with only disjunctions in the
bodies, the problem of the cycles can be tackled in another way. A directed
graph is called strongly connected if for each two vertices u and v there is a
path from u to v and a path from v to u. The strongly connected components
(scc) of a directed graph are its maximal strongly connected subgraphs and
can be seen as generalizations of cycles. We identify each strongly connected
component with its vertices. Now consider a simple program P and its unique
answer set I. Suppose there is a rule c ← a ⊕ b such that c and a are elements
in the same strongly connected component S of G(P) and I(b) > 0, then we
can prove that I(s) = 1 for each s ∈ S. This result and the fact that Tarjan’s
algorithm [12] can be used to efficiently compute the partition of the vertices in
the strongly connected components of a directed graph induces a modification

5

of the immediate consequence operator such that it runs in polytime.

ΠP (I)(a) =

1 if (a← b⊕ d) ∈ P,

I(b) > 0 (or I(d) > 0),
a, d (or a, b) in the same scc

sup{[α]I | (a← α) ∈ P} otherwise

Only conjunction and maximum in the body For simple rules with only conjunc-
tion and/or maximum in the body we do not need the immediate consequence
operator to find the answer set. Rules of the form a← max(b, c) can be rewritten
as two rules a ← b and a ← c and an interpretation I models w ← u ⊗ v iff it
models the Lukasiewicz formula ¬u ⊕ ¬v ⊕ w. To find the minimal model one
can use linear programming, which is known to be in P. Indeed, the function to
be minimized is the sum of all atoms in the program. For a rule a ← b we add
the constraints b ≤ a and 0 ≤ a, b ≤ 1 and for w ← u⊗ v we add the constraints
u′ + v′ + w ≥ 1, u′ = 1− u, v′ = 1− v and 0 ≤ u, u′, v, v′, w ≤ 1.

3.2 Complexity for normal FASP programs

From the analysis of the geometrical structure underlying fuzzy equilibrium mod-
els [11], it follows that a program P has an answer set I such that I(a) ≥ λa iff
there is such an answer set that can be encoded using a polynomial number of
bits. This means that if the existence problem is in P for a subclass of simple
programs, then the existence problem for the corresponding subclass of normal
programs is in NP. For normal programs in classical ASP, the existence problem
is NP-complete [1]. By reduction, we can show NP-hardness for normal FASP
programs. More precisely, classical connectives are replaced by the correspond-
ing connectives in Lukasiewicz logic and for each atom a, the rule a ← a⊕ a is
added to the FASP program, which ensures that the truth value of every atom is
in {0, 1}. Note that we can also reduce normal ASP to normal FASP restricted
to polynomially bounded constants. Remark that disjunctions in the body are
needed to show NP-hardness.

3.3 Complexity for disjunctive FASP programs

From the complexity of fuzzy equilibrium logic [11], it follows that the existence
problem for disjunctive programs is in ΣP

2 . Disjunctive ASP, which is ΣP
2 -hard

[4], can be reduced to disjunctive FASP, in the same manner as for normal
programs. This can also be done if the program is restricted to polynomially
bounded constants. For programs with only ⊗ and max in the body and ⊕ and
min in the head we can prove NP-membership. Recall that an answer set I can
be guessed in polynomial time. It has to be checked whether I is a model of
P I . The latter can be done by a linear program M , similar as in Section 3.1.
Finally, to prove that it is a minimal model, a linear program Ma has to be
solved for each atom a in P I . This program has the same constraints as M and
the constraints a < I(a) and b ≤ I(b) for all atoms b 6= a. If Ma has a solution,

6

I is not an answer set of P . Note that the strict inequality can be handled by
assuming a weak inequality a ≤ I(a), finding the solution which minimizes a
and verifying whether in that solution the value of a is different from I(a).

4 Conclusions

We presented some results about the computational complexity of FASP with
 Lukasiewicz semantics. For disjunctive FASP, this is the same as for disjunctive
ASP. However, NP-membership was shown when restricting to disjunction and
minimum in the head and conjunction and maximum in the body. For simple
programs we showed a correspondence to an open problem which indicates that
setting the complexity may not be easy. However, we showed membership in P
for several interesting subclasses.

References

1. Baral, C. Knowledge, Representation Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

2. Bjorklund, H., Sandberg, S., and Vorobyov, S. Complexity of model check-
ing by iterative improvement: the pseudo-boolean framework. In Proceedings of
the 5th Andrei Ershov Memorial Conference “Perspectives of System Informatics”
(2003), pp. 381–394.

3. Damásio, C., and Pereira, L. Antitonic logic programs. In Proceedings of the
6th International Conference on Logic Programming and Nonmonotonic Reasoning
(2001), pp. 379–392.

4. Eiter, T., and Gottlob, G. Complexity results for disjunctive logic program-
ming and application to nonmonotonic logics. In Proceedings of the Internationsl
Logic Programming Symposium (1993), pp. 266–278.

5. Gawlitza, T., and Seidle, H. Precise fixpoint computation through strategy
iteration. In Proceedings of the 16th European Conference on Programming (2007),
pp. 300–315.

6. Gelfond, M., and Lifschitz, V. The stable model semantics for logic program-
ming. In Proceedings of the Fifth International Conference and Symposium on
Logic Programming (1988), pp. 1070–1080.

7. Janssen, J., Schockaert, S., Vermeir, D., and De Cock, M. General fuzzy
answer set programs. In Proceedings of the International Workshop on Fuzzy Logic
and Applications (2009), pp. 353–359.

8. Lukasiewicz, T. Many-valued disjunctive logic programs with probabilistic se-
mantics. In LPNMR (1999), pp. 277–289.

9. Mateis, C. Extending disjunctive logic programming by t-norms*. In LPNMR
(1999), pp. 290–304.

10. Mundici, D. Satisfiability in many-valued sentential logic is NP-complete. Theo-
retical Computer Science 52, 5 (1987), 145–153.

11. Schockaert, S., Janssen, J., Vermeir, D., and De Cock, M. Answer sets in
a fuzzy equilibrium logic. In Proceedings of the 3rd International Conference in
Web Reasoning and Rule Systems (2009), pp. 135–149.

12. Tarjan, R. Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1, 2 (1972), 146–160.

