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Abstract

Answer Set Programming (ASP) is a popular framework for modeling combinatorial prob-
lems. However, ASP cannot easily be used for reasoning about uncertain information. Pos-
sibilistic ASP (PASP) is an extension of ASP that combines possibilistic logic and ASP.
In PASP a weight is associated with each rule, where this weight is interpreted as the
certainty with which the conclusion can be established when the body is known to hold.
As such, it allows us to model and reason about uncertain information in an intuitive
way. In this paper we present new semantics for PASP, in which rules are interpreted
as constraints on possibility distributions. Special models of these constraints are then
identified as possibilistic answer sets. In addition, since ASP is a special case of PASP
in which all the rules are entirely certain, we obtain a new characterization of ASP in
terms of constraints on possibility distributions. This allows us to uncover a new form
of disjunction, called weak disjunction, that has not been previously considered in the
literature. In addition to introducing and motivating the semantics of weak disjunction,
we also pinpoint its computational complexity. In particular, while the complexity of most
reasoning tasks coincides with standard disjunctive ASP, we find that brave reasoning for
programs with weak disjunctions is easier.
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1 Introduction

Answer set programming (ASP) is a form of logic programming with a fully declar-

ative semantics, centered around the notion of a stable model. Syntactically, an

ASP program is a set of rules of the form (head← body) where head is true when-

ever body is true. Possibilistic ASP (PASP) extends upon ASP by associating a

weight with every rule, which is interpreted as the necessity with which we can

derive the head of the rule when the body is known to hold. Semantics for PASP

have been introduced in (Nicolas et al. 2006) for possibilistic normal programs and

later extended to possibilistic disjunctive programs in (Nieves et al. 2013). Under

these semantics, a possibilistic rule with certainty λ allows us to derive head with

certainty min(λ,N(body)) where N(body) denotes the necessity of the body, i.e. the

certainty of head is restricted by the least certain piece of information in the deriva-

tion chain. Specifically, to deal with PASP rules without negation-as-failure, the

semantics from (Nicolas et al. 2006) treat such rules as implications in possibilis-

tic logic (Dubois et al. 1994). When faced with negation-as-failure, the semantics

from (Nicolas et al. 2006) rely on the reduct operation from classical ASP. Essen-

tially, this means that the weights associated with the rules are initially ignored, the

classical reduct is determined and the weights are then reassociated with the corre-

sponding rules in the reduct. Given this particular treatment of negation-as-failure,

the underlying intuition of ‘not l’ is “‘l’ cannot be derived with a strictly positive certainty”.

Indeed, as soon as ‘l’ can be derived with a certainty λ > 0, ‘l’ is treated as true

when determining the reduct. However, this particular understanding of negation-

as-failure is not always the most intuitive one.

Consider the following example. You want to go to the airport, but you notice

that your passport will expire in less than three months. Some countries require that

the passport is at least valid for an additional three months on the date of entry.

As such, you have some certainty that your passport might be invalid (invalid ).

When you are not entirely certain that your passport is invalid, you should still

go to the airport (airport) and check-in nonetheless. Indeed, since you are not

absolutely certain that you will not be allowed to board, you might still get lucky.

We have the possibilistic program:

0.1: invalid ←

1: airport ← not invalid

where 0.1 and 1 are the weights associated with the rules (invalid ←) and airport ←

invalid , respectively. Clearly, what we would like to be able to conclude with a high

certainty is that you need to go to the airport to check-in. However, as the semantics

from (Nicolas et al. 2006) adhere to a different intuition of negation-as-failure, the

conclusion is that you need to go to the airport with a necessity of 0. Or, in other

words, you should not go to the airport at all.

As a first contribution in this paper, we present new semantics for PASP by

interpreting possibilistic rules as constraints on possibility distributions. These se-

mantics do not correspond with the semantics from (Nicolas et al. 2006) when con-

sidering programs with negation-as-failure. Specifically, the semantics presented in
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this paper can be used in settings in which the possibilistic answer sets according

to (Nicolas et al. 2006) do not correspond with the intuitively acceptable results.

For the example mentioned above, the conclusion under the new semantics is that

you need to go to the airport with a necessity of 0.9.

In addition, the new semantics allow us to uncover a new characterization of ASP

in terms of possibility theory. Over the years, many equivalent approaches have been

proposed to define the notion of an answer set. One of the most popular character-

izations is in terms of the Gelfond-Lifschitz reduct (Gelfond and Lifzchitz 1988) in

which an answer set is guessed and verified to be stable. This characterization is used

in the semantics for PASP as presented in (Nicolas et al. 2006). Alternatively, the

answer set semantics of normal programs can be defined in terms of autoepistemic

logic (Marek and Truszczyński 1991), a well-known non-monotonic modal logic.

An important advantage of the latter approach is that autoepistemic logic enjoys

more syntactic freedom, which opens the door to more expressive forms of logic pro-

gramming. However, as has been shown early on in (Lifschitz and Schwarz 1993),

the characterization in terms of autoepistemic logic does not allow us to treat clas-

sical negation or disjunctive rules in a natural way, which weakens its position as

a candidate for generalizing ASP from normal programs to e.g. disjunctive pro-

grams. Equilibrium logic (Pearce 1997) offers yet another way for characterizing

and extending ASP, but does not feature modalities which limits its potential for

epistemic reasoning as it does not allow us to reason over the established knowl-

edge of an agent. The new characterization of ASP, as presented in this paper, is

a characterization in terms of necessary and contingent truths, where possibility

theory is used to express our certainty in logical propositions. Such a character-

ization is unearthed by looking at ASP as a special case of PASP in which the

rules are certain and no uncertainty is allowed in the answer sets. It highlights the

intuition of ASP that the head of a rule is certain when the information encoded in

its body is certain. Furthermore, this characterization stays close to the intuition

of the Gelfond-Lifschitz reduct, while sharing the explicit reference to modalities

with autoepistemic logic.

As a second contribution, we show in this paper how this new characterization of

ASP in terms of possibility theory can be used to uncover a new form of disjunction

in both ASP and PASP. As indicated, we have that the new semantics offer us an

explicit reference to modalities, i.e. operators with which we can qualify a statement.

Epistemic logic is an example of a modal logic in which we use the modal operatorK

to reason about knowledge, where K is intuitively understood as “we know that”.

A statement such as a∨ b∨ c can then be treated in two distinct ways. On the one

hand, we can interpret this statement as Ka ∨ Kb ∨ Kc, which makes it explicit

that we know that one of the disjuncts is true. This treatment corresponds with the

understanding of disjunction in disjunctive ASP and will be referred to as strong

disjunction. Alternatively, we can interpret a ∨ b ∨ c as K(a ∨ b ∨ c) which only

states that we know that the disjunction is true, i.e. we do not know which of the

disjuncts is true. We will refer to this form of disjunction as weak disjunction. This

is the new form of disjunction that we will discuss in this paper, as it allows us
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to reason in settings where a choice cannot or should not be made. Still, such a

framework allows for non-trivial forms of reasoning.

Consider the following example. A SCADA (supervisory control and data acqui-

sition) system is used to monitor the brewing of beer in an industrialised setting. To

control the fermentation, the system regularly verifies an air-lock for the presence

of bubbles. An absence of bubbles may be due to a number of possible causes. On

the one hand there may be a production problem such as a low yeast count or low

temperature. Adding yeast when the temperature is low results in a beer with a

strong yeast flavour, which should be avoided. Raising the temperature when there

is too little yeast present will kill off the remaining yeast and will ruin the entire

batch. On the other hand, there may be technical problems. There may be a mal-

function in the SCADA system, which can be verified by running a diagnostic. The

operator runs a diagnostic (diagnostic), which reports back that there is no mal-

function (¬malfunction). Or, alternatively, the air-lock may not be sealed correctly

(noseal). The operator furthermore checks the temperature because he suspects

that the temperature is the problem (verifytemp), but the defective temperature

sensor returns no temperature when checked (notemp). These three technical prob-

lems require physical maintenance and the operator should send someone out to fix

them. Technical problems do not affect the brewing. As such, the brewing process

should not be interrupted for such problems as this will ruin the current batch.

If there is a production problem, however, the brewing process needs to be in-

terrupted as soon as possible (in addition, evidently, to interrupting the brewing

process when the brewing is done). This prevents the current batch from being

ruined due to over-brewing but also allows the interaction with the contents of the

kettle. In particular, when the problem is diagnosed to be low yeast the solution is

to add a new batch of yeast and restart the process. Similarly, low temperature can

be solved by raising the kettle temperature and restarting the fermentation process.

Obviously, the goal is to avoid ruining the current batch. An employer radios in

that the seal is okay. We have the following program:

lowyeast ∨ lowtemp ∨ noseal ∨malfunction ← not bubbles

diagnostic ←

¬malfunction ← diagnostic

verifytemp ←

notemp ← verifytemp

maintenance ← noseal ∨malfunction ∨ notemp

brew ← not (lowyeast ∨ lowtemp ∨ done)

addyeast ← lowyeast

raisetemp ← lowtemp

ruin ← raisetemp, not lowtemp

ruin ← addyeast , not lowyeast

ruin ← not brew , not (lowtemp ∨ lowyeast)
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← ruin

¬noseal ←

The program above does not use the standard ASP syntax since we allow for

disjunction in the body. Furthermore, the disjunction used in the head and the

body is weak disjunction. The only information that we can therefore deduce from

e.g. the first rule is (lowyeast ∨ lowtemp ∨ noseal ∨malfunction). At first, this new

form of disjunction may indeed appear weaker that strong disjunction since it does

not induce a choice. Still, even without inducing a choice, conclusions obtained

from other rules may allow us to refine our knowledge. In particular, note that

from lowyeast ∨ lowtemp ∨ noseal ∨ malfunction together with ¬malfunction and

¬noseal we can entail lowyeast ∨ lowtemp. Similarly, conclusions can also have

prerequisites that are disjunctions. For example, we can no longer deduce brew

since lowyeast ∨ lowtemp entails lowyeast ∨ lowtemp ∨ done. From maintenance ←

noseal ∨ malfunction ∨ notemp and notemp we can deduce that we should call

maintenance. However, we do not yet have enough information to diagnose whether

yeast should be added or whether the temperature should be raised. The unique

answer set of this program, according to the semantics of weak disjunction which

we present in Section 4, is given by

{lowyeast ∨ lowtemp,maintenance,

diagnostic,¬malfunction , verifytemp, notemp,¬noseal}

The expressiveness of weak disjunction becomes clear when we study its com-

plexity. In particular, we show that while most complexity results coincide with the

strong disjunctive semantics, the complexity of brave reasoning (deciding whether a

literal ‘l’ is entailed by a consistent answer set of program P ) in absence of negation-

as-failure is lower for weak disjunction. Still, the expressiveness is higher than for

normal programs. The complexity results are summarized in Table 1 in Section 5.

The remainder of this paper is organized as follows. In Section 2 we provide the

reader with some important notions from answer set programming and possibilistic

logic. In Section 3 we introduce new semantics for PASP which can furthermore be

used to characterize normal ASP programs using possibility theory. In Section 4

we characterize disjunctive ASP in terms of constraints on possibility distributions

and we discuss the complexity results of the new semantics for PASP in detail in

Section 5. Related work is discussed in Section 6 and we formulate our conclusions

in Section 7.

This paper aggregates and extends parts of our work from (Bauters et al. 2011)

and substantially extends a previous conference paper (Bauters et al. 2010), which

did not consider classical negation nor computational complexity. In addition, rather

than limiting ourselves to atoms in this paper, we extend our work to cover the case

of literals, which offer interesting and unexpected results in the face of weak dis-

junction. Complexity results are added for all reasoning tasks and full proofs are

provided in appendix.
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2 Background

We start by reviewing the definitions from both answer set programming and pos-

sibilistic logic that will be used in the remainder of the paper. We then review the

semantics of PASP from (Nicolas et al. 2006), a framework that combines possi-

bilistic logic and ASP. Finally, we recall some notions from complexity theory.

2.1 Answer Set Programming

To define ASP programs, we start from a finite set of atoms A. A literal is defined

as an atom a or its classical negation ¬a. For L a set of literals, we use ¬L to denote

the set {¬l | l ∈ L} where, by definition, ¬¬a = a. A set of literals L is consistent if

L∩ ¬L = ∅. We write the set of all literals as L = (A∪¬A). A naf-literal is either

a literal ‘l’ or a literal ‘l’ preceded by not, which we call the negation-as-failure

operator. Intuitively, ‘not l’ is true when we cannot prove ‘l’. An expression of the

form

l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln

with li a literal for every 0 ≤ i ≤ n, is called a disjunctive rule. We call l0; ...; lk the

head of the rule (interpreted as a disjunction) and lk+1, ..., lm, not lm+1, ..., not ln
the body of the rule (interpreted as a conjunction). For a rule r we use head(r) and

body(r) to denote the set of literals in the head, resp. the body. Specifically, we

use body+(r) to denote the set of literals in the body that are not preceded by the

negation-as-failure operator ‘not’ and body−(r) for those literals that are preceded

by ‘not’. Whenever a disjunctive rule does not contain negation-as-failure, i.e. when

n = m, we say that it is a positive disjunctive rule. A rule with an empty body,

i.e. a rule of the form (l0; ...; lk ←), is called a fact and is used as a shorthand for

(l0; ...; lk ← ⊤) with ⊤ a special language construct that denotes tautology. A rule

with an empty head, i.e. a rule of the form (← lk+1, ..., lm, not lm+1, ..., not ln),

is called a constraint rule and is used as a shorthand for the rule of the form

(⊥ ← lk+1, ..., lm, not lm+1, ..., not ln) with ⊥ a special language construct that de-

notes contradiction.

A (positive) disjunctive program P is a set of (positive) disjunctive rules. A nor-

mal rule is a disjunctive rule with at most one literal in the head. A simple rule

is a normal rule with no negation-as-failure. A definite rule is a simple rule with

no classical negation, i.e. in which all literals are atoms. A normal ( resp. simple,

definite) program P is a set of normal (resp. simple, definite) rules.

The Herbrand base BP of a disjunctive program P is the set of atoms appearing

in P . We define the set of literals that are relevant for a disjunctive program P as

LitP = (BP ∪ ¬BP ). An interpretation I of a disjunctive program P is any set of

literals I ⊆ LitP . A consistent interpretation I is an interpretation I that does not

contain both a and ¬a for some a ∈ I.

A consistent interpretation I is said to be a model of a positive disjunctive rule r if

head(r)∩I 6= ∅ or body(r) 6⊆ I, i.e. the body is false or the head is true. In particular,

a consistent interpretation I is a model of a constraint rule r if body(r) 6⊆ I. If for

an interpretation I and a constraint rule r we have that body(r) ⊆ I, then we say
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that the interpretation I violates the constraint rule r. Notice that for a fact rule

we require that head(r) ∩ I 6= ∅, i.e. at least one of the literals in the head must

be true. Indeed, otherwise I would not be a model of r. An interpretation I of

a positive disjunctive program P is a model of P either if I is consistent and for

every rule r ∈ P we have that I is a model of r, or if I = LitP . It follows from this

definition that LitP is always a model of P , and that all other models of P (if any)

are consistent interpretations, which we will further on also refer to as consistent

models. We say that I is an answer set of the positive disjunctive program P when I

is a minimal model of P w.r.t. set inclusion.

The semantics of an ASP program with negation-as-failure is based on the idea

of a stable model (Gelfond and Lifzchitz 1988). The reduct P I of a disjunctive

program P w.r.t. the interpretation I is defined as:

P I ={l0; . . . ; lk ← lk+1, ..., lm | ({lm+1, ..., ln} ∩ I = ∅)

∧ (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln) ∈ P}.

An interpretation I is said to be an answer set of the disjunctive program P when I

is an answer set of the positive disjunctive program P I (hence the notion of stable

model). Note that we can also write the disjunctive program P as P = P ′∪C where

C is the set of constraint rules in P . An interpretation I then is an answer set of

the disjunctive program P when I is an answer set of P ′ and I is a model of C,

i.e. I does not violate any constraints in C. Whenever P has consistent answer sets,

i.e. answer sets that are consistent interpretations, we say that P is a consistent

program. When P has the answer set LitP , then this is the unique (Baral 2003)

inconsistent answer set and we say that P is an inconsistent program.

Answer sets of simple programs can also be defined in a more procedural way.

By using the immediate consequence operator TP , which is defined for a simple

program P without constraint rules and w.r.t. an interpretation I as:

TP (I) = {l0 | (l0 ← l1, ..., lm) ∈ P ∧ {l1, ..., lm} ⊆ I} .

We use P ⋆ to denote the fixpoint which is obtained by repeatedly applying TP
starting from the empty interpretation ∅, i.e. it is the least fixpoint of TP w.r.t. set

inclusion. When the interpretation P ⋆ is consistent, P ⋆ is the (unique and consis-

tent) answer set of the simple program P without constraint rules. When we allow

constraint rules, an interpretation is a (consistent) answer set of P = P ′ ∪C iff I is

a (consistent) answer set of P and I is a model of C. For both simple and normal

programs, with or without constraint rules, we have that LitP is the (unique and

inconsistent) answer set of P if P has no consistent answer set(s).

2.2 Possibilistic Logic

An interpretation in possibilistic logic corresponds with the notion of an interpreta-

tion in propositional logic. We represent such an interpretation as a set of atoms ω,

where ω |= a if a ∈ ω and ω |= ¬a otherwise with |= the satisfaction relation from

classical logic. The set of all interpretations is defined as Ω = 2A, with A a finite set

of atoms. At the semantic level, possibilistic logic (Dubois et al. 1994) is defined in
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terms of a possibility distribution π on the universe of interpretations. A possibility

distribution, which is an Ω → [0, 1] mapping, encodes for each interpretation (or

world) ω to what extent it is plausible that ω is the actual world. By convention,

π(ω) = 0 means that ω is impossible and π(ω) = 1 means that no available informa-

tion prevents ω from being the actual world. A possibility distribution π is said to be

normalized if ∃ω ∈ Ω ·π(ω) = 1, i.e. at least one interpretation is entirely plausible.

We say that a possibility distribution π is vacuous when ∀ω ∈ Ω · π(ω) = 0. Note

that possibility degrees are mainly interpreted qualitatively: when π(ω) > π(ω′),

ω is considered more plausible than ω′. For two possibility distributions π1 and π2

with the same domain Ω we write π1 ≥ π2 when ∀ω ∈ Ω · π1(ω) ≥ π2(ω) and we

write π1 > π2 when π1 ≥ π2 and π1 6= π2.

A possibility distribution π induces two uncertainty measures that allow us to

rank propositions. The possibility measure Π is defined by (Dubois et al. 1994):

Π(p) = max {π(ω) | ω |= p}

and evaluates the extent to which a proposition p is consistent with the beliefs

expressed by π. The dual necessity measure N is defined by:

N(p) = 1−Π(¬p)

and evaluates the extent to which a proposition p is entailed by the available be-

liefs (Dubois et al. 1994). Note that we always have N(⊤) = 1 for any possibility

distribution, while Π(⊤) = 1 (and, related, N(⊥) = 0) only holds when the possi-

bility distribution is normalized (i.e. only normalized possibility distributions can

express consistent beliefs) (Dubois et al. 1994). To identify the possibility/necessity

measure associated with a specific possibility distribution πX, we will use a subscript

notation, i.e. ΠX and NX are the corresponding possibility and necessity measure,

respectively. We omit the subscript when the possibility distribution is clear from

the context.

An important property of necessity measures is the min-decomposability prop-

erty w.r.t. conjunction: N(p ∧ q) = min(N(p), N(q)) for all propositions p and q.

However, for disjunction only the inequality N(p ∨ q) ≥ max(N(p), N(q)) holds.

As possibility measures are the dual measures of necessity measures, they have the

property of max-decomposability w.r.t. disjunction, whereas for the conjunction

only the inequality Π(p ∧ q) ≤ min (Π(p),Π(q)) holds.

At the syntactic level, a possibilistic knowledge base consists of pairs (p, c) where

p is a propositional formula and c ∈ ]0, 1] expresses the certainty that p is the case.

Formulas of the form (p, 0) are not explicitly represented in the knowledge base since

they encode trivial information. A formula (p, c) is interpreted as the constraint

N(p) ≥ c, i.e. a possibilistic knowledge base Σ corresponds to a set of constraints

on possibility distributions. Typically, there can be many possibility distributions

that satisfy these constraints. In practice, we are usually only interested in the

least specific possibility distribution, which is the possibility distribution that makes

minimal commitments, i.e. the greatest possibility distribution w.r.t. the ordering >

defined above. Such a least specific possibility distribution always exists and is

unique (Dubois et al. 1994).
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In Section 4 we will also consider constraints that deviate from the form of con-

straints we just discussed. As a result, there can be multiple minimally specific

possibility distributions rather than a unique least specific possibility distribution.

To increase the uniformity throughout the paper we immediately start using the

concept of a minimally specific possibility distribution, which is a maximal possibil-

ity distribution w.r.t. the ordering >, even though the distinction between the least

specific possibility distribution and minimally specific possibility distributions only

becomes relevant once we discuss the characterization of disjunctive programs.

2.3 Possibilistic Answer Set Programming

Possibilistic ASP (PASP) (Nicolas et al. 2006) combines ASP and possibility theory

by associating a weight with each rule, where the weight denotes the necessity with

which the head of the rule can be concluded given that the body is known to hold.

If it is uncertain whether the body holds, the necessity with which the head can be

derived is the minimum of the weight associated with the rule and the degree to

which the body is necessarily true.

Syntactically, a possibilistic disjunctive (resp. normal, simple, definite) program

is a set of pairs p = (r, λ) with r a disjunctive (resp. normal, simple, definite)

rule and λ ∈ ]0, 1] a certainty associated with r. Possibilistic rules with λ = 0

are generally omitted as only trivial information can be derived from them. We

will also write a possibilistic rule p = (r, λ) with r a disjunctive rule of the form

(l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln) as:

λ : l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln.

For a possibilistic rule p = (r, λ) we use p∗ to denote r, i.e. the classical rule ob-

tained by ignoring the certainty. Similarly, for a possibilistic program P we use

P ∗ to denote the set of rules {p∗ | p ∈ P}. The set of all weights found in a possi-

bilistic program P is denoted by cert(P ) = {λ | p = (r, λ) ∈ P}. We will also use

the extended set of weights cert+(P ), defined as cert+(P ) = {λ | λ ∈ cert(P )} ∪

{1− λ | λ ∈ cert(P )} ∪
{

0, 1
2 , 1

}

.

Semantically, PASP is based on a generalization of the concept of an interpreta-

tion. In classical ASP, an interpretation can be seen as a mapping I : LitP → {0, 1},

i.e. a literal l ∈ LitP is either true or false. This notion is generalized in PASP

to a valuation, which is a function V : LitP → [0, 1]. The underlying intuition of

V (l) = λ is that the literal ‘l’ is true with certainty ‘λ’, which we will also write

in set notation as lλ ∈ V . As such, a valuation corresponds with the set of con-

straints
{

N(l) ≥ λ | lλ ∈ V
}

. Note that, like interpretations in ASP, these valua-

tions are of an epistemic nature, i.e. they reflect what we know about the truth of

atoms. For notational convenience, we often also use the set notation V =
{

lλ, . . .
}

.

In accordance with this set notation, we write V = ∅ to denote the valuation in

which each literal is mapped to 0. For λ ∈ [0, 1] a certainty and V a valuation,

we use V λ to denote the classical projection {l | l ∈ LitP , V (l) ≥ λ}. We also use

V λ = {l | l ∈ LitP , V (l) > λ}, i.e. those literals that can be derived to be true with

certainty strictly greater than ‘λ’. A valuation is said to be consistent when V 0 is
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consistent. In such a case, there always exists a normalized possibility distribution

πV such that NV (l) = V (l).

We now present a straightforward extension of the semantics for PASP introduced

in (Nicolas et al. 2006). Let the λ-cut Pλ of a possibilistic program P , with λ ∈

[0, 1], be defined as:

Pλ = {r | (r, λ′) ∈ P and λ′ ≥ λ} ,

i.e. the rules in P with an associated certainty higher than or equal to ‘λ’.

Definition 1

Let P be a possibilistic simple program and V a valuation. The immediate conse-

quence operator TP is defined as:

TP (V )(l0) = max
{

λ ∈ [0, 1] | V λ |= l1, ..., lm and (l0 ← l1, ..., lm) ∈ Pλ

}

.

The intuition of Definition 1 is that we can derive the head only with the certainty

of the weakest piece of information, i.e. the necessity of the conclusion is restricted

either by the certainty of the rule itself or the lowest certainty of the literals used

in the body of the rule. Note that the immediate consequence operator defined

in Definition 1 is equivalent to the one proposed in (Nicolas et al. 2006), although

we formulate it somewhat differently. Also, the work from (Nicolas et al. 2006) only

considered definite programs, even though adding classical negation does not impose

any problems.

As before, we use P ⋆ to denote the fixpoint obtained by repeatedly applying TP
starting from the minimal valuation V = ∅, i.e. the least fixpoint of TP w.r.t. set

inclusion. A valuation V is said to be the answer set of a possibilistic simple program

if V = P ⋆ and V is consistent. Answer sets of possibilistic normal programs are

defined using a reduct. Let L be a set of literals. The reduct PL of a possibilistic

normal program is defined as (Nicolas et al. 2006):

PL = {(head(r)← body+(r), λ) | (r, λ) ∈ P and body−(r) ∩ L = ∅} .

A consistent valuation V is said to be a possibilistic answer set of the possibilistic

normal program P iff
(

P (V 0)
)⋆

= V , i.e. if V is the answer set of the reduct P (V 0).

Example 1

Consider the possibilistic normal program P from the introduction:

0.1: invalid ←

1: airport ← not invalid

It is easy to verify that
{

invalid0 .1
}

is a possibilistic answer set of P . Indeed,

P {invalid} is the set of rules:

0.1: invalid ←

from which it trivially follows that (P {invalid})
⋆

=
{

invalid 0 .1
}

. The conclusion is

thus that we do not need to go to the airport, which differs from our intuition of

the problem. We will revisit this example in Example 4 in Section 3.2.
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The semantics we presented allow for classical negation, even though this was

not considered in (Nicolas et al. 2006). However, adding classical negation does

not impose any problems and could, as an alternative, easily be simulated in

ASP (Baral 2003).

2.4 Complexity Theory

Finally, we recall some notions from complexity theory. The complexity classes ΣP
2

and ΠP

2 are defined as follows (Papadimitriou 1994):

ΣP

0 = ΠP

0 = P

ΣP

1 = NP ΣP

2 = NP
NP

ΠP

1 = coNP ΠP

2 = coΣP

2

where NP
NP is the class of problems that can be solved in polynomial time on

a non-deterministic machine with an NP oracle, i.e. assuming a procedure that

can solve NP problems in constant time. We also consider the complexity class

BH2 (Cai et al. 1988), which is the class of all languages L such that L = L1 ∩ L2,

where L1 is in NP and L2 is in coNP. For a general complexity class C, a problem is

C-hard if any problem in C can be polynomially reduced to this problem. A problem

is said to be C-complete if the problem is in C and the problem is C-hard. Deciding

the validity of a Quantified Boolean Formula (QBF) φ = ∃X1∀X2 · p(X1, X2) with

p(X1, X2) in disjunctive normal form (DNF) is the canonical ΣP
2 -complete problem.

The decision problems we consider in this paper are brave reasoning (deciding

whether a literal ‘l’ (clause ‘e’) is entailed by a consistent answer set of program

P ), cautious reasoning (deciding whether a literal ‘l’ (clause ‘e’) is entailed by

every consistent answer set of a program P ) and answer set existence (deciding

whether a program P has a consistent answer set). Brave reasoning as well as

answer set existence for simple, normal and disjunctive programs is P-complete,

NP-complete and ΣP

2 -complete, respectively (Baral 2003). Cautious reasoning for

simple, normal and disjunctive programs is P-complete, coNP-complete and ΠP

2 -

complete (Baral 2003).

3 Characterizing (P)ASP

ASP lends itself well to being characterized in terms of modalities. For instance,

ASP can be characterized in autoepistemic logic by interpreting ‘not a’ as the

epistemic formula ¬La (“a is not believed”) (Gelfond 1987). In this paper, as an

alternative, we show how ASP can be characterized within possibility theory. To

arrive at this characterization, we first note that ASP is essentially a special case

of PASP in which every rule is certain. As such, we will show how PASP can

be characterized within possibility theory. This characterization does not coincide

with the semantics proposed in (Nicolas et al. 2006) for PASP, as the semantics

from (Nicolas et al. 2006) rely on the classical Gelfond-Lifschitz reduct. Rather,

the semantics that we propose for PASP adhere to a different intuition of negation-
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as-failure. A characterization of ASP is then obtained from these new semantics by

considering the special case in which all rules are entirely certain.

This characterization of ASP, while still in terms of modalities, stays close in

spirit to the Gelfond-Lifschitz reduct. In contrast to the characterization in terms

of autoepistemic logic it does not require a special translation of literals to deal with

classical negation and disjunction. The core idea of our characterization is to encode

the meaning of each rule as a constraint on possibility distributions. Particular

minimally specific possibility distributions that satisfy all the constraints imposed

by the rules of a program will then correspond to the answer sets of that program.

In this section, we first limit our scope to possibilistic simple programs (Section 3.1).

Afterwards we will broaden the scope and also consider possibilistic normal pro-

grams (Section 3.2). The most general case, in which we also consider possibilistic

disjunctive programs, will be discussed in Section 4.

3.1 Characterizing Possibilistic Simple Programs

When considering a fact, i.e. a rule of the form r = (l0 ← ⊤), we know by definition

that this rule encodes that the literal in the head is necessarily true, i.e. N(l0) = 1.

If we attach a weight to a fact, then this expresses the knowledge that we are not

entirely certain of the conclusion in the head, i.e. for a possibilistic rule p = (r, λ)

we have that N(l0) ≥ N(⊤). Note that the constraint uses ≥, as there may be other

rules in the program that allow us to deduce l0 with a greater certainty.

In a similar fashion we can characterize a rule of the form (l0 ← l1, ..., lm)

as the constraint N(l0) ≥ N(l1 ∧ ... ∧ lm) which is equivalent to the constraint

N(l0) ≥ min(N(l1), ..., N(lm)) due to the min-decomposability property of the

necessity measure. Indeed, the intuition of such a rule is that the head is only

necessarily true when every part of the body is true. When associating a weight

with a rule, we obtain the constraint N(l0) ≥ min(N(l1), ..., N(lm), λ) for a possi-

bilistic rule p = (r, λ) with r = (l0 ← l1, ..., lm). Similarly, to characterize a con-

straint rule, i.e. a rule of the form r = (⊥ ← l1, ..., lm), we use the constraint

N(⊥) ≥ min(N(l1), ..., N(lm)), or, in the possibilistic case with p = (r, λ), the

constraint N(⊥) ≥ min(N(l1), ..., N(lm), λ).

Definition 2

Let P be a possibilistic simple program and π : Ω → [0, 1] a possibility distribu-

tion. For every p ∈ P , the constraint γ(p) imposed by p = (r, λ) with λ ∈ ]0, 1],

r = (l0 ← l1, ..., lm) and m ≥ 0 is given by

N(l0) ≥ min(N(l1), ..., N(lm), λ). (1)

CP = {γ(p) | p ∈ P} is the set of constraints imposed by program P . If π satisfies

the constraints in CP , π is said to be a possibilistic model of CP , written π |= CP .

A possibilistic model of CP will also be called a possibilistic model of P . We write

SP for the set of all minimally specific possibilistic models of P .

Definition 3
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Let P be a possibilistic simple program. Let π be a minimally specific model of P ,

i.e. π ∈ SP . Then V =
{

lN (l) | l ∈ LitP
}

is called a possibilistic answer set of P .

Example 2

Consider the possibilistic simple program P with the rules:

0.8 :a← 0.6 :¬b← a

0.7 : c← a,¬b 0.9 : d← d.

The set CP consists of the constraints:

N(a) ≥ 0.8 N(¬b) ≥ min(N(a), 0.6)

N(c) ≥ min(N(a), N(¬b), 0.7) N(d) ≥ min(N(d), 0.9).

It is easy to see that the last constraint is trivial and can be omitted and that the

other constraints can be simplified to Π(¬a) ≤ 0.2, Π(b) ≤ 0.4 and Π(¬c) ≤ 0.4.

The least specific possibility distribution that satisfies these constraints is given by:

π({a, b, c, d}) = 0.4 π({a, c, d}) = 1 π({b, c, d}) = 0.2 π({c, d}) = 0.2

π({a, b, c}) = 0.4 π({a, c}) = 1 π({b, c}) = 0.2 π({c}) = 0.2

π({a, b, d}) = 0.4 π({a, d}) = 0.4 π({b, d}) = 0.2 π({d}) = 0.2

π({a, b}) = 0.4 π({a}) = 0.4 π({b}) = 0.2 π({}) = 0.2.

By definition, since the possibility distribution π satisfies the given constraints,

is a possibilistic model. Furthermore, it is easy to see that π is the unique min-

imally specific possibilistic model (due to least specificity). We can verify that

N(¬a) = N(b) = N(¬c) = N(¬d) = 0 since we have that π({a, c, d}) = 1 and that

N(d) = 0 since π({a, c}) = 1. Furthermore it is easy to verify that N(a) = 0.8,

N(¬b) = 0.6 and N(c) = 0.6. Hence we find that V =
{

a0 .8 ,¬b0 .6 , c0 .6
}

is a

possibilistic answer set of P .

In particular, when we consider all the rules to be entirely certain, i.e. λ = 1, the

results are compatible with the semantics of classical ASP.

Example 3

Consider the program P = {(b← a), (¬a←)}. The set of constraints CP is given

by N(b) ≥ N(a) and N(¬a) ≥ N(⊤). The first constraint can be rewritten as

1−Π(¬b) ≥ 1−Π(¬a), i.e. as Π(¬a) ≥ Π(¬b). The last constraint can be rewritten

as 1−Π(a) ≥ 1, i.e. as Π(a) = max {π(ω) | ω |= a} = 0. Given these two constraints,

we find that SP contains exactly one element, which is defined by

π({a, b}) = 0 π({a}) = 0

π({b}) = 1 π({}) = 1.

Notice how the first constraint turned out to be of no relevance for this particular

example. Indeed, due to the principle of minimal specificity and since there is noth-

ing that prevents Π(¬a) = 1, we find that N(a) = 1 − Π(¬a) = 0. Therefore the

first constraint simplifies to N(b) ≥ 0. Once more, due to the principle of minimal

specificity we thus find that N(b) = 0 as there is no information that prevents
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Π(¬b) = 1. To find out whether a, b, ¬a and ¬b are necessarily true w.r.t. the least

specific possibility distribution π ∈ SP arising from the program, we verify whether

N(a) = 1, N(b) = 1, N(¬a) = 1 and N(¬b) = 1, respectively, with N the necessity

measure induced by the unique least specific possibility distribution π ∈ SP . As de-

sired, we find that N(¬a) = 1−Π(a) = 1 whereas N(a) = N(b) = N(¬b) = 0. The

unique possibilistic answer set is therefore
{

¬a1
}

. As we will see, it then follows

from Proposition 1 that the unique classical answer set of P is {¬a}.

In Propositions 1 and 2, below, we prove that this is indeed a correct characteriza-

tion of simple programs. First, we present a technical lemma.

Lemma 1

Let L be a set of literals, M ⊆ L a consistent set of literals and let the possibility

distribution π be defined as π(ω) = 1 if ω |= M and π(ω) = 0 otherwise. Then

M = {l | N(l) = 1, l ∈ L}.

The proof is given in the online appendix of the paper, pp. 1–2.

Proposition 1

Let P be a simple program. If π ∈ SP then either the unique consistent answer set

of P is given by M = {l | N(l) = 1, l ∈ LitP } or π is the vacuous distribution, in

which case P does not have any consistent answer sets.

The proof is given in the online appendix of the paper, pp. 2–4.

Proposition 2

Let P be a simple program. If M is an answer set of P then the possibility distri-

bution π defined by π(ω) = 1 iff ω |= M and π(ω) = 0 otherwise belongs to SP .

The proof is given in the online appendix of the paper, pp. 4.

3.2 Characterizing Possibilistic Normal Programs

To deal with negation-as-failure, we rely on a reduct-style approach in which a

valuation is guessed and it is verified whether this guess is indeed stable. The

approach taken in (Gelfond and Lifzchitz 1988) to deal with negation-as-failure is

to guess an interpretation and verify whether this guess is stable. We propose to

treat a rule of the form r = (l0 ← l1, ..., lm, not lm+1, ..., not ln) as the constraint

N(l0) ≥ min (N(l1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln))

where V is the guess for the valuation and where we assume min({}) = 1. Or, when

we consider a possibilistic rule p = (r, λ), we treat it as the constraint

N(l0) ≥ min (N(l1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ) .

We like to make it clear to the reader that the characterization of normal pro-

grams in terms of constraints on possibility distributions in its basic form is little

more than a reformulation of the Gelfond-Lifschitz approach. The key difference

is that this characterization can be used to guess the certainty with which we can
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derive particular literals from the available rules, rather than guessing what may or

may not be derived from it. Nevertheless, this difference plays a crucial role when

dealing with uncertain rules. In particular, this characterization of PASP does not

coincide with the semantics of (Nicolas et al. 2006) and adheres to a different intu-

ition for negation-as-failure.

Definition 4

Let P be a possibilistic normal program and let V be a valuation. For every

p ∈ P , the constraint γ
V

(p) induced by p = (r, λ) with λ ∈ ]0, 1], r = (l0 ←

l1, ..., lm, not lm+1, ..., not ln) and V is given by

N(l0) ≥ min (N(l1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ) . (2)

C(P,V ) = {γ
V

(p) | p ∈ P} is the set of constraints imposed by program P and

valuation V , and S(P,V ) is the set of all minimally specific possibilistic models of

C(P,V ).

Definition 5

Let P be a possibilistic normal program and let V be a valuation. Let π ∈ S(P,V )

be such that

∀l ∈ LitP ·N(l) = V (l)

then V =
{

lN (l) | l ∈ LitP
}

is called a possibilistic answer set of P .

Example 4

Consider the possibilistic normal program P from Example 1. The constraints CP

induced by P are:

N(invalid) ≥ 0.1

N(airport) ≥ min(1− V (invalid ), 1)

From the first constraint it readily follows that we need to choose V (invalid) = 0.1

to comply with the principle of minimal specificity. The other constraint can then

readily be simplified to:

N(airport) ≥ 0.9

Hence it follows that V =
{

invalid0 .1 , airport0 .9
}

is the unique possibilistic answer

set of P .

It is easy to see that the proposed semantics remain closer to the intuition of

the possibilistic normal program discussed in the introduction. Indeed, we conclude

with a high certainty that we need to go to the airport.

Still, it is interesting to further investigate the particular relationship between

the semantics for PASP as proposed in (Nicolas et al. 2006) and the semantics

presented in this section. Let the possibilistic rule r be of the form:

λ : l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln.

When we determine the reduct w.r.t. a valuation V of the possibilistic program
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containing r, then the certainty of the rule in the reduct that corresponds with r

can be verified to be:

min(FN (V (lm+1)), ..., FN (V (ln)), λ)

with FN a fuzzy negator, i.e. where FN is a decreasing function with FN (0) = 1

and FN (1) = 0. In particular, for the semantics of (Nicolas et al. 2006) we have that

FN is the Gödel negator FG, defined as FG(0) = 1 and FG(c) = 0 with 0 < c ≤ 1.

In the semantics for PASP presented in this section, FN is the  Lukasiewicz negator

F L(c) = 1− c with 0 ≤ c ≤ 1. Thus, for a rule such as:

0.9: b ← not a

and a valuation V =
{

a0 .2
}

we obtain under the approach from (Nicolas et al. 2006)

the reduct (0: b ← ), whereas under our approach we obtain the constraint N(b) ≥

min(0.9, 1 − 0.2), which can be encoded by the rule (0.8: b ← ). Essentially, the

difference between both semantics can thus be reduced to a difference in the choice

of negator. However, even though the semantics share similarities, there is a no-

table difference in the underlying intuition of both approaches. Specifically, in the

semantics presented in this paper, we have that ‘not l’ is understood as “the degree

to which ‘¬l’ is possible”, or, equivalently, “the degree to which it is not the case

that we can derive ‘l’ with certainty”. This contrasts with the intuition of ‘not l’

in (Nicolas et al. 2006) as a Boolean condition and understood as “we cannot derive

‘l’ with a strictly positive certainty”.

Interestingly, we find that the complexity of the main reasoning tasks for possi-

bilistic normal programs remains at the same level of the polynomial hierarchy as

the corresponding normal ASP programs.

While we will see in Section 5 that the complexity of possibilistic normal pro-

grams remains unchanged compared to classical normal programs, it is important

to note that under the semantics proposed in this section there is no longer a 1-on-1

mapping between the classical answer sets of a normal program and the possibilis-

tic answer sets. Indeed, if we consider a possibilistic normal program constructed

from a classical normal program where we attach certainty λ = 1 to each rule, then

we can sometimes obtain additional intermediary answer sets. Consider the next

example:

Example 5

Consider the normal program with the single rule a ← not a. This program has

no classical answer sets. Now consider the possibilistic normal program P with the

rule

1: a ← not a.

The set of constraints C(P,V ) is given by

N(a) ≥ min(1 − V (a), 1).
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This constraint can be rewritten as

N(a) ≥ min(1− V (a), 1)

≡ N(a) ≥ 1− V (a)

≡ 1−Π(¬a) ≥ 1− V (a)

≡ Π(¬a) ≤ V (a).

We thus find that the set S(P,V ) is a singleton with π ∈ S(P,V ) defined by π({a}) = 1

and π({}) = V (a). We can now establish for which choices of V (a) it holds that

V (a) = N(a):

V (a) = N(a)

Π(¬a) = 1−Π(¬a)

2 · Π(¬a) = 1

and thus, since Π(¬a) ≤ V (a), we have π({}) = 0.5. The unique possibilistic answer

set of P is therefore
{

a0 .5
}

. In the same way, one may verify that the program

1: a ← not b 1: b ← not a

has an infinite number of possibilistic answer sets, i.e.
{

ac, b1−c
}

for every c ∈ [0, 1].

For practical purposes, however, this behavior has a limited impact as we only need

to consider a finite number of certainty levels to perform brave/cautious reasoning.

Indeed, we only need to consider the certainties used in the program, their com-

plement to account for negation-as-failure and 1
2 to account for the intermediary

value as in Example 5. Thus, for the main reasoning tasks it suffices to limit our

attention to the certainties from the set cert+(P ).

We now show that when we consider rules with an absolute certainty, i.e. classical

normal programs, we obtain a correct characterization of classical ASP, provided

that we restrict ourselves to absolutely certain conclusions, i.e. valuations V for

which it holds that ∀l · V (l) ∈ {0, 1}.

Example 6

Consider the program P with the rules

a← b← b c← a, not b.

The set of constraints C(P,V ) is then given by

N(a) ≥ 1 N(b) ≥ N(b) N(c) ≥ min (N(a), 1 − V (b)) .
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We can rewrite the first constraint as 1−Π(¬a) ≥ 1 and thus Π(¬a) = 0. The second

constraint is trivially satisfied and, since it does not entail any new information, can

be dropped. The last constraint can be rewritten as Π(¬c) ≤ 1−min(1−Π(¬a), 1−

V (b)), which imposes an upper bound on the value that Π(¬c) can assume. Since

we already know that Π(¬a) = 0 we can further simplify this inequality to Π(¬c) ≤

1−min(1−0, 1−V (b)) = 1−(1−V (b)) = V (b). In conclusion, the program imposes

the constraints

Π(¬a) = 0 Π(¬c) ≤ V (b).

The set S(P,V ) then contains exactly one element, which is defined by

π({a, b, c}) = 1 π({b, c}) = 0

π({a, b}) = V (b) π({b}) = 0

π({a, c}) = 1 π({c}) = 0

π({a}) = V (b) π({}) = 0.

Note that this possibility distribution is independent of the choice for V (a) and

V (c) since there are no occurrences of ‘not a’ and ‘not c’ in P . It remains then to

determine for which choices of V (b) it holds that V (b) = N(b), i.e. for which the

guess V (b) is stable. We have:

V (b) = N(b) = 1−Π(¬b) = 1−max {π(ω) | ω |= ¬b} = 0

and thus we find that π({a, b}) = π({a}) = 0. We have N(a) = 1 − Π(¬a) = 1,

N(c) = 1 − Π(¬c) = 1 and N(b) = 1 − Π(¬b) = 0. As we will see in the next

propositions, the unique answer set of P is therefore {a, c}.

Proposition 3
Let P be a normal program and V a valuation. Let π ∈ S(P,V ) be such that

∀l ∈ LitP · V (l) = N(l) ; and (3)

∀l ∈ LitP ·N(l) ∈ {0, 1} (4)

then M = {l | N(l) = 1, l ∈ LitP} is an answer set of the normal program P .

Proof
This proposition is a special case of Proposition 5 presented below.

Note that the requirement stated in (4) cannot be omitted. Let us consider Exam-

ple 5, in which we considered the normal program P = {a← not a}. This normal

program P has no classical answer sets. The constraint that corresponds with the

rule (a ← not a) is N(a) ≥ 1 − V (a). For a choice of V =
{

a0.5
}

, however, we

would find that V (a) = N(a) and thus that V is an answer set of P if we were to

omit this requirement.

Proposition 4
Let P be a normal program. If M is an answer set of P , there is a valuation V ,

defined by V (l) = 1 if l ∈M and V (l) = 0 otherwise, and a possibility distribution

π ∈ S(P,V ) such that for every l ∈ LitP we have V (l) = N(l) (i.e. N(l) = 1 if l ∈M

and N(l) = 0 otherwise).
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Proof

This proposition is a special case of Proposition 6 presented below.

We like to point out to the reader that we could try to encode the information in

a rule in such a way that we interpret ‘not a’ as Π(¬a), which closely corresponds to

the intuition of negation-as-failure. Indeed, when it is completely possible to assume

that ‘¬a’ is true, then surely ‘not a’ is true. Under this encoding, however, we run

into a significant problem. Consider the rules (b ← not c) and (c ← not b). These

rules would then correspond with the constraints N(b) ≥ Π(¬c) and N(c) ≥ Π(¬b),

respectively. Notice though that both constraints can be rewritten as the constraint

1 − Π(¬b) ≥ Π(¬c). This would imply that both rules are semantically equivalent

in ASP, which is clearly not the case. Hence we cannot directly encode ‘not a’ as

Π(¬a) and guessing a valuation is indeed necessary since without the guess V we

would not be able to obtain a unique set of constraints. As we have shown this only

affects literals preceded by negation-as-failure and we can continue to interpret a

literal ‘b’ as N(b).

4 Possibilistic Semantics of Disjunctive ASP Programs

We now turn our attention to how we can characterize disjunctive rules. We found

in Section 3 that we can characterize a rule of the form r = (head ← body) as

the constraint N(head) ≥ N(body), or, similarly, that we can characterize a pos-

sibilistic rule p = (r, λ) as the constraint N(head) ≥ min(N(body), λ). Such a

characterization works particularly well due the min-decomposability w.r.t. con-

junction. Indeed, since the body of e.g. a simple rule r = (l0 ← l1, ..., lm) is

a conjunction of literals we can write body = l1 ∧ ... ∧ lm. Then N(body) can be

rewritten as min(N(l1), ..., N(lm)), which allows for a straightforward simplifica-

tion. In a similar fashion, for a positive disjunctive rule r = (l0; ...; lk ← lk+1, ..., lm)

we can readily write N(body) as min(N(lk+1), ..., N(lm)). We would furthermore

like to simplify N(head) with head = l0 ∨ ... ∨ lk. However, we do not have that

N(head) = max(N(l0), ..., N(lk)). Indeed, in general we only have that N(head) ≥

max(N(l0), ..., N(lk)). This means that we can either choose to interpret the head

as max(N(l0), ..., N(lk)) or N(l0 ∨ ... ∨ lk). In particular, a possibilistic disjunctive

rule p = (r, λ) with

r = (l0; ...; lk ← lk+1, ..., lm, not lm+1, ..., not ln)

can either be interpreted as the constraint

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ)

(5)

which we will call the strong interpretation of disjunction, or as the constraint

N(l0 ∨ ... ∨ lk) ≥ min(N(lk+1), ..., N(lm), 1− V (lm+1), ..., 1− V (ln), λ) (6)

which we will call the weak interpretation of disjunction. In the remainder of this

paper, we syntactically differentiate between both approaches by using the nota-
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tion l0; ...; lk and l0 ∨ ... ∨ lk to denote the strong and the weak interpretation of

disjunction, respectively.

The choice of how to treat disjunction is an important one that crucially impacts

the nature of the resulting answer sets. For example, the non-deterministic nature

of strong disjunction provides a useful way to generate different (candidate) solu-

tions, whereas weak disjunction is oftentimes better suited when we are interested

in modelling the epistemic state of an agent since it amounts to accepting the dis-

junction as being true rather than making a choice of which disjunct to accept. In

this section we consider both characterizations; the characterization of disjunction

as (5) is discussed in Section 4.1 and in Section 4.2 we discuss the characteriza-

tion as (6). In particular we will show that the first characterization of disjunction

corresponds to the semantics of disjunction found in ASP whereas the Boolean

counterpart of the second characterization has, to the best of our knowledge, not

yet been studied in the literature.

4.1 Strong Possibilistic Semantics of Disjunctive Rules

We first consider the characterization of disjunction in which we treat a disjunction

of the form ‘l0; ...; lk’ as max(N(l0), . . . , N(lk)). As it turns out, under these strong

possibilistic semantics the disjunction behaves as in classical ASP.

Definition 6

Let P be a possibilistic disjunctive program and let V be a valuation. For ev-

ery possibilistic disjunctive rule p = (r, λ) with λ ∈ ]0, 1] and r = (l0; ...; lk ←

lk+1, ..., lm, not lm+1, ..., not ln) the constraint γs
V

(p) induced by p and V is given

by

max(N(l0), ..., N(lk)) ≥ min(N(lk+1), ..., N(lm), 1−V (lm+1), ..., 1−V (ln), λ) (7)

Cs
(P,V ) =

{

γs
V

(p) | p ∈ P
}

is the set of constraints imposed by program P and V ,

and Ss
(P,V ) is the set of all minimally specific possibilistic models of Cs

(P,V ).
1

Whenever P is a positive disjunctive program, i.e. whenever P is a disjunctive

program without negation-as-failure, (7) is independent of V and we simplify the

notation to γs, Cs
P and Ss

P .

Notice that, unlike in possibilistic logic where a unique least specific possibility

distribution exists because of the specific form of the considered constraints, the

constraint of the form (7) can give rise to multiple minimally specific possibility

distributions of which some will correspond with answer sets. Indeed, the program

P = {a; b←} induces the constraint max(N(a), N(b)) ≥ 1, which has two minimally

specific possibility distributions, yet no least specific possibility distribution. Indeed,

we have the minimally specific possibility distributions π1, π2 defined by

π1({a, b}) = 1 π1({b}) = 0 π2({a, b}) = 1 π2({b}) = 1

π1({a}) = 1 π1({}) = 0 π2({a}) = 0 π2({}) = 0

1 We use the superscript ‘s’ to highlight that we employ the semantics of strong disjunction.



Characterizing and Extending ASP using Possibility Theory 21

Definition 7

Let P be a possibilistic disjunctive program and let V be a valuation. Let π ∈ Ss
(P,V )

be such that

∀l ∈ LitP ·N(l) = V (l)

then V =
{

lN (l) | l ∈ LitP
}

is called a possibilistic answer set of P .

We now further illustrate the semantics and the underlying intuition by consid-

ering a possibilistic disjunctive program in detail.

Example 7

Consider the possibilistic (positive) disjunctive program P with the following rules:

0.8: a; b ←

0.6: c ← a

0.4: c ← b.

The constraints Cs
P induced by this program are:

max(N(a), N(b)) ≥ 0.8

N(c) ≥ min(N(a), 0.6)

N(c) ≥ min(N(b), 0.4).

From the first constraint it follows that we either need to choose V (a) = 0.8 or

V (b) = 0.8, in accordance with the principal of minimal specificity. Hence, we either

obtain V (c) = 0.6 or V (c) = 0.4. As such we find that the two unique possibilistic

answer sets of P are
{

a0 .8 , c0 .6
}

and
{

b0 .8 , c0 .4
}

.

As before, if we restrict ourselves to rules that are entirely certain we obtain a

characterization of disjunctive programs in classical ASP.

Example 8

Consider the program P with the rules

a; b← a← b

The set of constraints Cs
P is given by

max(N(a), N(b)) ≥ N(⊤) = 1 N(a) ≥ N(b).

Intuitively, the first constraint induces a choice. To satisfy this constraint, we need

to take either N(a) = 1 or N(b) = 1. Depending on our choice, we can consider

two possibility distributions. The possibility distribution π1 is the least specific

possibility distribution that satisfies the constraints N(a) = 1 and N(a) ≥ N(b),

whereas π2 is the least specific possibility distribution satisfying the constraints

N(b) = 1 and N(a) ≥ N(b):

π1({a, b}) = 1 π1({b}) = 0

π1({a}) = 1 π1({}) = 0



22 Kim Bauters et al.

and

π2({a, b}) = 1 π2({b}) = 0

π2({a}) = 0 π2({}) = 0.

It is clear that the possibility distribution π2 cannot be minimally specific w.r.t. the

constraints max(N(a), N(b)) = 1 and N(a) ≥ N(b) since π1({a}) > π2({a}) and

π1(ω) ≥ π2(ω) for all other interpretations ω. We thus have that Ss
P only contains a

single element, namely π1. With N the necessity measure induced by π1 we obtain

N(a) = 1 and N(b) = 0. As will follow from Proposition 5 and 6 the unique answer

set of P is therefore {a}.

Let us now add the rule (b← not b) to P . Notice that in classical ASP this extended

program has no answer sets. The set of constraints Cs
(P,V ) is given by:

Cs
P ∪ {N(b) ≥ 1− V (b)} .

This new constraint, intuitively, tells us that ‘b’ must necessarily be true, since we

force it to be true whenever it is not true. Note, however, that the act of making

‘b’ true effectively removes the motivation for making it true in the first place.

As expected, we cannot find any minimally specific possibilistic model that agrees

with the constraints imposed by P and V such that ∀l ∈ LitP · N(l) ∈ {0, 1}.

The problem has to do with our choice of V (b). If we take V (b) = 1 then the

constraint imposed by the first rule still forces us to choose either N(a) = 1 or

N(b) = N(a) = 1 due to the interplay with the constraint imposed by the second

rule. However, Ss
(P,V ) contains only one minimally specific possibility distribution,

namely the one with N(a) = 1. Hence N(b) = 0 6= V (b). If we take V (b) = 0 then

the last rule forces N(b) = 1. Hence V (b) = 0 6= 1 = N(b).

Now that we have clarified the intuition, we can formalize the connection between

the strong possibilistic semantics and classical disjunctive ASP.

Proposition 5

Let P be a disjunctive program, V a valuation and let π ∈ Ss
(P,V ) be such that

∀l ∈ LitP · V (l) = N(l) ; and (8)

∀l ∈ LitP ·N(l) ∈ {0, 1} (9)

then M = {l | N(l) = 1, l ∈ LitP} is an answer set of the disjunctive program P .

The proof is given in the online appendix of the paper, pp. 4–5.

Proposition 6

Let P be a disjunctive program. If M is an answer set of P , there is a valuation V ,

defined as V (l) = 1 if l ∈M and V (l) = 0 otherwise, and a possibility distribution π,

defined as π(ω) = 1 if ω |= M and π(ω) = 0 otherwise, such that π ∈ Ss
(P,V ) and

for every l ∈ LitP we have V (l) = N(l).

The proof is given in the online appendix of the paper, pp. 5–6.
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4.2 Weak Possibilistic Semantics of Disjunctive Rules

Under the strong possibilistic semantics of disjunction we consider all the disjuncts

of a satisfied rule separately. Under this non-deterministic view the rule (a; b ←)

means that ‘a’ is believed to be true or ‘b’ is believed to be true. When looking at

answer sets as epistemic states it becomes apparent that there is also another choice

in how we can treat disjunction in the head. Indeed, we can look at the disjunction

as a whole to hold, without making any explicit choices as to which of the disjuncts

holds. When trying to reason about one’s knowledge there are indeed situations in

which we do not want, or simply cannot make, a choice as to which of the disjuncts

is true. This implies that we need to look at an answer set as a set of clauses, rather

than a set of literals.

An elaborate example using weak disjunction and uncertainty has been given in

Section 1. In this subsection we consider the semantics of such programs. For starters,

we will extend the PASP semantics with the notion of clauses, rather than literals,

and define an applicable immediate consequence operator for programs composed

of clauses. We then prove some important properties, such as the monotonicity

of the immediate consequence operator. For the classical case (i.e. when omitting

weights), we furthermore characterize the complexity of clausal programs, both

with and without negation-as-failure in Section 5. In particular, we show how the

complexity is critically determined by whether we restrict ourselves to atoms and

highlight, as shown by the higher complexity of some of the reasoning tasks, that

weak disjunction is a non-trivial extension of ASP.

We start by formally defining possibilistic clausal programs, i.e. possibilistic pro-

grams with a syntax that allows for disjunction in the body. We then define the

weak possibilistic semantics of such clausal programs in terms of constraints on

possibility distributions. We also introduce an equivalent characterization based on

an immediate consequence operator and a reduct, which is more in line with the

usual treatment of ASP programs. When all the rules are entirely certain we obtain

the classical counterpart, which we name clausal programs.

4.2.1 Semantical Characterization

We rely on the notion of a clause, i.e. a finite disjunction of literals. Consistency

and entailment for sets of clauses are defined as in propositional logic. As such, we

can derive from the information ‘a ∨ b ∨ c’ and ‘¬b’ that ‘a ∨ c’ is true.

Definition 8

A clausal rule is an expression of the form (e0 ← e1, ..., em, not em+1, ..., not en)

with ei a clause for every 0 ≤ i ≤ n. A positive clausal rule is an expression of the

form (e0 ← e1, ..., em) , i.e. a clausal rule without negation-as-failure. A (positive)

clausal program is a finite set of (positive) clausal rules.

For a clausal rule, which is of the form r = (e0 ← e1, ..., em, not em+1, ..., not en),

we say that e0 is the head and that e1, ..., em, not em+1, ..., not en is the body of

the clausal rule. We use the notation head(r) and body(r) to denote the clause in
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the head, resp. the set of clauses in the body. The Herbrand base BP of a clausal

program P is still defined as the set of atoms appearing in P . As such, possibility

distributions are defined in the usual way as π : 2BP → [0, 1] mappings.

Until now, we were able to define the possibility distributions that satisfied the

constraints imposed by the rules in a program in terms of a valuation V , i.e. a

V : LitP → [0, 1] mapping. This need no longer be the case. Specifically, note that

we will now impose constraints of the form N(l0 ∨ ... ∨ lk) ≥ λ. Assume that we

have a possibility distribution π defined as

π({a, b, c}) = 0 π({a, b}) = 0 π({a, c}) = 1 π({a}) = 1

π({b, c}) = 0 π({b}) = 0 π({c}) = 1 π({}) = 0.

This possibility distribution is the least specific possibility distribution that satisfies

the constraints N(a∨b∨c) = 1 and N(¬b) = 1. However, it can be verified that this

possibility distribution cannot be defined in terms of a mapping V : LitP → [0, 1].

Instead, we define the set of clauses appearing in the head of the rules of a clausal

program P as ClauseP = {head(r) | r ∈ P}. Given a clausal program, it is clear that

the only information that can be derived from the program are those clauses that

are in the head of a rule. To compactly describe a possibility distribution imposed by

clausal programs we will thus, for the remainder of this section and for Section 5,

take a valuation V to be a ClauseP → [0, 1] mapping. As before, a valuation V

corresponds with the set of constraints
{

N(e) ≥ λ | eλ ∈ V
}

. The set notation for

valuations and the notations V λ and V λ are extended as usual. Entailment for

valuations is defined as in possibilistic logic, i.e. if we consider the least specific

possibility distribution πV satisfying the constraints
{

NV (e) ≥ λ | eλ ∈ V
}

then

V |= pλ with ‘p’ a proposition iff NV (p) ≥ λ. In particular, recall from possibilistic

logic the inference rules (GMP) or graded modus ponens, i.e. we can infer from

N(α) ≥ λ and N(α → β) ≥ λ′ that N(β) ≥ min(λ, λ′). In addition recall the

inference rule (S), i.e. we can infer from N(α) ≥ λ that N(α) ≥ λ′ with λ ≥ λ′.

Definition 9

A possibilistic (positive) clausal program is a set of possibilistic (positive) clausal

rules, which are pairs p = (r, λ) with r a (positive) clausal rule and λ ∈ ]0, 1] a

certainty associated with r.

We define P ∗ and the λ-cut Pλ as usual.

We are now almost able to define the semantics of weak disjunction. In the previ-

ous sections we guessed a valuation and used this valuation to deal with negation-

as-failure. However, for clausal programs, a new problem arises. Note that the least

specific possibility distribution that satisfies the constraints N(a ∨ b ∨ c) = 1 and

N(¬b) = 1 is also the least specific possibility distribution that satisfies the con-

straints N(a ∨ c) and N(¬b). As such, if ClauseP = {(a ∨ b ∨ c), (¬b), (a ∨ c)},

there would not be a unique valuation that can be used to define this least specific

possibility distribution. Indeed, a valuation uniquely defines a possibility distri-

bution, but not vice versa. To avoid such ambiguity, we will instead immediately

guess a possibility distribution πV and use this possibility distribution to deal with

negation-as-failure in a clausal program.
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Definition 10

Let P be a possibilistic clausal program and let πV be a possibility distribution.

For every p ∈ P , the constraint γw
πV

(p) induced by p = (r, λ) with λ ∈ ]0, 1],

r = (e0 ← e1, ..., em, not em+1, ..., not en) and πV under the weak possibilistic

semantics is given by

N(e0) ≥ min(N(e1), ..., N(em), 1−NV (em+1), ..., 1−NV (en), λ). (10)

Cw
(P,πV ) =

{

γw
πV

(p) | p ∈ P
}

is the set of constraints imposed by program P and πV ,

and Sw
(P,πV ) is the set of all minimally specific possibilistic models of Cw

(P,πV ).

Whenever P is a possibilistic (positive) clausal program, i.e. whenever P is a

possibilistic clausal program without negation-as-failure, (10) is independent of πV
and we simplify the notation to γw, Cw

P and Sw
P .

Definition 11

Let P be a possibilistic clausal program. Let πV be a possibility distribution such

that πV ∈ Sw
(P,πV ). We then say that πV is a possibilistic answer set of P .

As already indicated we can also use a valuation V to concisely describe πV . When

we say that V is a possibilistic answer set of the clausal program P we are, more

precisely, stating that the possibility distribution induced by V is a possibilistic

answer set of the clausal program P .

Lemma 2

Let P be a possibilistic positive clausal program. Then Sw
(P,πV ) is a singleton,

i.e. π ∈ Sw
(P,πV ) is a least specific possibility distribution.

Proof

This readily follows from the form of the constraints imposed by the rules p ∈ P

and since a possibilistic positive clausal program is free of negation-as-failure.

Example 9

Consider the possibilistic clausal program P with the rules:

1 : a ∨ c ∨ d←

0.4 :¬d←

0.8 : e← not (a ∨ b ∨ c).

We have that Cw
(P,πV ) is the set of constraints:

N(a ∨ c ∨ d) ≥ 1

N(¬d) ≥ 0.4

N(e) ≥ min(1−NV (a ∨ b ∨ c), 0.8).

We can rewrite the first constraint as N(¬d → a ∨ c) ≥ 1. Given the second

constraint N(¬d) ≥ 0.4 we can apply the inference rule (GMP) to conclude that

N(a∨ c) ≥ 0.4. From propositional logic we know that (a∨ c)→ (a∨ b∨ c), i.e. we

also have N(a ∨ b ∨ c) ≥ 0.4.
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For πV to be an answer set of P we know from Definition 11 that we must have

that π ∈ Sw
(P,πV ) with π = πV . In other words, we must have that NV (a ∨ b ∨ c) =

N(a ∨ b ∨ c) ≥ 0.4. Due to the principle of least specificity, which implies that

N(a ∨ b ∨ c) = 0.4, the last constraints can be simplified to N(e) ≥ min(1− 0.4, 0.8)

or N(e) ≥ 0.6. As such, the least specific possibility distribution defined by the

constraints N(e) ≥ 0.6, N(a ∨ c ∨ d) ≥ 1 and N(¬d) ≥ 0.4 is a possibilistic answer

set of P .

Notice that we implicitly defined the possibilistic answer set of the previous ex-

ample as a valuation, i.e. in terms of clauses that appear in the head. Alternatively

we could thus write that V =
{

e0 .6 , a ∨ b ∨ d1 ,¬b0 .4
}

defines the possibilistic an-

swer set of P . This idea will be further developed in Section 4.2.2 to avoid the need

to explicitly define a possibility distribution (which would require an exponential

amount of space) and instead rely on an encoding of a possibility distribution by a

(polynomial) set of weighted clauses.

For the crisp case, we only want clauses that are either entirely certain or com-

pletely uncertain, i.e. true or false. To this end, we add the constraint (11), which

is similar to (4) from Proposition 3.

Definition 12

Let P be a clausal program and πV ∈ Sw
(P,πV ) a possibility distribution such that

∀ω ∈ Ω · πV (ω) ∈ {0, 1} (11)

then πV is called an answer set of P .

4.2.2 Syntactic Characterization

We now introduce a syntactic counterpart of the semantics for weak disjunction by

defining an immediate consequence and reduct operator. As such, it is more in line

with the classical Gelfond-Lifschitz approach. In addition, the syntactic approach

only needs polynomial size (as we will only consider clauses appearing in the head of

the clausal rules). Indeed, what we will do is formalise the idea of using a valuation

to determine the possibilistic answer sets of a clausal program, rather than relying

on an exponential possibility distribution.

Definition 13

Let P be a possibilistic positive clausal program. We define the immediate conse-

quence operator Tw
P as:

Tw
P (V )(e0) = max

{

λ ∈ [0, 1] | (e0 ← e1, ..., em) ∈ Pλ and ∀i ∈ {1, ...,m} · V λ |= ei
}

.

We use P ⋆
w to denote the fixpoint which is obtained by repeatedly applying Tw

P

starting from the minimal clausal valuation V = ∅, i.e. the least fixpoint of Tw
P

w.r.t. set inclusion. When P is a positive clausal program we take λ ∈ {0, 1}.
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Example 10

Consider the clausal program P with the clausal rules

1 : a ∨ b ∨ c←

0.4 :¬b←

0.8 : e← (a ∨ c ∨ d).

We can easily verify that, starting from V = ∅, we obtain

Tw
P (V )(a ∨ b ∨ c) = 1 and

Tw
P (V )(¬b) = 0.4.

In the next iteration we furthermore find that

Tw
P (Tw

P (V ))(e) = 0.4

since (0.8: e ← (a ∨ c ∨ d)) ∈ P0.4 and since (Tw
P (V ))

0.4 |= a ∨ c ∨ d. In addition,

this is the least fixpoint, i.e. we have P ⋆
w =

{

(a ∨ b ∨ c)1 ,¬b0 .4 , e0 .4
}

.

Notice that this definition of the immediate consequence operator is a gener-

alization of the immediate consequence operator for possibilistic simple programs

(see Definition 1). Indeed, for a possibilistic positive clausal program where all

clauses contain only a single literal, i.e. a possibilistic simple program, we have that

P ⋆ = P ⋆
w. In addition, when all clauses contain only a single literal, we can simplify

the immediate consequence operator and simply write ei ∈ V
λ instead of V λ |= ei.

We now show that the fixpoint obtained from the immediate consequence operator

Tw
P is indeed the answer set of P .

Proposition 7

Let P be a possibilistic positive clausal program without possibilistic constraint

rules. Then P ⋆
w is a possibilistic answer set of P .

The proof is given in the online appendix of the paper, pp. 6–7.

Thus far, we only considered possibilistic positive clausal programs. If we allow

for negation-as-failure, we will also need to generalize the notion of a reduct. As

usual, in the classical case we want that an expression of the form ‘not e’ is true

when ‘e’ cannot be entailed. Furthermore, since we are working in the possibilistic

case, we want to take the degrees into account when determining the reduct.

Definition 14

Given a possibilistic clausal program P and a valuation V , the reduct PV of P

w.r.t. V is defined as:

PV = { ((e0 ← e1, ..., em),min(λrule , λbody)) | min(λrule , λbody) > 0

∧ λbody = max
{

λ | ∀i ∈ {m+ 1, ..., n} · V 1−λ 6|= ei, λ ∈ [0, 1]
}

∧ ((e0 ← e1, ..., em, not em+1, ..., not en), λrule) ∈ P}

This definition corresponds with the Gelfond-Lifschitz reduct when we consider

crisp clausal programs where each clause consists of exactly one literal. Indeed, if
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we consider clauses with exactly one literal, we could simplify ∀i ∈ {m+ 1, ..., n} ·

V 1−λ 6|= ei to {em+1, ..., en} ∩ V 1−λ = ∅. This new reduct generalises the Gelfond-

Lifschitz reduct in two ways. Firstly, we now have clauses, i.e. we now need to verify

whether the negative body is not entailed by our guess. Secondly, we need to take

the weights attached to the rules, which we interpret as certainties, into account.

In particular, the certainty of the reduct of a rule is limited by the certainty of the

negative body of the rule and the certainty of the rule itself. In the crisp case these

certainty degrees would become trivial.

Proposition 8

A valuation E is a possibilistic answer set of the possibilistic clausal program P

without possibilistic constraint rules iff E is a possibilistic answer set of PE .

The proof is given in the online appendix of the paper, pp. 7.

Before we discuss the complexity results, we look at an example to further uncover

the intuition of clausal programs.

Example 11

Consider the possibilistic clausal program P with the following rules:

0.7 :a ∨ b ∨ c← 0.2 :¬b← 1 : d← not (a ∨ c ∨ f) 1 : e← not c.

The reduct PV with V =
{

(a ∨ b ∨ c)0 .7 , (¬b)0 .2 , d0 .8 , e1
}

is then:

0.7 :a ∨ b ∨ c← 0.2 :¬b← 0.8 : d← 1 : e←

since V 1−0.8 |= a ∨ c but V 1−0.8 6|= a ∨ c and V 1−1 6|= c. We then have that

(PV )
⋆

w =
{

(a ∨ b ∨ c)0 .7 , (¬b)0 .2 , d0 .8 , e1
}

, hence V is indeed an answer set of P .

5 Complexity Results

Before we discuss the complexity results of the weak possibilistic semantics for

disjunctive rules (Section 4.2), we first look at the complexity results of both pos-

sibilistic normal programs (Section 3.2) and the strong possibilistic semantics for

disjunctive rules (Section 4.1). As such, for Proposition 9, 10, 11 and 12 we once

again consider a valuation V for a possibilistic normal/disjunctive program P as

a V : LitP → [0, 1] mapping. We find that for possibilistic normal programs the

addition of weights does not affect the complexity compared to classical normal

programs.

Proposition 9 (possibilistic normal program; brave reasoning)

Let P be a possibilistic normal program. The problem of deciding whether there

exists a possibilistic answer set V of P such that V (l) ≥ λ is NP-complete.

The proof is given in the online appendix of the paper, pp. 8.
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Proposition 10 (possibilistic normal program; cautious reasoning)

Let P be a possibilistic normal program. The problem of deciding whether for all

possibilistic answer sets V of P we have that V (l) ≥ λ is coNP-complete.

The proof is given in the online appendix of the paper, pp. 9.

Similarly, we find for possibilistic disjunctive programs under the strong disjunc-

tive semantics that the addition of weights does not affect the complexity compared

to classical disjunctive programs.

Proposition 11 (possibilistic disjunctive program; brave reasoning)

Let P be a possibilistic disjunctive program. The problem of deciding whether there

is a possibilistic answer set V such that V (l) ≥ λ is a ΣP

2 -complete problem.

The proof is given in the online appendix of the paper, pp. 9-10.

Proposition 12 (possibilistic disjunctive program; cautious reasoning)

Let P be a possibilistic disjunctive program. The problem of deciding whether for

all possibilistic answer sets V we have that V (l) ≥ λ is a ΠP

2 -complete problem.

The proof is given in the online appendix of the paper, pp. 10-11.

We now look at the complexity of the weak possibilistic semantics for disjunctive

rules for a variety of decision problems and under a variety of restrictions. In par-

ticular, throughout this section we look at the complexity of weak disjunction in

the crips case that allows us to compare these results against the complexity of

the related decision problems in classical ASP and other epistemic extensions of

ASP, e.g. (Truszczyński 2011; Vlaeminck et al. 2012). As we will see, for certain

classes of clausal programs, decision problems exist where weak disjunction is com-

putationally less complex than disjunctive programs while remaining more complex

than normal programs.

An overview of the complexity results available in the literature for disjunctive

programs as well as the new results for weak disjunction (in the crisp case) which

we discuss in the remainder of this section can be found in Table 1.

Proposition 13 (weak disjunction, positive clausal program; brave reasoning)

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’

is entailed by a consistent answer set E of P is BH2-hard.

The proof is given in the online appendix of the paper, pp. 11-12.

Proposition 14 (weak disjunction, positive clausal program; brave reasoning)

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’

is entailed by a consistent answer set M of P is in BH2.

The proof is given in the online appendix of the paper, pp. 12-13.

Corollary 1

Let P be a positive clausal program. The problem of deciding whether a clause ‘e’

is entailed by a consistent answer set E of P is BH2-complete.
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Table 1. Completeness results for the main reasoning tasks with references

no NAF, no ¬ existence brave reasoning cautious reasoning

strong disjunction NP
(1) ΣP

2
(1)

coNP
(1)

weak disjunction P
(6)

P
(6)

P
(6)

no NAF, ¬ existence brave reasoning cautious reasoning

strong disjunction NP
(1) ΣP

2
(1)

coNP
(1)

weak disjunction NP
(4)

BH2
(3)

coNP
(5)

NAF, ¬ existence brave reasoning cautious reasoning

strong disjunction ΣP

2
(2) ΣP

2
(2) ΠP

2
(2)

weak disjunction ΣP

2
(8) ΣP

2
(7) ΠP

2
(9)

“no NAF” (resp. “no ¬”) indicates results for programs without negation-as-failure (resp. classical negation)

(1) (Eiter and Gottlob 1993) (6) Proposition 15
(2) (Baral 2003) (7) Proposition 16 and 17
(3) Proposition 13 and 14 (8) Corollary 5
(4) Corollary 2 (9) Corollary 6
(5) Corollary 3

Corollary 2 (weak disjunction, positive clausal program; answer set existence)

Determining whether a positive clausal program P has a consistent answer set is

an NP-complete problem.

The proof is given in the online appendix of the paper, pp. 14.

Corollary 3 (weak disjunction, positive clausal program; cautious reasoning)

Cautious reasoning, i.e. determining whether a clause ‘e’ is entailed by every answer

set M of a positive clausal program P is coNP-complete.

The proof is given in the online appendix of the paper, pp. 14.

Surprisingly, the expressivity of positive clausal programs under the weak inter-

pretation of disjunction is directly tied to the ability to use classical negation in

clauses. If we limit ourselves to positive clausal programs without classical negation

we find that the expressiveness is restricted to P.

In order to see this, let us take a closer look at the immediate consequence opera-

tor for clausal programs as defined in Definition 13. When there are no occurrences

of classical negation we can simplify this immediate consequence operator to

Tw
P (E) = {e0 | e0 ← e1, ..., em ∈ P ∧ ∀i ∈ {1, ...,m} · ∃e ∈ E · e ⊆ ei}

where e ⊆ ei is defined as the subset relation where we interpret e and ei as sets of

literals, i.e. e = (l1 ∨ ... ∨ ln) is interpreted as {l1, ..., ln}.
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Proposition 15
Let P be a positive clausal program without classical negation. We can find the

unique answer set of P in polynomial time.

The proof is given in the online appendix of the paper, pp. 14.

We now examine the complexity of general clausal programs. We will do this by

showing that the problem of determining the satisfiability of a QBF of the form

φ = ∃X1∀X2 · p(X1, X2) with p(X1, X2) in DNF can be reduced to the problem of

determining whether a clause ‘e’ is entailed by a consistent answer set M of the

clausal program P . We start with the definition of our reduction.

Definition 15
Let φ = ∃X1∀X2 · p(X1, X2) be a QBF with p(X1, X2) = θ1 ∨ ... ∨ θn a formula in

disjunctive normal form with Xi sets of variables. We define the clausal program

Pφ corresponding to φ as

Pφ = {x← not ¬x | x ∈ X1} ∪ {¬x← not x | x ∈ X1} (12)

∪ {¬θt ∨ sat← | 1 ≤ t ≤ n} (13)

∪ {← not sat} (14)

with ¬θt the clausal representation of the negation of the formula θt, e.g. when

θt = x1 ∧ ¬x2 ∧ ... ∧ ¬xk then ¬θt = ¬x1 ∨ x2 ∨ ... ∨ xk.

Example 12
Given the QBF φ = ∃p1, p2∀q1, q2 · (p1 ∧ q1) ∨ (p2 ∧ q2) ∨ (¬q1 ∧ ¬q2) the clausal

program Pφ is

p1 ← not ¬p1

¬p1 ← not p1

p2 ← not ¬p2

¬p2 ← not p2

¬p1 ∨ ¬q1 ∨ sat ←

¬p2 ∨ ¬q2 ∨ sat ←

q1 ∨ q2 ∨ sat ←

← not sat .

Notice how M = {p1, p2,¬p1 ∨ ¬q1 ∨ sat ,¬p2 ∨ ¬q2 ∨ sat , q1 ∨ q2 ∨ sat} is an an-

swer set of Pφ and that M |= sat . Accordingly we find that the QBF is satisfied.

If we take the QBF φ′ = ∃p1, p2∀q1, q2 · (p1 ∧ q1) ∨ (p2 ∧ q2) then the clausal

program Pφ′ corresponding to φ′ is the program Pφ in which the penultimate rule

has been removed. Notice how Pφ′ has no answer sets, because we are not able to

entail ‘sat ’ from any of the answer sets of Pφ′ . Indeed, the QBF φ′ is not satisfiable.

Proposition 16 (weak disjunction; brave reasoning)
Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed

by a consistent answer set M of P is ΣP

2 -hard.

The proof is given in the online appendix of the paper, pp. 14-15.
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Proposition 17 (weak disjunction; brave reasoning)

Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed

by a consistent answer set M of P is in ΣP
2 .

The proof is given in the online appendix of the paper, pp. 15.

Corollary 4

Let P be a clausal program. The problem of deciding whether a clause ‘e’ is entailed

by a consistent answer set E of P is ΣP

2 -complete.

Corollary 5 (weak disjunction; answer set existence)

Determining whether a clausal program P has a consistent answer set is an ΣP

2 -

complete problem.

The proof is given in the online appendix of the paper, pp. 15.

Corollary 6 (weak disjunction; cautious reasoning)

Cautious reasoning, i.e. determining whether a clause ‘e’ is entailed by every answer

set M of a clausal program P , is ΠP
2 -complete.

Proof

This problem is complementary to brave reasoning, i.e. we verify that there does

not exist an answer set M ′ of P such that ‘¬e’ is entailed by M ′.

6 Related Work

The work presented in this paper touches on various topics that have been the

subject of previous research. In this section we structure our discussion of related

existing work along 3 main lines. Previous work on the semantics of disjunctive

programs is discussed in Section 6.1. In Section 6.2 we look at how ASP and pos-

sibility theory have been used in the literature for epistemic reasoning. Finally, in

Section 6.3, we look at prior work on characterizing rules with possibility theory

and fuzzy logic.

6.1 Semantics of Disjunctive Programs

Many characterizations of stable models have been proposed in the literature. We

refer the reader to (Lifschitz 2010) for a concise overview of thirteen such defini-

tions. One of the earliest characterizations of stable models was in terms of au-

toepistemic logic (Moore 1985). Formulas in autoepistemic logic are constructed

using atoms and propositional connectives, as well as the modal operator L, which

intuitively stands for “it is believed”. The characterization of stable models pro-

posed in (Gelfond and Lifschitz 1991) based on autoepistemic logic is to look at

‘not a’ as the expression ‘¬La’, a choice which clearly stands out for its sim-

plicity and intuitively. For example, to explain the semantics of the rule a0 ←

a1, ..., am, not am+1, ..., not an one would consider the formula a1∧...∧am∧¬Lam+1∧

... ∧ ¬Lan → a0. Yet this characterization does have some problems. Indeed, it
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was soon afterwards realized that this correspondence does not hold for programs

with classical negation or disjunction in the head. A more involved characterization

based on autoepistemic logic that does work for classical negation and disjunction

has been proposed in (Lifschitz and Schwarz 1993). The idea is to look at literals

‘l’ that are not preceded by negation as failure as the formula (l∧Ll), while one still

looks at a literal of the form ‘not l’ as the formula ¬Ll. In our approach, an expres-

sion of the form ‘not l’ is essentially identified with Π(¬l), which clearly resembles

the first characterization in terms of autoepistemic logic. By staying closer to the

Gelfond-Lifschitz reduct, our approach is more elegant in that we do not require a

special translation of literals in order to be able to deal with classical negation and

disjunction.

Several authors have already proposed alternatives and extensions to the seman-

tics of disjunctive programs. Ordered disjunction (Brewka 2002) falls in the latter

category and allows to use the head of the rule to formulate alternative solutions

in their preferred order. For example, a rule such as l1 × ... × lk ← represents the

knowledge that l1 is preferred over l2 which is preferred over l3 . . . , but that at

the very least we want lk to be true. As such it allows for an easy way to express

context dependent preferences. The semantics of ordered disjunction allow certain

non-minimal models to be answer sets, hence, unlike the work in this paper, it does

not adhere to the standard semantics of disjunctive rules in ASP.

Annotated disjunctions are another example of a framework that changes the

semantics of disjunctive programs (Vennekens et al. 2004). It is based on the idea

that every disjunct in the head of a rule is annotated with a probability. Interest-

ingly, both ordered and annotated disjunction rely on split programs, as found in

the possible model semantics (Sakama and Inoue 1994). These semantics provide

an alternative to the minimal model semantics. The idea is to split a disjunctive

program into a number of normal programs, one for each possible choice of disjuncts

in the head, of which the minimal Herbrand models are then the possible models of

the disjunctive programs. Intuitively this means that a possible model represents

a set of atoms for which a possible justification is present in the program. In line

with our conclusions for weak disjunction, using the possible model semantics also

leads to a lower computational complexity.

Not all existing extensions of disjunction allow non-minimal models. For example,

in (Buccafurri et al. 2002) an extension of disjunctive logic programs is presented

which adds the idea of inheritance. Conflicts between rules are then resolved in

favor of more specific rules. Such an approach allows for an intuitive way to deal

with default reasoning and exceptions. In particular, the semantics allow for rules

to be marked as being defeasible and allows to specify an order or inheritance tree

among (sets of) rules. Interestingly, the complexity of the resulting system is not

affected and coincides with the complexity of ordinary disjunctive programs.

6.2 Epistemic Reasoning with ASP and Possibility Theory

In (Gelfond 1991) it was argued that classical ASP, while later proven to have strong

epistemic foundations (Loyer and Straccia 2006), is not well-suited for epistemic
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reasoning. Specifically, ASP lacks mechanisms for introspection and can thus not

be used to e.g. reason based on cautiously deducible information. At the same

time, however, it was shown that extensions of ASP could be devised that do

allow for a natural form of epistemic reasoning. The language ASPK proposed

in (Gelfond 1991) allows for modal atoms, e.g. Ka, where K is a modal operator

that can intuitively be read as “it is known that [a is true]”. These new modal

atoms can in turn be used in the body of rules. The semantics of ASPK were

originally based on a three-valued interpretation (to allow for the additional truth

value ‘uncertain’), but later, in (Truszczyński 2011), it was shown that this is not

essential and that a more classical two-valued possible world structure can also be

considered. In addition, further extensions are discussed that allow for epistemic

reasoning over arbitrary theories, where it is shown that ASPK can be encoded

within these extensions. The complexity is studied for these extensions and is shown

to be brought up one level w.r.t. ASP, e.g. to ΣP

3 for disjunctive epistemic programs.

Alternatively, existing extensions of ASP can be used to implement some epis-

temic reasoning tasks, such as reasoning based on brave/cautious conclusions. This

idea is proposed in (Faber and Woltran 2009) to overcome the need for an inter-

mediary step to compute the desired consequences of the ASP program P1, before

being fed into P2. Rather, they propose a translation to manifold answer set pro-

grams, which exploit the concept of weak constraints (Buccafurri et al. 2000) to

allow for such programs to access all desired consequences of P1 within a single

answer set. As such, for problems that can be cast into this particular form, only

a single ASP program needs to be evaluated and the intermediary step is made

obsolete.

As we mentioned in Section 6.1, the semantics of ASP can also be expressed in

terms of autoepistemic logic (Marek and Truszczyński 1991). These semantics have

the benefit of making the modal operator explicit, allowing for an extensions of ASP

that incorporates such explicit modalities to better express exactly which form of

knowledge is required. However, since autoepistemic logic treats negation-as-failure

as a modality, it is quite hard to extend to the uncertain case. Furthermore, as

already discussed, it as shown in (Lifschitz and Schwarz 1993) that this characteri-

zation does not allow us to treat classical negation or disjunctive rules in a natural

way, which weakens its position as a candidate for generalizing ASP from normal

programs to e.g. disjunctive programs.

Possibility theory, which can e.g. be used for belief revision, has a strong epistemic

notion and shares a lot of commonalities with epistemic entrenchments (Dubois and Prade 1991).

Furthermore, in (Dubois et al. 2012) a generalization of possibilistic logic is stud-

ied, which corresponds to a weighted version of a fragment of the modal logic KD.

In this logic, epistemic states are represented as possibility distributions, and logical

formulas are used to express constraints on possible epistemic states. In this paper,

we similarly interpret rules in ASP as constraints on possibility distributions, which

furthermore allows us to unearth the semantics of weak disjunction.
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6.3 Characterization of Rules using Possibility Theory and Fuzzy Logic

A large amount of research has focused on how possibility distributions can be used

to assign a meaning to rules. For example, possibility theory has been used to model

default rules (Benferhat et al. 1992; Benferhat et al. 1997). Specifically, a default

rule “if a then b” is interpreted as Π(a∧b) > Π(a∧¬b), which captures the intuition

that when a is known to hold, b is more plausible than ¬b, if all that is known is

that a holds. In this approach entailment is defined by looking at the least specific

possibility distributions which is similar in spirit to our approach for characterizing

ASP rules (although the notion of least specific possibility distribution is defined,

in this context, w.r.t. the plausibility ordering on interpretations induced by the

possibility degrees).

The work on possibilistic logic (Dubois et al. 1994) forms the basis of possibilistic

logic programming (Dubois et al. 1991). The idea of possibilistic logic programming

is to start from a necessity-valued knowledge base, which is a finite set of pairs

(φ α), called necessity-valued formulas, with φ a closed first-order formula and

α ∈ [0, 1]. Semantically, a necessity-valued formula expresses a constraint of the

form N(φ) ≥ α on the set of possibility distributions. A possibilistic logic program

is then a set of necessity-valued implications. As rules are essentially modelled using

material implication, however, the stable model semantics cannot straightforwardly

be characterized using possibilistic logic programming. For example, the knowledge

base {(a→ b 1), (¬b 1)}, which represents the program {b← a,¬b←}, induces

that N(¬a) = 1. Indeed, the semantics of this knowledge base indicate that Π(a ∧

¬b) = 0 and Π(b) = 0, i.e. we find that Π(a) = 0. In other words: a direct encoding

using possibilistic logic programming allows for contraposition, which is not in

accordance with the stable model semantics.

Rules in logic can also be interpreted as statements of conditional probabil-

ity (Jaynes 2003). In the possibilistic setting this notion has been adapted to the no-

tion of conditional necessity measures. Rules can be then also be modelled in terms

of conditional necessity measures (Benferhat et al. 1997; Dubois and Prade 1997;

Benferhat et al. 2002). The conditional possibility measure Π (ψ | φ) is defined as

the greatest solution to the equation Π(φ∧ψ) = min(Π (ψ | φ) ,Π(φ)) in accordance

with the principle of least specificity. It can be derived mathematically that this

gives us Π (ψ | φ) = 1 if Π(ψ ∧ φ) = Π(φ) and Π (ψ | φ) = Π(ψ ∧ φ) otherwise

whenever Π(φ) > 0. When Π(φ) = 0, then by convention Π (ψ | φ) = 1 for every

ψ 6= ⊥ and Π (⊥ | φ) = 0, otherwise. The conditional necessity measure is defined

as N (ψ | φ) = 1−Π (¬ψ | φ). However, there does not seem to be a straightforward

way to capture the stable model semantics using conditional necessity measures,

especially when classical negation is allowed. Indeed, if we represent the semantics

of the program {b← a,¬b←} as the constraints N (b | a) ≥ 1 and N (¬a | ⊤) ≥ 1.

Using the definition of the conditional necessity measure, the first constraint is

equivalent to 1−Π (¬b | a) ≥ 1, i.e. Π (¬b | a) = 0. The second constraint simplifies

to Π(a) = 0, which, using the convention stated above gives rise to Π (¬b | a) = 1,

clearly a contradictory result to the earlier conclusion that Π (¬b | a) = 0.

The work in (Nicolas et al. 2006) was one of the first papers to explore the idea
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of combining possibility theory with ASP. Rather than defining the semantics of

ASP in terms of constraints on possibility distributions as we did in this paper, the

goal was to allow one to reason with possibilities in ASP programs. In this way

one can associate certainties with the information encoded in an ASP program.

The approach from (Nicolas et al. 2006) upholds the 1-on-1 relationship between

the classical answer sets of a normal program and the possibilistic answer sets,

which brings with it some advantages. One of those advantages is that it allows us

to deal with possibilistic nested programs (Nieves and Lindgren 2012). The work

from Nicolas et al. was later extended to also cover the case of disjunctive ASP

in (Nieves et al. 2013). The latter approach allows us to e.g. capture qualitative

information by considering partially ordered sets, which would not be straightfor-

ward to accomplish in our work. However, the approaches from (Nicolas et al. 2006)

and (Nieves et al. 2013) work by taking a possibilistic ASP program and reducing

it – by ignoring the certainty values – to a possibilistic ASP program without

negation-as-failure. As such, both approaches loose the certainty encoded through

negation-as-failure, since the certainty values are not taken into account.

Possibility theory has also been used to define various semantics of fuzzy if-then

rules (Zadeh 1992). Rather than working with literals, fuzzy if-then rules consider

fuzzy predicates which each have their own universe of discourse. To draw conclu-

sions from a set of fuzzy if-then rules, mechanisms are needed that can produce an

(intuitively acceptable) conclusion from a set of such rules.

Finally, a formal connection also exists between the approach from Section 3 and

the work on residuated logic programs (Damásio and Pereira 2001) under the Gödel

semantics. Both approaches are different in spirit, however, in the same way that

possibilistic logic (which deals with uncertainty or priority) is different from Gödel

logic (which deals with graded truth). The formal connection is due to the fact

that necessity measures are min-decomposable and disappears as soon as classical

negation or disjunction is considered.

7 Conclusions

In this paper we defined semantics for Possibilistic ASP (PASP), a framework that

combines possibility theory and ASP to allow for reasoning under (qualitative) un-

certainty. These semantics are based on the interpretation of possibilistic rules as

constraints on possibility distributions. We showed how our semantics for PASP

differ from existing semantics for PASP. Specifically, they adhere to a different in-

tuition for negation-as-failure. As such, they can be used to arrive at acceptable

results for problems where the possibilistic answer sets according to the existing

semantics for PASP do not necessarily agree with our intuition of the problem.

In addition, we showed how our semantics for PASP allowed for a new characteri-

zation of ASP. When looking at ASP as a special case of PASP, we naturally recover

the intuition of a rule that the head is certain whenever we are certain that the body

holds. The resulting characterization stays close to the intuition of the stable model

semantics, yet also shares the explicit reference to modalities with autoepistemic

logic. We showed that this characterization not only naturally characterizes normal
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programs, i.e. programs with negation-a-failure, but can also naturally characterize

disjunctive programs and programs with classical negation.

Due to our explicit reference to modalities in the semantics, we are furthermore

able to characterize an alternative semantics for disjunction in the head of a rule

that has a more epistemic flavour than the standard treatment of disjunction in

ASP, i.e. given a rule of the form (a ∨ b ←) we do not obtain two answer sets,

but rather we have ‘a ∨ b’ as-is in the answer set. While such a characterization

might seem weak, we showed that the interplay with literals significantly affects the

expressiveness. Indeed, we found that the problem of brave reasoning/cautious rea-

soning under these weak semantics for disjunction for a program without negation-

as-failure, but with classical negation, is BH2-complete and coNP-complete, respec-

tively. This highlights that weak disjunction is not merely syntactic sugar, i.e. it

cannot simply be simulated in normal ASP without causing an exponential blow-up.

For strong disjunction, on the other hand, we have obtained that brave and cau-

tious reasoning without negation-as-failure are ΣP
2 -complete and coNP-complete,

respectively. As such, the weak semantics for disjunction detailed in this paper al-

low us to work with disjunction in a less complex way that still remains non-trivial.

If, however, we restrict ourselves to atoms, then brave reasoning under the weak

semantics for disjunction is P-complete.
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