
Weak and strong disjunction in possibilistic ASP

Kim Bauters1?, Steven Schockaert1??, Martine De Cock1, and Dirk Vermeir2

1 Department of Applied Mathematics and Computer Science
Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium

(kim.bauters, steven.schockaert, martine.decock)@ugent.be
2 Department of Computer Science

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel, Belgium
dvermeir@vub.ac.be

Abstract. Possibilistic answer set programming (PASP) unites answer
set programming (ASP) and possibilistic logic (PL) by associating cer-
tainty values with rules. The resulting framework allows to combine both
non-monotonic reasoning and reasoning under uncertainty in a single
framework. While PASP has been well-studied for possibilistic definite
and possibilistic normal programs, we argue that the current semantics
of possibilistic disjunctive programs are not entirely satisfactory. The
problem is twofold. First, the treatment of negation-as-failure in existing
approaches follows an all-or-nothing scheme that is hard to match with
the graded notion of proof underlying PASP. Second, we advocate that
the notion of disjunction can be interpreted in several ways. In particu-
lar, in addition to the view of ordinary ASP where disjunctions are used
to induce a non-deterministic choice, the possibilistic setting naturally
leads to a more epistemic view of disjunction. In this paper, we propose
a semantics for possibilistic disjunctive programs, discussing both views
on disjunction. Extending our earlier work, we interpret such programs
as sets of constraints on possibility distributions, whose least specific
solutions correspond to answer sets.

1 Introduction

Answer Set Programming (ASP) is a form of declarative programming based
on the stable model semantics [11] that allows to succinctly formulate and eas-
ily solve complex combinatorial problems. Possibilistic logic (PL) [7], which is
based on possibility theory [17], allows us to reason about (partial) ignorance or
uncertainty in a non-probabilistic way. Possibilistic ASP (PASP) [13, 3] unites
ASP and PL and provides a single framework for declarative programming under
uncertainty. The certainty of a conclusion is then given by the lowest certainty
of the rules that were used to establish the conclusion (i.e. the strength of the
conclusion is determined by the weakest piece of information involved).

The semantics of both ordinary and possibilistic ASP can be characterized as
constraints on possibility distributions [3]. Under this characterization we treat

? Funded by a joint Research Foundation-Flanders (FWO) project
?? Postdoctoral fellow of the Research Foundation-Flanders (FWO)

a rule of the form ‘c ← a, not b’ intuitively as follows: we can conclude that ‘c’
is certain when we know that ‘a’ is certain and when it is consistent to assume
that ‘b’ is false. This characterization of ASP clearly highlights the intuition that
underlies ASP and the epistemic flavor of such rules. Indeed, when we know that
‘a’ is true and we do not know that ‘b’ is true then we conclude that ‘c’ should
be accepted as true. In the possibilistic case, when we attach certainty degrees
to the atoms and rules, we have that the certainty of the conclusion can be no
stronger than the certainty of the different pieces of information that were used
to deduce the conclusion.

When we consider disjunctions in the head of rules, then reasoning under
this epistemic view suggests that when we are certain of the body, we should
accept the head of the rule. For example, given the rules

a ∨ b←
c← a

c← b

the epistemic reading of the program is that we know that ‘a ∨ b’ is true and
that as soon as we know explicitly whether it is ‘a’ or ‘b’ that is true we can
conclude c. Hence, without any further information, we cannot conclude ‘c’ since
we only have the underspecified information that ‘a ∨ b’ is true. We would be
able to conclude ‘c’, however, if we had a rule c ← a ∨ b. This particular view
of disjunction does not correspond with the intuition in ordinary ASP. Indeed,
the semantics of disjunctive rules in ASP say that whenever the body of a rule
is satisfied, we should make a non-deterministic choice as to which atom in the
head of our rule is chosen to be true (alongside with a minimality requirement
on the resulting answer sets). Regardless, as we will see it is often the case that
when reasoning under uncertainty we are driven towards this epistemic view of
disjunction.

In this paper we examine the differences between these two treatments of
disjunction in the head using the framework of possibilistic logic. As we will see, if
we treat ASP rules as constraints on possibility distributions we naturally obtain
two ways in which we can interpret a disjunctive rule. In one case we retrieve the
semantics of ordinary disjunctive ASP (this interpretation of disjunction will be
called strong disjunction) and in the other case we retrieve the epistemic view of
disjunction (this interpretation of disjunction will be called weak disjunction).
The resulting characterizations of disjunctive ASP programs can then naturally
be generalized to possibilistic programs, where each rule is labelled with a degree
of certainty.

The remainder of this paper is organized as follows. In Section 2 we start by
introducing some background on ASP, PL and PASP. In Section 3 we present the
strong semantics for possibilistic disjunctive ASP. Then in Section 4 we present
the weak semantics for possibilistic disjunctive ASP. We discuss related work in
Section 5 and we conclude with Section 6 in which we provide our conclusions.

2 Preliminaries

2.1 Answer Set Programming

To define ASP programs, we start from a finite set of atoms A. A naf-atom is
either an atom ‘a’ or an atom ‘a’ preceded by ‘not’ which we call the negation-
as-failure operator. Intuitively, ‘not a’ is true when we cannot prove ‘a’.

An expression of the form a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an with
ai an atom with 0 ≤ i ≤ n is called a disjunctive rule. We call a0; ...; ak the head
of the rule (interpreted as a disjunction) and ak+1, ..., am, not am+1, ..., not an
the body of the rule (interpreted as a conjunction).

A positive disjunctive rule is a disjunctive rule without negation-as-failure,
i.e. n = m. A rule of the form a0; ...; ak ← is called a fact and is used as a
shorthand for a0; ...; ak ← > with > a special language construct that denotes
tautology.

A disjunctive program P is a finite set of disjunctive rules. The Herbrand
base BP of a disjunctive program P is the set of atoms appearing in P . An in-
terpretation I of a disjunctive program P is any set of atoms I ⊆ BP . A normal
rule is a disjunctive rule with exactly one atom in the head, i.e. k = 0. A definite
rule is a normal rule with no negation-as-failure, i.e. k = 0 and n = m. A normal
(resp. definite) program P is a finite set of normal (resp. definite) rules.

An interpretation I is a model of a positive disjunctive rule r = a0; ...; ak ←
ak+1, ..., am, denoted I |= r, if {a0, ..., ak} ∩ I 6= ∅ or {ak+1, ..., am} 6⊆ I, i.e. the
body is false or at least one of the atoms in the head is true. An interpretation
I of a positive disjunctive program P is a model of P iff ∀r ∈ P · I |= r.

The reduct [11, 10] P I of a disjunctive program P w.r.t. an interpretation I
is defined as

P I ={a0; ...; ak ← ak+1, ..., am | ({am+1, ..., an} ∩ I = ∅)
∧ (a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an) ∈ P}.

We say that I is an answer set of the disjunctive program P when I is a minimal
model w.r.t. set inclusion of P I .

The answer set of a definite program P can also be defined using the imme-
diate consequence operator TP , which is defined w.r.t. an interpretation I as:

TP (I) = {a0 | (a0 ← a1, ..., am) ∈ P ∧ {a1, ..., am} ⊆ I} .

We use P ? to denote the fixpoint which is obtained by repeatedly applying TP
starting from the empty interpretation, i.e. the least fixpoint of TP w.r.t. set
inclusion, which is guaranteed to exist [16]. An interpretation I is an answer set
of a definite program P iff I = P ?.

2.2 Possibilistic Logic

At the semantic level, possibilistic logic [7] is defined in terms of a possibility
distribution π on the universe of interpretations. For Ω = 2BP the set of all

interpretations of a program P , we have that the possibility distribution is an
Ω → [0, 1] mapping which encodes for each interpretation (or world) I to what
extent it is plausible that I is the actual world. Rather than using certainty
degrees from [0, 1], we could use any linearly ordered set, together with an invo-
lutive order-reversing mapping. Intuitively, π(I) represents the compatibility of
the interpretation I with available information. By convention, π(I) = 0 means
that I is impossible and π(I) = 1 means that no available information prevents I
from being the actual world. Note that possibility degrees are mainly interpreted
qualitatively: when π(I) > π(I ′), I is considered more plausible than I ′. For two
possibility distributions π1 and π2 with the same domain Ω we write π1 > π2
when ∀I ∈ Ω ·π1(I) ≥ π2(I) and ∃I ∈ Ω ·π1(I) > π2(I). The satisfaction relation
|= is defined for a set of atoms A as A |= a iff a = > or a ∈ A, otherwise A 6|= a.
Furthermore, A |= ¬a iff A 6|= a.

A possibility distribution π induces two uncertainty measures that allow us
to rank propositions. The possibility measure Π is defined by [7]:

Π(p) = max {π(I) | I |= p}

and evaluates the extent to which a proposition p is consistent with the beliefs
expressed by π. The dual necessity measure N is defined by:

N(p) = 1−Π(¬p)

and evaluates to which extent a proposition p is entailed by available beliefs [7].
An important property that necessity measures have is min-decomposability

w.r.t. conjunction: N(p ∧ q) = min(N(p), N(q)) for all propositions p and q.
However, for disjunction only the inequality N(p∨ q) ≥ max(N(p), N(q)) holds.
As possibility measures are dual to necessity measures, they have the important
property of max-decomposability w.r.t. disjunction, whereas for conjunction only
the inequality Π(p ∧ q) ≤ min(Π(p), Π(q)) holds.

At the syntactic level, a possibilistic knowledge base Σ corresponds to a set of
constraints N(p) ≥ c where p is a propositional formula and c ∈ [0, 1] expresses
the certainty that p is the case. Typically, there will be many possibility distribu-
tions that satisfy these constraints. In practice, we are usually only interested in
the least specific possibility distribution of these possibility distributions, which
is the possibility distribution that makes minimal commitments, i.e. the largest
possibility distribution w.r.t. the ordering > defined above.

2.3 Possibilistic normal ASP

Possibilistic ASP combines ASP and possibilistic logic [7] by associating a cer-
tainty value with atoms and rules. A possibilistic normal (resp. definite) rule is
a pair (r, λ) where r is a normal (resp. definite) rule and where λ ∈ [0, 1] is a cer-
tainty attached to r. We also write a pair (r, λ) as ‘λ: r’. A possibilistic normal
(resp. definite) program is a set of possibilistic normal (resp. definite) rules.

As we recalled in Section 2.1, in ASP, an answer set of a program P is an
interpretation that satisfies some additional requirements. Note that an interpre-
tation I of P can be thought of as a BP → {0, 1} mapping. As a generalization

of this, in possibilistic ASP, an answer set of a program is a valuation V , which
is a BP → [0, 1] mapping, that satisfies the requirements formally defined in Def-
inition 1. This is the mechanism used to associate certainty values with atoms
appearing in a program. The intuition is that for an atom a ∈ BP , V (a) = c
means that we can derive with certainty c that a is true. For notational conve-
nience, we also use the set notation V = {ac , . . .}. In accordance with this set
notation, we write V = ∅ to denote the valuation in which each atom is mapped
to 0. We generally omit atoms and rules with an associated certainty of 0 due
to their triviality.

Possibilistic normal programs (and therefore also ordinary normal programs)
are interpreted in terms of constraints on possibility distributions. Intuitively,
an ordinary rule of the form ‘rule = (head ← body)’ says that we are able
to conclude that ‘head’ is true when we know that ‘body’ is true. When we
associate necessities with the information in ‘body’ and with ‘rule’ itself, then
we can only deduce ‘head’ with a certainty min {N(body), N(rule)}. Indeed,
the contribution of a single rule to the necessity with which its head is true
cannot be stronger than the necessity of the weakest information used to derive
the body of the rule. However, a stronger conclusion could be derived using
another set of rules, hence the ‘rule = (head ← body)’ induces the constraint
N(head) ≥ min {N(body), N(rule)}.

In the ordinary case, we tackle negation-as-failure by making certain as-
sumptions about which atoms we will be able to derive (we guess an I) and
then checking whether our assumptions are stable (we verify that I = (P I)

?
).

When dealing with uncertain information, the assumptions we need to make
are not whether an atom is true or not, but rather with what certainty we will
be able to derive an atom. We make these assumptions by guessing a valua-
tion V , i.e. an association of a necessity with each atom. At the end we verify
whether V (a) = N(a), i.e. whether our guess is stable. This is the possibilistic
counterpart of the ordinary reduct.

Definition 1. [3] Let P be a possibilistic normal program. Let V : BP → [0, 1]
be a valuation. For every p ∈ P , the constraint γV (p) induced by p = (r, λ)
with r = (a0 ← a1, ..., am, not am+1, ..., not an) and V is given by

N(a0) ≥ min {N(a1), ..., N(am), 1− V (am+1), ..., 1− V (an), λ} .

We write C(P,V) = {γV (p) | p ∈ P} to denote the set of constraints imposed by
program P . A possibility distribution that satisfies the constraints in C(P,V) is
called a possibilistic model of C(P,V). We write S(P,V) for the set of all least
specific possibilistic models of C(P,V). V is called a possibilistic answer set of P
iff there exists a π ∈ S(P,V) such that ∀a ∈ BP · V (a) = N(a).

The ordinary case can be retrieved if we also require ∀a ∈ BP ·N(a) ∈ {0, 1},
i.e. if for every atom we are entirely sure whether or not the atom is necessary.
The above definitions can then be used to characterize the semantics of ordinary
normal programs.

Proposition 1. [3] Let P ′ be a normal program, let P be a possibilistic normal
program such that P = {(r′, 1) | r′ ∈ P ′} and let V : BP → [0, 1] be a valuation.
If V is a possibilistic answer set of P and ∀a ∈ BP · V (a) ∈ {0, 1}, then M =
{a | V (a) = 1, a ∈ BP } is an answer set of P ′.

Before we extend the semantics to cover the case of disjunction in Section 3
and 4, we first provide an example of the possibilistic semantics applied to a
PASP program in order to further clarify the approach.

Example 1. Two common symptoms associated with fibromyalgia (a medical
disorder consisting of pain in muscle and joint tissue) are a feeling of weak-
ness and joint pain, where feeling weak without other causes is a telltale sign
of fibromyalgia. Our patient tells us that she is experiencing both symptoms.
However, the patient is known as a hypochondriac and is not entirely trustwor-
thy. In the past she sometimes complained about weakness without any grounds,
though she hardly ever complains about pain without an actual physical or men-
tal cause. Her sagging eyes hint at an iron deficiency (which might explain the
weakness in itself), though it is highly unlikely that sagging eyes by themselves
correctly identify an iron deficiency. We have the program P with the rules:

0.2: fibro ← pain

0.6: fibro ← weak ,not deficiency

0.9: pain ←
0.8: weak ←
0.1: deficiency ←

which induces the set C(P,V) of constraints

{N(fibro) ≥ min {N(pain), 0.2} ,
N(fibro) ≥ min {N(weak), 1− V (deficiency), 0.6} ,
N(pain) ≥ 0.9 , N(weak) ≥ 0.8 , N(deficiency) ≥ 0.1}.

The set of least specific possibility models S(P,V) is a singleton and π ∈ S(P,V) is
defined as π(I) = 0.1 when I |= {¬p}, π(I) = 0.2 when I |= {p,¬w}, π(I) = 0.4
when I |= {¬f, p, w}, π(I) = 0.9 when I |= {f, p, w,¬d} and π(I) = 1 when
I |= {f, p, w, d}, where we use the first letter of the atom as abbreviation to save
space. The possibilistic answer set of this program is unique and is given by

V =
{

pain0 .9 ,weak0 .8 , deficiency0 .1 ,fibro0 .6
}

which can readily be verified.

We would also like to point out that, unlike the approach above, the ap-
proaches from [13, 14] do not take the extent of certainty of information into
account when determining the reduct of a PASP program. In these other se-
mantics, any proof of ‘a’, no matter how uncertain it is, suffices to eliminate

the expression ‘not a’. Hence, in the example above, rule 2 would be eliminated
based on rule 5, and we would only be able to derive fibro0 .2 . This clearly is
not the intended meaning of the program as the limited certainty of an actual
deficiency should not be sufficient to dismiss the certainty we have in diagnosing
fibromyalgia.

3 Strong Possibilistic Semantics

In this section we extend the semantics of possibilistic normal ASP [3] to disjunc-
tive programs, in a way which remains faithful both to ordinary disjunctive ASP
(see Section 2.1) and to the semantics from [6]. As necessity measures do not
have the max-decomposability property, we have a choice of how to interpret the
disjunction in the head. This is similar to the choice one has for the semantics
of disjunction when characterizing ASP using autoepistemic logic [12] or using
meta-rules in possibilistic logic [9]. A possibilistic disjunctive rule p = (r, λ) with
r = a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an can either be interpreted as
the constraint

max {N(a0), ..., N(ak)} ≥ min{N(ak+1), ..., N(am),

1− V (am+1), ..., 1− V (an), λ} (1)

which we will call strong disjunction or as the constraint

N(a0 ∨ ... ∨ ak) ≥ min {N(ak+1), ..., N(am), 1− V (am+1), ..., 1− V (an), λ} (2)

which we will call weak disjunction. This is a choice that does not arise for the
conjunction in the body since min-decomposability dictates that N(a∧ . . .∧z) =
min {N(a), . . . , N(z)}. However, for the disjunction, we only have N(a∨. . .∨z) ≥
max {N(a), . . . , N(z)}.

The choice of how to treat disjunction is an important one that profoundly
impacts the nature of the resulting answer sets. The main distinction between
strong and weak disjunction has to do with the way that we regard an answer
set. If we see an answer set as a solution to a problem, then the non-deterministic
nature of strong disjunction provides a useful way to generate different (candi-
date) solutions. If we take an answer set as a representation of an epistemic
state, then weak disjunction models the current state of belief.

In the remainder of this section we consider the characterization of disjunc-
tion as (1). In Section 4 we consider the characterization of disjunction as (2).

As it turns out, the characterization of disjunction as (1) makes the disjunc-
tion behave as in ordinary ASP (see Section 2.1). Indeed, the interplay between
the strong possibilistic semantics of disjunction together with the requirement
that we are looking for the least specific possibility distribution ensures that dis-
junction induces a choice. Similar as in the ordinary case, the constraint (1) will
generate a number of possible outcomes. The requirement that we are looking
for the least specific possibility distribution behaves similarly as the requirement
of trying to find the minimal model. We will first give the general definition and
then we will illustrate the semantics using an ordinary disjunctive ASP program.

Definition 2. Let P be a possibilistic disjunctive program and let V : BP →
[0, 1] be a valuation. For every p ∈ P with p = (r, λ), the constraint γsV induced
by r = (a0; ...; ak ← ak+1, ..., am, not am+1, ..., not an) and V under the strong
possibilistic semantics of disjunction is given by

max {N(a0), ..., N(ak)} ≥ min{N(ak+1), ..., N(am),

1− V (am+1), ..., 1− V (an), λ}.

Cs
(P,V) = {γsV (r) | r ∈ P} is the set of constraints imposed by program P and

V . A possibility distribution that satisfies the constraints in Cs
(P,V) is called a

possibilistic model of Cs
(P,V). We write Ss

(P,V) to denote the set of all least specific
possibilistic models of Cs

(P,V). V is called a possibilistic answer set of P iff there

exists a π ∈ Ss
(P,V) such that ∀a ∈ BP · V (a) = N(a).

Whenever P is a positive disjunctive program we have no need for a specific
valuation V to pin down the constraints (since there is no negation-as-failure),
and we simplify the notation to γs, Cs

P and Ss
P . As before we retrieve the seman-

tics for the ordinary case if we require ∀a ∈ BP ·N(a) ∈ {0, 1}.

Example 2. Consider the program P with the single rule

0.7: a; b ← .

The set of constraints Cs
P is given by {max {N(a), N(b)} ≥ 0.7}. This constraint

induces a choice, i.e. we either need to pick N(a) = 0.7 or N(b) = 0.7 to conform
to the principle of least specificity. We can conclude that the two possibilistic
answer sets of P are given by

{
a0 .7

}
and

{
b0 .7

}
. This corresponds with the

non-deterministic intuition of the problem; we choose either ‘a’ or ‘b’ and assign
a certainty of 0.7 to the atom we choose.

Example 3. We cannot simply simulate disjunction using negation-as-failure, as
would be possible in the ordinary case. Indeed, the possibilistic normal program
that simulates program P from Example 2 would have the rules

0.7: a ← not b 0.7: b ← not a.

This program has an infinite set of possibilistic answer sets, with certainty de-
grees ranging from 0.3 to 0.7 for a and 1−N(a) for b. When trying to simulate
the rule from Example 2 we clearly do not want a possibilistic answer set such as{

a0 .4 , b0 .6
}

as this does not correspond with our intuition. This again highlights
the importance of satisfactory semantics for possibilistic disjunctive ASP.

As before, when we impose the additional constraint ∀a ∈ BP ·N(a) ∈ {0, 1}
we retrieve the ordinary semantics for disjunctive ASP.

Proposition 2. Let P ′ be a disjunctive program, let P be a possibilistic dis-
junctive program such that P = {(r′, 1) | r′ ∈ P ′}. Let V : BP → [0, 1] be a
valuation. If V is a possibilistic answer set of P and ∀a ∈ BP · V (a) ∈ 0, 1, then
M = {a | V (a) = 1, a ∈ BP } is an answer set of the disjunctive program P ′.

Example 4. Consider the possibilistic disjunctive program P with the rules

1: a; b ← 1: a ← b.

which induces the constraints

max {N(a), N(b)} ≥ N(>) = 1 N(a) ≥ N(b).

Intuitively, the first constraint induces a choice. To satisfy the constraint, we
need to take either N(a) = 1 or N(b) = 1. Since N(a) = 1 = 1 − Π(¬a) tells
us that Π(¬a) = 0 = max {π(I) | I |= ¬a}, we have for every I with a /∈ I
that π(I) = 0 (and obviously when N(b) = 1 then π(I) = 0 whenever b /∈ I).
Depending on our choice of whether we take N(a) = 1 or N(b) = 1 (and since
N(a) = N(b) whenever N(b) = 1 due to the last constraint), we obtain two
possibility distributions π1 and π2 defined by:

π1({a, b}) = 1 π1({b}) = 0 π1({a}) = 1 π1({}) = 0

and

π2({a, b}) = 1 π2({b}) = 0 π2({a}) = 0 π2({}) = 0.

It is clear that π2 cannot be least specific since π1 > π2. We then have that
Ss
P only contains a single element, namely π1. With N the necessity measure

induced by π1 we obtain N(a) = 1 and N(b) = 0. The unique answer set of
P is thus

{
a1
}

, which indeed corresponds with the answer set of the ordinary
disjunctive program P ′ = {a; b←, a← b}.

4 Weak Possibilistic Semantics

The semantics we discussed thus far have a clear non-deterministic flavor: if
the antecedent is known, a rule declares that we should choose one or more
consequents to accept (and at the same time choose as few as possible). Under
this non-deterministic view the rule ‘a; b←’ means that a is believed to be true
or b is believed to be true. However, there are cases in which we do not want to
or cannot make a commitment. In other words, we want a rule ‘a∨b←’ to mean
that a or b is true, without clarifying whether it is a, b or both that are true.
In this sense we regard answer sets more as epistemic states than as possible
solutions to a problem.

In this section we first define an alternative semantics for disjunctive ASP
(different from the one in Section 2.1) and then extend it to possibilistic ASP.
Before we give an example of the semantics, we first note that when we use weak
disjunction it matters whether we model a sentence like “when it is raining or
snowing, you will get wet” as either wet ← rain ∨ snow or as the set of rules
{wet← rain,wet← snow}. Indeed, the latter implies that we can only derive
‘wet ’ after we have made the choice between ‘rain’ or ‘snow ’. To accommodate
for this we need to slightly alter the syntax of ASP.

Definition 3. A clause e is a disjunction of one or more atoms. A clausal
rule is an expression of the form e0 ← e1, ..., em, not em+1, ..., not en with ei
a clause for every 0 ≤ i ≤ n. The clause e0 is called the head of the rule and
e1, ..., em, not em+1, ..., not en the body of the rule. A clausal program is a finite
set of clausal rules. A positive clausal program is a finite set of positive clausal
rules which are expressions of the form e0 ← e1, ..., em. The Herbrand base BP
of a clausal program P is redefined as being the set of clauses appearing in P .

It is easy to see that disjunctive programs are a special case of clausal pro-
grams. We can now take a look at an example.

Example 5. We live in Ohio and we want to book a holiday trip. Either we go to
Venice, Rome or Florida (USA). After we have selected our destination, we can
book our trip. Also, as soon as we know that we go to either Venice or Rome we
need to arrange our visa so that we have it well before our departure date. We
have program P with the rules:

venice ∨ rome ∨ florida ←
book transportation ← venice

book transportation ← rome

book transportation ← florida

arrange visa ← venice ∨ rome

Definition 4. For a positive clausal program P we define the immediate conse-
quence operator Tw

P w.r.t. a set of clauses E as:

Tw
P (E) = {e0 | e0 ← e1, ..., em ∈ P ∧ ∀i ∈ {1, ...,m} · ∃e ∈ E · e ⊆ ei}

where we identify a clause with its set of atoms. We use P ?
w to denote the fixpoint

which is obtained by repeatedly applying Tw
P starting from the empty interpreta-

tion, i.e. this is the least fixpoint of Tw
P w.r.t. set inclusion. An interpretation E

is called an answer set of a positive clausal program P iff it is a minimal set of
clauses for which E |= P ?

w.

Proposition 3. The operator Tw
P is monotonic.

Note that this definition of the immediate consequence operator is a gen-
eralization of the immediate consequence operator for a definite program from
Section 2.1. Indeed, for a positive clausal program where all clauses contain only
a single atom, i.e. a definite program, we have that P ? = P ?

w. Also note that a
positive clausal program always has a unique answer set.

Example 6. We again consider Example 5. It is easy to see that the unique an-
swer set of program P is {venice ∨ rome ∨ florida}. Indeed, without any further
information we cannot derive anything but the disjunction itself.

Proposition 4. Let P be a positive clausal program. We can compute the unique
answer set of P in polynomial time.

Thus we find that weak disjunction has a lower complexity than strong dis-
junction (which is in NP when we only have rules without negation-as-failure
and otherwise in ΣP

2 [1]). This is clearly due to the fact that there is no non-
determinism and that the unique answer set can be found using an iterative
procedure. This does, however, imply that we can reason with certain forms of
disjunction in an intuitive way without requiring additional complexity. This is
an advantage of weak disjunction since many situations that involve disjunc-
tion and have uncertainty tend to lead to an epistemic view, for which weak
disjunction offers a lower complexity than strong disjunction.

To define the concept of an answer set of an arbitrary (not necessarily posi-
tive) clausal program we also need to redefine the reduct for clausal programs.
As in the ordinary case, we want that ‘not e’ is removed whenever the clause
‘e’ is satisfied, i.e. ‘not e’ is true when there does not exist an e′ ∈ E such that
e′ ⊆ e. In other words, the guess E reflects what we think that we are capable
of deriving from the program and we need to verify that this is indeed the case.

Definition 5. Given a clausal program P and a set of clauses E, the reduct PE

of P w.r.t. E is defined as

PE ={e0 ← e1, ..., em | ∀i ∈ {m+ 1, ..., n} · ∀e ∈ E · e 6⊆ ei
∧ (e0 ← e1, ..., em, not em+1, ..., not en) ∈ P}.

We say that E is an answer set of the clausal program P iff (PE)
?

w = E, i.e. if
E is the answer set of the reduct PE .

Example 7. Consider the following clausal program P :

a ∨ b← c← d← not (a ∨ b ∨ d) e← not c.

The reduct PE with E = {a ∨ b, c, e} is then:

a ∨ b← c←

since {a, b} ⊆ {a, b, d} and {c} ⊆ {c}. The answer set of the reduct PE is given
by (PE)

?

w = {a ∨ b, c}, hence E is not an answer set of P since (PE)
?

w 6= E.

We now extend the semantics to the case of possibilistic clausal programs
which are finite sets of possibilistic clausal rules p = (r, λ) with r a clausal rule.

Definition 6. Let P be a possibilistic clausal program. Let V : BP → [0, 1] be
a valuation. For every p ∈ P where we have that p = (r, λ) and r = (e0 ←
e1, ..., em, not em+1, ..., not en) the constraint γwV induced by r under the weak
possibilistic semantics is given by

N(e0) ≥ min {N(e1), ..., N(em), 1− V (em+1), ..., 1− V (en), λ} . (3)

Cw
(P,V) = {γwV (r) | r ∈ P} is the set of constraints imposed by program P and

V . A possibility distribution that satisfies the constraints in Cw
(P,V) is called a

possibilistic model of Cw
(P,V). We write Sw

(P,g) to denote the set of all least specific
possibilistic models of Cw

(P,V). V is called a possibilistic answer set of P iff there

exists a π ∈ Ss
(P,V) such that ∀e ∈ BP · V (e) = N(e).

Example 8. Let us consider the program P from Example 2, yet this time using
the weak semantics for disjunction. We have the program Q with the single rule

0.7: a ∨ b ← .

The set of constraints Cw
Q is this time around given by {N(a ∨ b) ≥ 0.7}. The

unique possibilistic answer set of Q is given by
{

(a ∨ b)
0 .7
}

, which is also an

intuitively satisfactory result.

We now direct our attention to the discussion of how one should treat a
constraint, which are rules of the form ‘← ak+1, ..., am, not am+1, ..., not an’,
in a (disjunctive) possibilistic ASP program.3 If we look at the intuition that
underlies constraints in ordinary ASP, then it seems natural to treat a constraint
such as ‘← a, b’ as N(a ∧ b) = 0, i.e. it is not possible that both atoms are
true at the same time. The next definition extends Definition 6 by formalizing
possibilistic constraints.

Definition 7. Let P be a possibilistic clausal program. Let V : BP → [0, 1]
be a valuation. For every possibilistic constraint p with p ∈ P , p = (r, λ) and
r = (← e1, ..., em, not em+1, ..., not en) we define the associated constraint γwg
induced by r by

N(e1 ∧ ... ∧ em) ≤ 1−min {λ, 1− V (em+1), ..., 1− V (en)} . (4)

Example 9. If we once again consider Example 5 we can extend the program
P with the rule ‘← florida’. The unique answer set of the program is then
{rome ∨ venice, arrange visa}. Indeed, with the additional knowledge that we
will not be traveling to Florida we can readily conclude that we should arrange
our visa. However, as desired, we still cannot conclude that we should book our
transportation, which we can only do as soon as we pick either Venice or Rome
as the actual destination.

It is important to note, however, that adding constraints to a positive clausal
program affects its complexity. Indeed, finding whether an atom belongs to an
answer set of a positive clausal program which, in addition, has possibilistic
constraints, is NP-complete.

Proposition 5. Let P be a possibilistic positive clausal program with possibilis-
tic constraints. Finding whether P has a possibilistic answer set is NP-complete.

Proof. (sketch) We can readily simulate 3SAT using positive clausal programs
and possibilistic constraints. Let φ = (l11 ∨ ... ∨ l13) ∧ . . . ∧ (ln1 ∨ ... ∨ ln3) be an
expression in conjunctive normal form where all clauses have 3 literals (i.e. either

3 Note that one way to treat such constraints in ordinary ASP is to simulate these
constraints as θ ← not θ, ak+1, ..., am, not am+1, ..., not an with θ a fresh atom.
However, similar as to Example 3 we would end up with many possibilistic answer
sets, i.e. the simulation does not succeed in eliminating undesired solutions.

an atom or the negation of an atom). Let P be a positive clausal program with
a rule p = (r, 1) and r = (l′i1 ∨ ... ∨ l′i3 ←) for every clause in φ and where l′ is
l when l = a is an atom and l′ is a fresh atom l when l = ¬a. For every literal
l in φ we also add the possibilistic constraint p = (r, 1) with r = (← l, l). It is
then easy to see that φ has a model if and only if P has an answer set. ut

The same complexity result hold for clausal programs without certainty weights.

5 Related Work

A large body of research has been devoted to combining uncertainty with ASP.
Different approaches are proposed in the literature depending on whether the
uncertainty is treated in a qualitative or quantitative way. When uncertainty
is treated in a quantitative way, probability theory seems to be the most often
used. For example, in [2] uncertain information is encoded as a probabilistic
atom which, intuitively, describes the probability that the atom will take on a
certain value in some random selection given some other known evidence.

The most popular approach for dealing with uncertainty in a qualitative way
is possibility theory. Combining possibility theory with logic programming was
an idea first proposed in [7]. The work in [13] was one of the first papers to explore
the idea of combining possibility theory with ASP. This work was later extended
to also cover the case of disjunctive ASP in [14]. It was, however, noted in [3]
that the semantics from [13, 14] offer unintuitive results in certain cases since
neither approach takes the certainty into account when dealing with negation-
as-failure. This problem was discussed in [3] and a new characterization of normal
ASP programs was established based on constraints on possibility distributions,
which can naturally be generalized to cover possibilistic normal ASP programs.

Alternative semantics for PASP exist in the form of pstable models [15, 4].
Yet these models are closer to the intuition of classical models than they are
to the intuition of stable models as used in ASP. Hence the intuition that is
captured by pstable models is different, where the focus is more on finding rea-
sonable results in programs faced with uncertainty and which are inconsistent.
There is a formal connection between the approach from [3] and the work on
residuated logic programs [5] under the Gödel semantics. Both approaches are
different in spirit, however, in the same way that possibilistic logic (which deals
with uncertainty or priority) is different from Gödel logic (which deals with
graded truth). The formal connection is due to the fact that necessity measures
are min-decomposable. The work in this paper clearly differs from the work on
residuated logic programs since necessity measure are not max-decomposable,
which highlights that possibilistic logic is not truth-functional in general [8].

6 Conclusion

In this paper we have introduced the semantics of possibilistic disjunctive ASP
in terms of constraints on possibility distributions. This provides us with natural

semantics for dealing with possibilistic disjunctive ASP pervaded by uncertainty.
We explored two different views of disjunction, the non-deterministic view as
found in ordinary disjunctive ASP as well as a more epistemic view of disjunction.
These two views are unearthed by the two distinct ways in which we can interpret
a disjunctive rule as a constraint on possibility distributions. Due to the epistemic
nature of possibilistic logic we find that the epistemic view of disjunction is
oftentimes the one that offers the most intuitive understanding of the problem.
Finally, we also examined the complexity of weak disjunction.

References

1. Baral, C.: Knowledge, Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press (2003)

2. Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer sets.
Theory and Practice of Logic Programming 9(1), 57–144 (2009)

3. Bauters, K., Schockaert, S., De Cock, M., Vermeir, D.: Possibilistic answer set
programming revisited. In: Proc. of UAI’10 (2010)

4. Confalonieri, R., Nieves, J.C., Vázquez-Salceda, J.: Pstable semantics for logic
programs with possibilistic ordered disjunction. In: Proc. of AI*IA’09. pp. 52–61
(2009)

5. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Proc.
of ECSQARU’01. pp. 748–759 (2001)

6. Dubois, D., Lang, J., Prade, H.: Towards possibilistic logic programming. In: Proc.
of ICLP’91. pp. 581–595 (1991)

7. Dubois, D., Lang, J., Prade, H.: Possibilistic logic. Handbook of Logic for Artificial
Intelligence and Logic Programming 3(1), 439–513 (1994)

8. Dubois, D., Prade, H.: Can we enforce full compositionality in uncertainty calculi?
In: Proc. of AAAI’94. pp. 149–154 (1994)

9. Dubois, D., Prade, H., Schockaert, S.: Rules and meta-rules in the framework of
possibility theory and possibilistic logic. Scientia Iranica (2011), to appear

10. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

11. Gelfond, M., Lifzchitz, V.: The stable model semantics for logic programming. In:
Proc. of ICLP’88. pp. 1081–1086 (1988)

12. Lifschitz, V., Schwarz, G.: Extended logic programs as autoepistemic theories. In:
Proc. of LPNMR’93. pp. 101–114 (1993)

13. Nicolas, P., Garcia, L., Stéphan, I., Lefèvre, C.: Possibilistic uncertainty handling
for answer set programming. Annals of Mathematics and Artificial Intelligence
47(1–2), 139–181 (2006)

14. Nieves, J.C., Osorio, M., Cortés, U.: Semantics for possibilistic disjunctive pro-
grams. In: Proc. of LPNMR’07. pp. 315–320 (2007)

15. Osorio, M., Pérez, J.A.N., Ramı́rez, J.R.A., Maćıas, V.B.: Logics with common
weak completions. Journal of Logic and Computation 16(6), 867–890 (2006)

16. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics 5(2), 285–309 (1955)

17. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems
pp. 3–28 (1978)

