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Abstract Fuzzy Answer Set programming (FASP) is an extension of answer set pro-

gramming (ASP), based on fuzzy logic. It allows to encode continuous optimization

problems in the same concise manner as ASP allows to model combinatorial problems.

As a result of its inherent continuity, rules in FASP may be satisfied or violated to

certain degrees. Rather than insisting that all rules are fully satisfied, we may only

require that they are satisfied partially, to the best extent possible. However, most ap-

proaches that feature partial rule satisfaction limit themselves to attaching predefined

weights to rules, which is not sufficiently flexible for most real-life applications. In this

paper, we develop an alternative, based on aggregator functions that specify which

(combination of) rules are most important to satisfy. We extend upon previous work

by allowing aggregator expressions to define partially ordered preferences, and by the

use of a fixpoint semantics.

Keywords Answer Set Programming · Fuzzy Logic

1 Introduction

Answer Set Programming (ASP) is a declarative programming language that is es-

pecially suitable for modeling combinatorial problems. In ASP, a programmer writes

rules of the form a ← α, meaning the atom a should hold whenever the conjunction

of the atoms in the set α holds. The semantics of a set of rules, called a program, are

determined by certain minimal models, named answer sets. For example, a program

Pgc solving the problem of graph coloring with two colors, viz. coloring the nodes of
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a graph in such a way that adjacent nodes have different colors, can be written as

follows:

gen1 : white(X) ← not black(X)

gen2 : black(X) ← not white(X)

sim1 : sim(X,Y ) ← white(X),white(Y )

sim2 : sim(X,Y ) ← black(X), black(Y )

constr : ⊥ ← edge(X,Y ), sim(X,Y )

This program is written in the generate-define-test style of ASP programs. Rules

gen1 and gen2 are the generate rules, which generate a certain graph coloring by stating

that in every possible solution a node is either white or black. Rules sim1 and sim2

are the defining rules, which define when two nodes have a similar color. Rule constr

is the test part that eliminates solutions in which two adjacent nodes have the same

color. To encode a specific problem instance, rules of the form facta,b : edge(a, b) ←,

denoting that there is an edge between node a and b, are added to the above program.

The resulting rules are then grounded, which means that a rule such as gen1 is replaced

by a set of rules of the form {gen1 a : white(a) ← not black(a) | a ∈ Nodes}, where

Nodes is the set of nodes of the problem instance. Note that the specific substitution

of the variables is denoted using a subscript. The grounded program is then handed off

to an answer set solver such as Smodels [71] or DLV [46], which generates the answer

sets of the program, if they exist.

For example, consider the graph depicted in Figure 1a. The answer set solver will

generate two answer sets, viz.A1 = {edge(a, b), edge(b, a), sim(a, a), sim(b, b), white(a),

black(b)} and A2 = {edge(a, b), edge(b, a), sim(a, a), sim(b, b), black(a), white(b)}, that

correspond to the solutions of the problem instance. Note that for overconstrained

problems with no solutions, it is possible that no answer sets exist. For example, for

the graph depicted in Figure 1b, no 2-coloring of the graph exists, which is reflected

by the non-existence of answer sets for the corresponding program.

In recent years ASP has been extended to handle problems with imperfect informa-

tion. Most notable are the probabilistic [12, 28, 50, 51, 61, 62, 74] and possibilistic [2, 5,

63,64] extensions to handle uncertainty, the fuzzy extensions [8,33,52–56,67,74,80–82]

which allow to encode the intensity to which the predicates are satisfied, and, more

generally, many-valued extensions [10,11,13–15,24,26,38–41,43–45,47,48,60,70,72,73,

75,76].

In this paper we focus on fuzzy answer set programming (FASP). This extension

allows to encode continuous optimization problems in a concise manner, similar to how

ASP is able to encode discrete optimization problems. In FASP, rules take on the form

a ← f(b1, . . . , bn; c1, . . . , cm), where a,bi (for 1 ≤ i ≤ n), and cj (for 1 ≤ j ≤ m) are

atoms and f is a [0, 1]n+m → [0, 1] function that is monotonically increasing in its

n first and monotonically decreasing in its m last arguments. Such a rule is satisfied

when the truth value in [0, 1] that is attached to f(b1, . . . , bn; c1, . . . , cm) is lower than

or equal to the truth value attached to a. Answer sets are certain fuzzy sets of atoms,

i.e. mappings from atoms to [0, 1]. For example, consider a continuous weighted graph

coloring problem, where colors are grey values, and nodes that are adjacent need to be

as different in color as possible. In FASP we can model this problem using the following

program Pfgc :
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Fig. 1: Example instances for the graph coloring problem.

gen1 : white(X) ← ∼l black(X)

gen2 : black(X) ← ∼l white(X)

sim1 : sim(X,Y ) ← (white(X)↔ white(Y ))

sim2 : sim(X,Y ) ← (black(X)↔ black(Y ))

constr : 0 ← (edge(X,Y ) ∧constr sim(X,Y ))

In this program we represent a grey value as a value from [0, 1]. Hence, white(X),

black(X) and sim(X,Y ) will be mapped to a value in [0, 1], but edge(X,Y ) is mapped

to a value in {0, 1}. Rules gen1 and gen2 are again generate rules, which generate a

certain grey scale coloring. The function ∼l is the fuzzy negator function ∼l x = 1−x,

i.e. a generalization of negation in classical logic. Rules sim1 and sim2 are the defining

part of the program, which defines the similarity between the colors of adjacent nodes.

The function ↔ is a similarity relation defined as x ↔ y = (x → y) ∧ (y → x), where

∧ is a t-norm (a generalization of classical conjunction) and → is an implicator (a

generalization of classical implication). The constr rule is a constraint which ensures

edge(X,Y ) ∧constr sim(X,Y ) ≤ 0. The function ∧constr is a t-norm. Furthermore, as

edge(X,Y ) will be attached a value in {0, 1}, this constraint ensures that any solution

satisfies sim(X,Y ) ≤ 0 if there is an edge between X and Y , i.e. the colors must

be as dissimilar as possible. Coloring the graph depicted in Figure 1a with x ↔ y =

min(x→ y, y → x) and→ an arbitrary (residual) implicator, leads to two fuzzy answer

sets, viz. M1 = {edge(a, b)1, edge(b, a)1, sim(a, a)1, sim(b, b)1, white(a)1, black(b)1}
and M2 = {edge(a, b)1, edge(b, a)1, sim(a, a)1, sim(b, b)1, black(a)1, white(b)1}, where

M = {ak11 , . . . , aknn }, with ki ∈ [0, 1], means M(ai) = ki for i ∈ 1 . . . n, and M(a) = 0

otherwise. Note that these correspond to the answer sets of Pgc .

Similar to the ASP program, the FASP program corresponding to the graph de-

picted in Figure 1b has no answer set. This is not ideal, however, as a coloring that

colors node a white, node b black, and node c grey may be better than having no solu-

tion at all. The inadmissibility is due to the constraint constr , which removes solutions

where nodes have a similarity which is strictly greater than 0. A possible alterna-

tive is to allow solutions in which the similarity degree of two adjacent nodes may be

greater than zero. Of course, solutions in which this degree is as small as possible are

still preferred. This idea can be implemented by allowing that the last rule, constr ,

should not always be completely satisfied. Many of the current approaches (for exam-

ple [10, 11, 24, 44, 45, 47, 48, 52, 53, 55, 56, 70]) that allow partial rule satisfaction do so

by coupling a weight to each rule, thus predefining to what degree each of the rules

should be satisfied.
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Attaching weights to rules is not an entirely satisfactory solution, however. First of

all, having weights puts an additional burden on the programmer, who, moreover, may

not always be aware of which weights are suitable. Second, we are not only interested in

finding any solution: if multiple solutions can be found, we are especially interested in

the solution modeling the rules best. Hence, based on the degree to which the rules of

the program are satisfied, it is of interest to define an ordering on the solutions, which

cannot be meaningfully done using weights. In [80] the proposed solution is to attach an

aggregator expression to a program. This aggregator expression maps each prospective

solution to a score, based on the satisfaction degrees of the rules. In this paper, we

further develop this approach. In particular, the main contribution of the paper is two-

fold. First, we decouple the order structure used by the aggregator expression from

the lattice underlying the truth values. This ensures we can define preference orderings

on answer sets which may not correspond to complete lattices. Second, our approach

is based on a fixpoint semantics, rather than unfounded sets. As we show below, the

approach from [80] does not correctly generalize to arbitrary truth lattices, an issue

which is solved by our proposed fixpoint semantics. In addition, the fixpoint semantics

are also more general, as it is not restricted to formulas that are built from t-norms.

Last, the fixpoint semantics (more clearly) reveal the link between aggregated FASP

and FASP approaches with weighted rules.

The structure of the paper is as follows. In Section 2 we recall the basic definitions

from fuzzy set theory and fuzzy answer set programming. In section 3 we develop a

fixpoint theory for fuzzy answer set programming with aggregators and investigate the

main properties of this theory. While many of the properties we find are unsurprising,

in the sense that they have a direct counterpart in fixpoint theory for (F)ASP, there

are some notable differences as well. For instance, while one of the central properties of

(F)ASP is that programs without negation have unique answer sets, it turns out that

such programs can have several non-trivial answer sets in our setting, depending on

the aggregator that is chosen. We apply AFASP on the reviewer assignment problem

in Section 4, followed by a detailed overview of the relationship between AFASP and

existing approaches in Section 5. Last, we conclude in Section 6.

A preliminary version of this paper appeared in [37].

2 Preliminaries

2.1 Fuzzy Logic Connectives

Recall that a preorder is a tuple P = (P,≤) such that (≤) ⊆ P × P is reflexive

and transitive. For a specific preorder P, we denote its ordering as ≤P . A partial

order is a preorder that is anti-symmetric. A lattice L = (L,≤) is a partially ordered

set in which each tuple (l, l′) ∈ L2 has an infimum and supremum, denoted as l u l′,
respectively lt l′. A lattice L = (L,≤) is called bounded if L has a least and greatest

element, denoted as 0L, respectively 1L. If the lattice that is used is clear from the

context we simply write 0 and 1. A complete lattice is a lattice L = (L,≤) in which

each non-empty subset of L has an infimum and supremum. A residuated lattice

L = (L,≤,∧,→) is a four-tuple where (L,≤) is a bounded lattice, (L,∧, 1L) is a

monoid (not necessarily commutative) and the two L2 → L operators ∧ and → satisfy

the residuation principle, i.e. for all x, y, z ∈ L we have x ∧ z ≤ y iff z ≤ x → y.

The tuple (∧,→) is called a residual pair.
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t-norm t-conorm
x ∧m y = min(x, y) x ∨m y = max(x, y)
x ∧l y = max(0, x+ y − 1) x ∨l y = min(x+ y, 1)
x ∧p y = x · y x ∨p y = x+ y − x · y

Table 1: Common fuzzy t-norms and t-conorms over ([0, 1],≤)

t-norm residual implicator induced negator

∧m x→m y =

{
y if x > y

1 otherwise
∼m x =

{
0 if x > 0

1 otherwise

∧l x→l y = min(1, 1− x+ y) ∼l x = 1− x

∧p x→p y =

{
y/x if x > y

1 otherwise
∼p x =∼m x

Table 2: Common residual pairs and induced negators over ([0, 1],≤)

In general, fuzzy logics are logics whose semantics are defined in terms of variables

that can take a truth value from some complete lattice L (called a truth lattice) instead

of only the values true and false. Different ways exist to extend the classical logic

connectives, leading to many logics with differing tautologies and axiomatizations [32,

66]. We briefly recall the most important concepts related to fuzzy logic connectives.

A negator is a decreasing L → L mapping ∼ satisfying ∼ 0 = 1 and ∼ 1 = 0. A

negator is called involutive iff for each x ∈ L we have ∼ (∼ x) = x. A triangular

norm (t-norm) is an increasing, commutative and associative L2 → L operator ∧
satisfying for each x ∈ L the equation 1∧x = x. Intuitively, this operator corresponds to

logical conjunction. A triangular co-norm (t-conorm) is an increasing, commutative

and associative L2 → L operator ∨ satisfying for each x ∈ L the equation 0 ∨ x = x.

Intuitively, this operator corresponds to logical disjunction. An implicator → is a

L2 → L operator that is decreasing in its first and increasing in its second argument,

satisfies 0→ 0 = 1 and for all x ∈ L satisfies 1→ x = x. Every t-norm ∧ whose partial

mappings are sup-morphisms (i.e. for which supi(xi ∧ y) = (supi xi)∧ y for any family

(xi)i∈I) induces a residual implicator defined by x → y = sup{λ ∈ L | x ∧ λ ≤ y}
(see [16]). Furthermore, any such t-norm ∧ and its residual implicator → satisfy the

residuation principle. For a given implicator→ its induced negator is the operator ∼
defined by ∼ x = x → 0. We summarized some common t-norms, t-conorms, residual

implicators, and induced negators over the well-known complete lattice ([0, 1],≤) in

Tables 1 and 2.

An L-fuzzy set A in a universe X is an X → L mapping. When L = ([0, 1],≤),

the mapping is simply called a fuzzy set. For x ∈ X we call A(x) the membership

degree of x in A. For convenience we denote with A = {ak11 , . . . , aknn } the fuzzy set A

satisfying A(ai) = ki for 1 ≤ i ≤ n and A(a) = 0 for a 6∈ {a1, . . . , an}. We use FL(X)

to denote the universe of all L-fuzzy sets in X. The support of a fuzzy set A is defined

by supp(A) = {x ∈ X | A(x) > 0}. Inclusion of fuzzy sets in the sense of Zadeh is

defined as A ⊆ B iff ∀x ∈ X ·A(x) ≤ B(x).
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2.2 Fuzzy Answer Set Programming

Definition 1 Consider a complete lattice L. A rule over L is an object of the form

r : a ← α where r is the label of the rule, ← corresponds to a residual implicator,

a is either an atom or a value from L and α is of the form f(b1, . . . , bn; c1, . . . , cm),

with bi and cj (for 1 ≤ i ≤ n and 1 ≤ j ≤ m) either atoms or values from L, and

where f is a (total and finite-time computable) Ln+m function that is increasing in

its first n arguments and decreasing in its m last arguments. The atom a is called the

head of the rule and α is called the body. For a given rule r we denote the head

with rh, the body with rb, and the t-norm that induces the residual implicator← with

∧r. Furthermore we define the Herbrand Base of a rule r, denoted Br, as the set of

atoms that occur in it. A rule with a value from L in its head is called a constraint,

whereas a rule with a value from L as its body is called a fact.

When there is no cause for confusion, we will often use the label of the rule to

denote the rule itself.

Definition 2 Consider a complete lattice L. A FASP program is a finite set of rules

over L. For a given program P the Herbrand Base is defined by BP =
⋃
r∈P Br.

Furthermore, we denote the lattice over which the rules in P are defined with LP .

An interpretation I of P is a BP → LP mapping. It is extended to values from LP
by I(l) = l for any l ∈ LP , to expressions f(b1, . . . , bn; c1, . . . , cm) (with bi and cj in

BP ∪ LP ) by

I(f(b1, . . . , bn; c1, . . . , cm)) = f(I(b1), . . . , I(bn); I(c1), . . . , I(cm))

and to rules r : a← α ∈ P by

I(r) = I(a← α) = I(a)← I(α)

We say an interpretation I satisfies the rule r ∈ P to degree k ∈ LP iff I(r) ≥ k.

Note that for any residual pair (∧,→) it holds that

I(a← α) ≥ k iff I(a) ≥ (k ∧ I(α)) (1)

due to the residuation principle. In the special case where the rule is completely satis-

fied, we thus obtain

I(a← α) = 1 iff I(a) ≥ I(α) (2)

Hence, residual implicators implement the intuitive requirement that, in order for a

rule to be satisfied, the higher the truth degree of its body is, the higher the truth

degree of its head should be.

3 Aggregated FASP

3.1 Models

Normally, given a FASP program P , one is interested in the interpretations I satisfying

for each r ∈ P that I(r) = 1, which are usually called models. In the present frame-

work, however, we recognize that rules cannot always be completely fulfilled. This has
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two main advantages: first, we can tackle problems lacking a “perfect” solution (i.e. a

solution satisfying all the rules to a degree of 1) and second, we can find satisfactory

solutions faster if we do not need a “perfect” solution.

The first situation can occur when problems are overconstrained. For example,

consider the graph coloring problem introduced in Section 1. For the graph depicted

in Figure 1b, we mentioned in Section 1 that no coloring exists that will satisfy the

constraint rule. Hence the problem is overconstrained and we must make some com-

promises, adhering stricter to rules that are considered more important. The second

situation can occur when the time it takes to compute a solution is more important

than finding a solution satisfying all rules.

The behavior of rules that are only partially satisfied depends crucially on the

choice of the residual implicator. For example, rule a ← α with k = I(a) < I(α)

is satisfied to degree k, k · I(α) or I(α) − (1 − k) depending on whether the Gödel

resp. Goguen or  Lukasiewicz implicator is used. Thus, depending on which implicator

is used, the degree to which the head should be satisfied, depends 1) not at all on I(α);

2) proportionally on I(α); or 3) linearly on I(α). Depending on the context, each of

these three situations may be required.

To create our framework, we first define rule interpretations, which are functions

that map rules to a truth value (i.e. a value from the considered truth lattice).

Definition 3 Given a FASP program P over the lattice L, a rule interpretation

of P is a P → L mapping. Any interpretation I of P induces a rule interpretation ρI
defined as ∀(r : a← α) ∈ P · (ρI(r) = I(a← α)).

Hence, the difference between the interpretation of a program and a rule interpreta-

tion is that the former maps propositional symbols to truth values, whereas the latter

maps the rules themselves to a truth value. We extend the lattice ordering used to

construct the rules of a program P to the rule interpretations in a pointwise manner,

i.e. for ρ1 and ρ2 rule interpretations, we define ρ1 ≤ ρ2 iff ∀r ∈ P · ρ1(r) ≤ ρ2(r). The

relative importance of rules is encoded in an aggregator function.

Definition 4 An aggregator over a program P and preorder P is an order-preserving

(P → LP )→ P function.

Hence, an aggregator maps rule interpretations to preference scores from some preorder.

As it is order-preserving, we guarantee that rule interpretations that map the rules to

a higher degree receive a higher score. The aggregator typically encodes which rules

are deemed more important by the designer, who may be more reluctant to accept

solutions that do poorly on some rules while not caring much about failing to fully

satisfy others.

Example 1 Consider the fuzzy graph coloring program Pfgc and Figure 1b introduced

in Section 1 and suppose edge (a, c) is more important than edge (b, c), which is more

important than edge (a, b). To represent this we can use an aggregator over the preorder

P = (R,≤):

A(ρ) = β(ρ)× (0.7 · ρ(constr(a,c)) + 0.7 · ρ(constr(c,a)) + 0.5 · ρ(constr(b,c)) +

0.5 · ρ(constr(c,b)) + 0.4 · ρ(constr(a,b)) + 0.4 · ρ(constr(b,a)))

where β is a function mapping rule interpretations to a value in R that is defined as

β(ρ) = ((
∏
{ρ((gen1)a), ρ((gen2)a) | a ∈ Nodes}) × (

∏
{ρ((sim1 )a,b), ρ((sim2)a,b) |
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a, b ∈ Nodes})) ≥ 1). Hence, if the generate rules or similarity rules are not satisfied

to degree 1, the score of an interpretation of the rules will always be 0; otherwise it is

the weighted sum of the constraint rules. Now consider two rule interpretations ρ1 and

ρ2 of this program such that β(ρ1) = β(ρ2) = 1 and with the following values for the

constraints:

constr (a,b) constr (b,a) constr (a,c) constr (c,a) constr (b,c) constr (c,b)
ρ1 0.3 0.3 0.7 0.7 0.7 0.7

ρ2 1 1 0.5 0.5 0.5 0.5

Computing A(ρ1) and A(ρ2) we obtain A(ρ1) = 1.92 and A(ρ2) = 2. Hence accord-

ing to this aggregator, a solution satisfying the rules to the degrees specified by rule

interpretation ρ2 is better than a solution satisfying the rules to the degrees specified

by rule interpretation ρ1.

Depending on the application, this might not be what we want. For example, the

fact that edge (a, c) is more important can also mean that ρ1 should be more preferred

than ρ2, since it satisfies this rule better. This can be represented using an aggregator

over the partial order P ′ = ([0, 1]3,≤lex ) where (a1, a2, a3) ≤lex (a′1, a
′
2, a
′
3) is defined

as:

(a1, a2, a3) ≤lex (a′1, a
′
2, a
′
3) ≡(∀i ∈ 1..3 · ai ≤ a′i)

∨ (∃i ∈ 1 . . . 3 · (ai <L a′i) ∧ (∀j < i · aj = a′j))

The aggregator is

A′(ρ) =

{
(0, 0, 0) if β(ρ) = 0

(ρ(constr (a,c)), ρ(constr (b,c)), ρ(constr(a,b))) otherwise
(3)

Note that since constr (x,y) = constr (y,x), for any x, y ∈ Nodes, we do not need to

take the constraints constr (b,a), constr (c,b) and constr (c,a) into account. Using A′, we

obtain A′(ρ1) = (0.7, 0.7, 0.3) and A′(ρ2) = (0.5, 0.5, 1), from which we obtain that

A′(ρ2) ≤lex A′(ρ1), i.e. ρ1 will indeed be strictly preferred over ρ2.

Many aggregation strategies have been proposed over the years (for an overview see

[18]). Formally, an aggregation operator A is defined as a function mapping vectors over

Ln, with L a complete lattice, to a preorder P. It can easily be seen that the aggregator

defined in Definition 4 above fits this definition as rule interpretations correspond to

vectors in Ln, with n the number of rules in a program. In the following, let u =

(u1, . . . , un) and v = (v1, . . . , vn) be two vectors in Ln. The main task of an aggregation

operator is to define an ordering over the vectors in Ln, which we call the induced

ordering of an aggregation operator A. Formally for an aggregation operator A it is

defined as

u ≤A v ≡ A(u) ≤P A(v)

In some cases the aggregator is just the identity function, and thus u ≤A v ≡ u ≤P v,

with ≤P an ordering over vectors in Ln. This is for example the case with the Pareto

aggregator and lexicographical aggregator. Formally the former maps a vector to

a preorder (Ln,≤par ) with ≤par defined as

u ≤par v ≡ ∀i ∈ 1 . . . n · ui ≤L vi
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The latter maps a vector to a preorder (Ln,≤lex ) defined as

u ≤lex v ≡ (u ≤par v) ∨ (∃i ∈ 1 . . . n · (ui <L vi) ∧ (∀j < i · uj = vj))

In other cases the aggregator maps vectors to a single value in (L,≤L) or (R,≤).

Well-known aggregation operators of this form are the minimum, maximum, median,

product and sum. Though these operators are useful, sometimes, we may consider

the satisfaction of some rules more important, e.g. expressed using priority levels for

each rule. To cope with such priority levels, weighted versions of the basic opera-

tors have been proposed, such as the weighted sum used in Example 1. For weighted

minimum and maximum we refer the reader to [22, 25, 83]. A particularly interesting

class of operators with weights are the Ordered Weighted Average (OWA) operators

(see e.g. [84,85]), which encompass a wide range of aggregation operators over vectors

in [0, 1]n, including the minimum, maximum and median. Formally, given a vector

u = (u1, . . . , un) ∈ [0, 1]n, a collection of weights (w1, . . . , wn) ∈ [0, 1]n such that∑
i wi = 1 and a permutation σ of u such that uσ(1) ≤ . . . ≤ uσ(n), an OWA operator

is defined by

OWA(u) =

n∑
j=1

wjxσ(j) (4)

By manipulating the weights of the OWA operator, particular aggregation operators

are obtained, with the minimum and the maximum as extreme cases, corresponding

to the weight vectors (1, 0, . . . , 0) and (0, . . . , 0, 1) respectively. Hence, the aggregated

value will always be in between the minimum and the maximum of their arguments.

Interestingly, the weights of an OWA operator are not associated to a source, but to

an ordered position. This makes it ideal for applications where certain outliers should

not be taken into account, such as for example in the judging of olympic sports, where

the most extreme scores do not count for the final score. Furthermore OWA’s can be

used to model the demand that most of the rules should be fulfilled, or at least a few

rules should be fulfilled.

Two other families of aggregation operators allow to model interaction between

values, viz. the discrete Sugeno integral [77] and the Choquet integral [9]. The differ-

ence between these aggregators is that the Sugeno integral is more suitable for ordinal

aggregation (where only the order of elements is important) while the Choquet inte-

gral is suitable for cardinal aggregation (where the distance between the numbers has

a meaning) [18]. Interestingly, the Sugeno integral generalizes the weighted minimum

and the weighted maximum, and the Choquet integral generalizes the weighted mean

and the OWA operator. The downside of these operators is the high number of weights

that need to be provided by the user. To aggregate n values, in principle, the user needs

to supply 2n weights, which clearly is rather cumbersome. However, in some cases one

can reduce the number of required weights, see for example [1, 31].

One can also use t-norms and t-conorms for aggregation. However, the aggre-

gated value of these operators is not in between the minimum and the maximum,

which is useful in certain applications. Two classes of operators that do have this

feature can be constructed based on t-norms and t-conorms, however, viz. the expo-

nential compensatory operators [79] and the convex-linear compensatory op-

erators [49,79]. Another related class of operators are uninorms [27], which generalize

t-norms and t-conorms. Contrary to the two aforementioned compensatory operators,

uninorms satisfy the full reinforcement property, i.e. the tendency that when we collect

a number of high scores, the aggregated value will be greater than the maximum of



10

these scores, and similarly when we collect a number of low scores, the aggregated

value will be lower than the minimum of these scores. In some cases this follows the

human aggregation process more closely.

Last, although the min and max operators are useful because they work in a strictly

ordinal manner, the ordering induced by these operators can sometimes be too coarse.

For example, using the minimum, the vectors (0.1, 0.5) and (0.1, 0.1) would be equally

preferred as min(0.1, 0.5) = min(0.1, 0.1). However, the first vector clearly has a better

score for the second value to be aggregated. To cope with this, refinements of the

induced ordering have been proposed, namely the discrimin and the leximin (see

e.g. [23]). Formally the discrimin aggregator maps a vector to the corresponding element

in the structure (Ln,≤disc) defined as

u ≤disc v ≡ min{ui | i ∈ D(u, v)} ≤ min{vi | i ∈ D(u, v)} (5)

where D(u, v) = {i | i ∈ N, ui 6= vi}. Intuitively, this ordering is based on the idea that

the values in which the two vectors agree are of no importance when comparing them.

Decisions are thus based on the least satisfied discriminating value. The idea of the

leximin aggregator is to represent vectors of satisfaction levels by ranked multi-sets of

satisfaction degrees. Formally it maps a vector in Ln to the corresponding element in

the structure (Ln,≤lexi ) defined as

u ≤lexi v ≡ ∃k ≤ n · ∀i < k · (uσ(i) = vσ(i)) ∧ (uσ(k) ≤ vσ(k)) (6)

where for a given vector u, σ is a permutation of u such that uσ(1) ≤ . . . ≤ uσ(n).

Hence, two vectors are indifferent if the corresponding reordered vectors are the same.

The leximin ordering is a refinement of both the minimum and the discrimin [19].

Similarly two refinements of the maximum, called discrimax and leximax, can be

defined.

An aggregated FASP program then consists of a FASP program and an aggre-

gator function over this program.

Definition 5 An aggregated FASP program (short: AFASP program) P is a

tuple 〈R,A〉, where R is a FASP program over a lattice L, called the rule base, and

A is an aggregator function over R, and an arbitrary preorder P. Given an AFASP

program P we denote its rule base as RP , its aggregator as AP , the lattice over which

RP is defined as LP and the preorder used for the aggregator as PP . AFASP programs

whose rule bodies are of the form f(b1, . . . , bn; ), i.e. only contain increasing functions,

are called positive AFASP programs. An AFASP program whose rule base contains

no constraints is called constraint-free; a positive constraint-free program is called

simple. The set BP = BRP
is called the Herbrand base of P . Furthermore, we define

the set Pa, for a ∈ BP , as Pa = {r | r ∈ RP ∧ (rh = a)}. Last, a rule interpretation

of an AFASP program is a rule interpretation of RP .

In the remainder of the paper the term program always refers to an AFASP

program. Furthermore, we will use the term interpretation of a program for the

interpretation of the rule base of the program.

Finally, we introduce two types of approximate models: ρ-rule models, which

link rule interpretations to interpretations of the aggregator expression, and k-models,

which are interpretations that induce rule interpretations whose score is at least k.
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Definition 6 Let P = 〈RP ,AP 〉 be an AFASP program. A ρ-rule model, with ρ a

rule interpretation of P , is an interpretation I of RP such that ρI ≥ ρ. A k-model,

k ∈ PP , of P is any interpretation I satisfying AP (ρI) ≥ k. Lastly, we define the

values min(P ) = AP (ρ⊥) and max(P ) = AP (ρ>), where ∀r ∈ RP · ρ⊥(r) = 0 and

∀r ∈ RP · ρ>(r) = 1. Intuitively these correspond to the minimal, resp. maximal value

the aggregator expression can attain.

Obviously, any ρ1-rule model M , with ρ1 some rule interpretation, is also a ρ2-rule

model when ρ2 ≤ ρ1. Similarly any k1-model M of a program P , with k1 ∈ PP , will

also be a k2-model when k2 ≤PP
k1.

Example 2 Consider program Pfgc and the graph depicted in Figure 1b from Section 1,

together with rule interpretations ρ1 and ρ2 from Example 1. Furthermore for this

example we define x ↔ y = (x →m y) ∧m (y →m x), ∧constr = ∧l and interpret the

rules using the  Lukasiewicz implication. To have a ρ1-model, we need an interpretation

I such that ρI ≥ ρ1. Now consider

I1 = {edge(a, b)1, edge(b, a)1, edge(a, c)1, edge(c, a)1, edge(b, c)1, edge(c, b)1,white(a)1,

white(b)0.7, black(b)0.3,white(c)0.3, black(c)0.7, sim(a, b)0.7, sim(b, a)0.7, sim(a, c)0.3,

sim(c, a)0.3, sim(b, c)0.3, sim(c, b)0.3, sim(a, a)1, sim(b, b)1, sim(c, c)1}

Clearly I1(r) = 1 for every rule not in {constr(x ,y) | x, y ∈ Nodes}, hence I1(r) ≥ ρ1(r).

For the constraint rules we obtain:

I1(constr (a,b)) = (1 ∧l 0.7)→l 0 = 0.3 = ρ1(constr (a,b))

Likewise for the other constraint rules we obtain that I1(constr (x,y)) = ρ1(constr (x,y))

for any x, y ∈ Nodes. Hence I1 is a ρ1-rule model of Pfgc . Analogously we can verify that

I1 is not a ρ2-rule model of Pfgc as I1(constr (a,b)) = 0.3 < ρ2(constr(b,c)). Consider

now

I2 = {edge(a, b)1, edge(b, a)1, edge(a, c)1, edge(c, a)1, edge(b, c)1, edge(c, b)1,white(a)1,

black(b)1,white(c)0.5, black(c)0.5, sim(a, c)0.5, sim(c, a)0.5, sim(b, c)0.5, sim(c, b)0.5,

sim(a, a)1, sim(b, b)1, sim(c, c)1}

Again one can easily verify that I2(r) = 1 for any rule not in {constr(x ,y) | x, y ∈
Nodes}. For the constraint rules we obtain:

I2(constr (a,b)) = (1 ∧l 0→l 0) = 1 ≥ ρ2(constr (a,b))

Likewise for every other constraint rule constr (x,y) with x, y ∈ Nodes we obtain

I2(constr (x,y)) ≥ ρ2(constr (x,y)). Hence I2 is a ρ2-rule model of Pfgc .

Now consider the aggregators A and A′ from Example 1. Using A we obtain that

I1 is an 1.92-model and I2 is a 2-model of Pfgc , hence I2 is preferred over I1. However,

withA′ we obtain that I1 is an (0.7, 0.7, 0.3)-model of Pfgc , whereas I2 is an (0.5, 0.5, 1)-

model of Pfgc . This means that I2 ≤lex I1, and thus with this aggregator interpretation

I1 is preferred over I2 since it satisfies the more important rules to a better degree.
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3.2 Answer Sets

Rules in ASP implement the intuition of (non-deterministic) forward chaining. In prac-

tice, we are therefore interested in those models that are in accordance with this intu-

ition. Effectively, there are two types of models we wish to exclude from our solution.

The first problem is the occurrence of atoms with a value above the one warranted

by the rules. Consider the rule r : a ← α. This rule will be fully satisfied by an

interpretation I (i.e. have a value of 1) whenever I(a) ≥ I(α). Examples are the two

1-models M and M ′, satisfying M(a) = 1, M(α) = 0.5 = M ′(α) and M ′(a) = 0.5.

However, the first model attaches a higher value to a than what the rule actually

supports (viz. 0.5) and is therefore unwanted. In other words, we do not want to

conclude anything more than what is needed to make the rule completely satisfied.

The second problem arises when atoms are “self-motivating”, i.e. their truth value

is supported by some rule, but that support is ultimately based on the value of the

atom itself. An illustration of this can be seen in the following two-rule program P

with AP (ρ) = inf{ρ(r) | r ∈ RP }:

r1 : a ← b

r2 : b ← a

Both the models M = {a1 , b1 } and M ′ = {a0 , b0 } are free from the first problem

we mentioned, but the support given to the value of b is derived from the support for

the value of a, which is itself derived from the value of b. Hence, only model M ′ is free

from knowledge not supported by the program.

The models that do not suffer from these defects will be called answer sets, and

correspond to particular minimal models, as we will show later on. They are defined

formally in the next sections. As the definition of answer sets for non-positive programs

is an extension of the one for positive programs, we introduce them separately.

3.2.1 Positive Programs

To define the answer sets of positive programs we need to introduce new concepts and

extend concepts from FASP to deal with the partial rule satisfaction. First we introduce

the support of a rule w.r.t. some value in the lattice over which the rule ranges, which

captures the idea of partial rule application. Using the support, we then extend the

immediate consequence operator which allows us to derive knowledge from a program

in a forward chaining manner, while still allowing for partial rule satisfaction. Then we

define answer sets of positive programs and introduce some motivating propositions.

Definition 7 ( [80]) Let r : a ← α be a rule defined over the lattice L and let I be

an interpretation of r. The support of this rule w.r.t. some c ∈ L is denoted as Is(r, c)

and is defined by

Is(r, c) = inf{y ∈ L | I (α)→ y ≥ c}

It turns out that a characterization of this operator is easy to find1.

Proposition 1 Let r : a← α be a rule defined over the lattice L, I an interpretation

of r, and c a value in L. Then Is(r, c) = I(α) ∧r c.

1 All proofs can be found in Appendix A.
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Example 3 Consider the rule r : a←m α with interpretations I and I ′ satisfying I(α) =

I ′(α) = 0.5, I(a) = 1 and I ′(a) = 0.5. The support of this rule w.r.t. ρ>(r) is given

by Is(r, ρ>(r)) = 0.5 ∧m 1 = 0.5. Likewise we can compute that I ′s(r, ρ>(r)) = 0.5 ∧m
1 = 0.5. Hence, I(a) > Is(r, ρ>(r)) and I ′(a) = Is(r, ρ>(r)). This means that the

interpretation of a by I ′ is consistent with the support provided by the rule, whereas

the interpretation by I is strictly greater. Hence, rule r cannot be used to justify the

value of a under interpretation I. Likewise we can see that Is(r, 0.9) < I(r), meaning

I attaches a value to a that is higher than what is needed for satisfying this rule to a

degree of 0.9.

For simple AFASP programs, answer set semantics are determined using a “forward

chaining” approach, captured in the definition of the immediate consequence op-

erator. This operator ensures that the support of a rule is propagated to its head,

which means that we derive exactly the maximal amount of knowledge contained in

the program.

Definition 8 Let R be a set of rules over a lattice L with ρ a corresponding rule

interpretation. The immediate consequence operator ΠR,ρ derived from R and ρ is a

mapping from (BR → L) to (BR → L) defined for I ∈ (BR → L) and a ∈ BR as:

ΠR,ρ(I)(a) = sup{Is(r , ρ(r)) | r ∈ R, (rh = a)}

For an AFASP program P , we usually write ΠP,ρ for ΠRP \CP ,ρ , where CP is the set

of constraint rules of P .

The following example illustrates the use of this operator.

Example 4 Let P be an AFASP program with the following rule base RP :

r1 : a←m 0.8

r2 : c←m 0.5

r3 : b←m a ∧m c

r4 : b←m 0.2

and aggregator function AP (ρ) = inf{ρ(r) | r ∈ RP }. Consider now the interpretation

∅, which attaches to each atom the value 0L. When using the rule interpretation ρ>
we can compute ΠP,ρ>(∅) as follows (note that we are using Proposition 1 in the

computation):

1. For a: ΠP,ρ>(∅)(a) = sup{∅s(r, ρ>(r)) | r ∈ Pa} = ∅s(r1, ρ>(r1)) = 0.8∧m 1 = 0.8

2. For b:ΠP,ρ>(∅)(b) = sup{∅s(r, ρ>(r)) | r ∈ Pb} = sup{∅s(r3, ρ>(r3)), ∅s(r4, ρ>(r4))}
= sup{∅((a ∧m c) ∧l 1), (0.2 ∧m 1)} = sup{0, 0.2} = 0.2

3. For c: ΠP,ρ>(∅)(c) = sup{∅s(r, ρ>(r)) | r ∈ Pc} = 0.5 ∧m 1 = 0.5

Hence ΠP,ρ>(∅) = {a0.8, b0.2, c0.5}. For rule interpretation ρ = {r0.51 , r0.32 , r13, r
1
4} the

computation of ΠP,ρ(∅) is as follows:

1. For a: ΠP,ρ(∅)(a) = ∅s(r1, ρ(r1)) = 0.8 ∧m 0.5 = 0.5

2. For b: ΠP,ρ(∅)(b) = sup{∅s(r3, ρ(r3)), ∅s(r4, ρ(r4)} = sup{∅((a∧m c)∧l 1), (0.2∧m
1)} = sup{0, 0.2} = 0.2

3. For c: ΠP,ρ(∅)(c) = ∅s(r2, ρ(r2)) = 0.5 ∧m 0.3 = 0.3



14

Hence ΠP,ρ(∅) = {a0.5, b0.2, c0.3}.

This operator is similar to the one proposed by Damásio et al. in [10]. The difference is

that we add the weights of the program as a parameter of the operator, where in [10]

the weights of the program are fixed in the program itself. Once we have chosen a

particular rule interpretation, however, the two operators are equivalent. Hence, as

in [10], our operator is monotonic for simple programs:

Proposition 2 ( [10]) Let P be a positive AFASP program and ρ a rule interpretation

of this program. The immediate consequence operator ΠP,ρ is monotonically increasing,

i.e. for every two interpretations I1 and I2 it holds that

I1 ≤ I2 ⇒ ΠP,ρ(I1) ≤ ΠP,ρ(I2)

The following proposition shows that our operator is also monotonic in the rule inter-

pretations, something that is also illustrated in Example 4.

Proposition 3 Let P be a positive AFASP program. The immediate consequence op-

erator is monotonically increasing in the rule interpretations, i.e. for any two rule

interpretations ρ1 and ρ2 and interpretation I of P it holds that

ρ1 ≤ ρ2 ⇒ ΠP,ρ1(I) ≤ ΠP,ρ2(I)

Due to a result from Tarski [78], which states that the fixpoints of any order preserving

function over a complete lattice must form a complete lattice, it follows that our con-

sequence operator has a least fixpoint Π∗P,ρ for any positive AFASP program P and

rule interpretation2 ρ. This least fixpoint can be computed using an “iterated fixpoint

procedure”, i.e. by applying ΠP,ρ repeatedly, starting from the minimal interpretation

∅, until a fixpoint is found.

Definition 9 Let P be a positive AFASP program, and let ρ be a rule interpretation

of P . Formally, we define the sequence S〈P, ρ〉 = 〈Ji | i an ordinal〉 by

Ji =


∅ if i = 0

ΠP,ρ(Ji−1) if i is a successor ordinal⋃
j<i(Jj) if i is a limit ordinal

(7)

where
⋃
i∈I(Ji) = supi∈I Ji.

The least fixpoint of ΠP,ρ is the first element Ji in the sequence S〈P, ρ〉 for which

ΠP,ρ(Ji) = Ji.

Example 5 Consider program P from Example 4. If we apply ΠP,ρ> to the interpre-

tation J1 = ΠP,ρ>(∅) = {a0.8, b0.2, c0.5} of the sequence S〈P, ρ>〉 we obtain J2:

1. For a: J2(a) = ΠP,ρ>(J1)(a) = sup{(J1)s(r, ρ>(r)) | r ∈ Pa)} = (J1)s(r1, ρ>(r1))

= 0.8 ∧m 1 = 0.8 = J1(a)

2. For b: J2(b) = ΠP,ρ>(J1)(b) = sup{(J1)s(r, ρ>(r)) | r ∈ Pb} = sup{(J1)s(r3),

(J1)s(r4)} = sup{J1((a ∧m c) ∧l 1), (0.2 ∧m 1)} = sup{0.5, 0.2} = 0.5

2 Note that this is only the case when the lattice is non-empty. We implicitly assume in this
paper that this is always the case.
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3. For c: J2(c) = ΠP,ρ>(J1)(c) = sup{(J2)s(r, ρ>(r)) | r ∈ Pc} = (J1)s(r2, ρ>(r2)) =

0.5 ∧m 1 = 0.5

Hence J2 = {a0.8, b0.5, c0.5}. One can readily verify that J3 = ΠP,ρ>(J2) = J2. Hence

J2 is a fixpoint of ΠP,ρ> and, as it is the first fixpoint of the sequence S〈P, ρ>〉 it is

the least fixpoint of ΠP,ρ> . In other words J2 = Π∗P,ρ> .

Example 6 Consider program P from Example 4 with the rule interpretation ρ =

{r0.51 , r0.32 , r13, r
1
4}. If we applyΠP,ρ to the interpretation J1 = ΠP,ρ(∅) = {a0.5, b0.2, c0.3}

of the sequence S〈P, ρ〉 we obtain J2:

1. For a: J2(a) = ΠP,ρ(J1)(a) = sup{(J1)s(r, ρ(r)) | r ∈ Pa} = (J1)s(r1, ρ(r1)) =

0.8 ∧m 0.5 = 0.5

2. For b: J2(b) = ΠP,ρ(J1)(b) = sup{(J1)s(r, ρ(r)) | r ∈ Pb} = sup{(J1)s(r3, ρ(r3)),

(J1)s(r4, ρ(r4))} = sup{J1((a ∧m c) ∧l 1), (0.2 ∧m 1)} = sup{0.3, 0.2} = 0.3

3. For c: J2(c) = ΠP,ρ(J1)(c) = sup{(J1)s(r, ρ(r)) | r ∈ Pc} = (J1)s(r2, ρ(r2)) =

0.5 ∧m 0.3 = 0.3

Again one can readily verify that ΠP,ρ(J2) = J2 and hence J2 is the least fixpoint of

ΠP,ρ , i.e. J2 = Π∗P,ρ . Note that ρ ≤ ρ> and Π∗P,ρ ≤ Π∗P,ρ> , i.e. rule interpretations

that put stricter requirements on the satisfaction of rules will lead to greater fixpoints.

Note that this least fixpoint may not necessarily be found in a finite number of steps,

as illustrated in the following example (due to [73]).

Example 7 Consider the program Inf , with RInf :

r : a ← δ(a)

Where δ(x) = x + (1 − x)/2. Obviously, δ is increasing and, moreover, ∀x ∈ [0, 1] ·
0 < δ(x) ≤ 1. The first steps of the computation of the least fixpoint of ΠInf ,ρ> are

shown below:

J0 = {a0 }
J1 = ΠP,ρ(J0) = {a0 .5 }

J2 = ΠP,ρ(J1) = {a0 .75 }

J3 = ΠP,ρ(J2) = {a0 .875 }

J4 = ΠP,ρ(J3) = {a0 .9375 }

J5 = ΠP,ρ(J4) = {a0 .96875 }

J6 = ΠP,ρ(J5) = {a0 .984375 }
... = ...

Clearly, ∀i ∈ N · Ji < {a1 }, but Jω =
⋃
i∈N Ji = {a1 }, which is the least fixpoint

Π∗P,ρ> .

The following proposition shows us that smaller rule interpretations yield smaller (least)

fixpoints. Hence if we tighten the lower bounds imposed on the rules of a program P ,

the resulting knowledge that we can derive from P using forward chaining increases.

This corresponds to our intuition, as in general deriveable knowledge monotonically

increases with tighter constraints, e.g. from inconsistent constraints one is able to

derive anything.
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Proposition 4 Let ρ1 ≤ ρ2 be rule interpretations of a positive AFASP program P .

Then Π∗P,ρ1 ≤ Π
∗
P,ρ2 .

Consider program P from Example 4 and its interpretation J2 from Example 6. Note

that for J2 we obtain that J2(r1) = 0.5←m 0.8 = 0.5, that J2(r2) = 0.3←m 0.5 = 0.3,

that J2(r3) = 0.3 ←m (0.5 ∧m 0.3) = 1, and that J2(r4) = 0.3 ←m 0.2 = 1, and

thus, according to Definition 6, J2 is a ρ-rule model with ρ defined as in Example 6,

i.e. ρ = {r0.51 , r0.32 , r13, r
1
4}. It turns out that this is a general property, i.e. that fixpoints

of the immediate consequence operator are ρ-rule models. Note that this property holds

for all constraint-free programs and thus in particular also for non-positive programs.

Proposition 5 Let P be a constraint-free AFASP program, ρ a rule interpretation of

P and M a fixpoint of ΠP,ρ. Then M is a ρ-rule model of P .

The converse is not true in general, as one can see from the following example.

Example 8 Consider the following simple AFASP program:

r : a← 0.5

with rule interpretation ρ> and interpretation I = {a1 }. As I(r) = 1 = ρ>(r), I is

a ρ>-rule model of P . But ΠP,ρ>(I)(a) = 0.5 ∧m 1 = 0.5 < I(a) and thus I is not a

fixpoint of ΠP,ρ> .

However, the converse of Proposition 5 turns out to hold for minimal (w.r.t. Zadeh

inclusion) ρ-rule models and simple programs.

Proposition 6 Let P be a simple AFASP program, ρ a rule interpretation of P and

M a minimal ρ-rule model of P . Then M is a fixpoint of ΠP,ρ.

Finally, we define k-answer sets of a program P as those least fixpoints of the conse-

quence operator that are k-models of P .

Definition 10 Let P be a positive AFASP program. An interpretation M is a k-

answer set (k ∈ PP ) of P iff M = Π∗P,ρM and AP (ρM ) ≥ k.

Example 9 Consider program P from Example 4 and the least fixpoints Π∗P,ρ> and

Π∗P,ρ (with ρ as in Example 6) computed in Example 5 and Example 6 respectively.

For convenience we refer to Π∗P,ρ> as A1 and to Π∗P,ρ as A2. Then A1 is a 1-answer

set of P as AP (ρA1
) = inf{r1, r2, r3, r4}(ρA1

) = 1 and A2 is an 0.3-answer set as

AP (ρA2
) = inf{r1, r2, r3, r4}(ρA2

) = 0.3. Note that A1 is also an 0.3-answer set, since

according to Definition 6 it is an 0.3-model, i.e. ρA1
(AP ) ≥ 0.3.

The idea behind this definition is that answer sets represent the knowledge inferrable

from a program P without resorting to external knowledge, i.e. knowledge not contained

in the program. This is reflected in the definition since the least fixpoint of ΠP,ρI
corresponds to the result of applying forward chaining on the minimal interpretation.

Furthermore, the knowledge expressed by an answer set is also maximal as it is a

fixpoint of the immediate consequence operator. Hence using forward chaining on this

model will not yield new knowledge.

The k-prefix allows to distinguish between approximate answer sets, i.e. answer

sets that do not fulfill the rules of the program completely. This allows us to handle
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conflicting information, or to find approximate solutions to problems encoded as fuzzy

answer set programs, when the computation of perfect solutions is too costly.

Note that answer sets for positive programs, contrary to the classical case and

non-aggregated FASP approaches, are not necessarily unique. This is illustrated in the

following example.

Example 10 Consider a program P with the following rules:

r1 : a←m 1

r2 : b←m 1

and aggregator function AP (ρ) = inf{ρ(r) | r ∈ RP }. Consider now two interpre-

tations of P , viz. I1 = {a0.5, b1} and I2 = {a1, b0.5}. It is easy to see that both of

them are least fixpoints of the immediate consequence operator with their induced rule

interpretations. As ρI1(r1) = 0.5 = ρI2(r2) and ρI1(r2) = 1 = ρI2(r1), both of them

are 0.5-answer sets.

However, since there is only one rule interpretation satisfying all the rules to degree

1, the optimal answer set will always be unique. There is a strong connection between

minimal ρ-rule models and the answer sets we define here, as illustrated by the following

proposition.

Proposition 7 Let P be a simple AFASP program and ρ a rule interpretation of P .

Then Π∗P,ρ is the unique minimal ρ-rule model of P .

From this proposition we can show that our answer sets correspond to minimal rule

models.

Corollary 1 Let P be a simple AFASP program. Then A is a AP (ρA)-answer set of

P iff A is the unique minimal ρA-rule model of P .

One may wonder whether every rule interpretation ρ for a simple AFASP program P

can be used to generate an answer set M = Π∗P,ρ such that ρM = ρ. The answer is

negative, as one can see from the following example:

Example 11 Consider the program P with aggregator AP (ρ) = inf{ρ(r) | r ∈ RP }
and the following rule base RP :

r1 : a←m 0.2

r2 : a←m (a > 0)

where (x > 0) = 0 if x ≤ 0 and (x > 0) = 1 otherwise. Computing Π∗P,ρ for ρ =

{r0.21 , r12} yields Π∗P,ρ = {a1} = M , which induces ρM = {r11, r12} 6= ρ. One can easily

verify that M = Π∗P,ρM and AP (ρM ) ≥ 1, thus M is an 1-answer set of P .

As one can see, the least fixpoint of ΠP,ρ from Example 11 turned out to be a 1-

answer set of P , where 1 > AP (ρ), since AP (ρ) = 0.2. The following propositions

show that in general the least fixpoint of ΠP,ρ for some program P and an arbitrary

rule interpretation ρ of this program will always be a k-answer set, for k ≥ AP (ρ). This

means that to obtain a k-answer set of a positive program P for an arbitrary k ∈ PP ,

we only need to compute Π∗P,ρ for some rule interpretation ρ satisfying AP (ρ) ≥ k.
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Proposition 8 Let P be a simple AFASP program, ρ a rule interpretation of P , and

M = Π∗P,ρ. Then Π∗P,ρM = M .

Proposition 9 Let P be a simple AFASP program and ρ a rule interpretation of P .

Then M = Π∗P,ρ is a AP (ρ)-answer set.

We obtain two immediate corollaries, the first of which shows that a model of a simple

program is a k-answer set iff it is produced by some ρ-rule interpretation with AP (ρ) ≥
k.

Corollary 2 M is a k-answer set of a simple AFASP program P iff there is some rule

interpretation ρ for which AP (ρ) ≥ k, such that M = Π∗P,ρ.

The following corollary shows that it is easy to obtain a suitable rule interpretation for

simple AFASP programs.

Corollary 3 Every simple AFASP program P has a max(P )-answer set, with max(P )

as defined in Definition 6.

Hence, when constructing a k-answer set of a simple program P , with k ∈ PP and

k ≤ max(P ), we can simply use ρ> and compute Π∗P,ρ> . As any k1-answer set of P is a

k2-answer set of P for k1 ≥ k2, Π∗P,ρ> will be a k-answer set for any k ≤ max(P ). Hence

we have arrived at a practical procedure for finding answer sets of simple programs.

Example 12 Consider an AFASP program P with rule base RP :

r1 : a←m 0.8

r2 : b←m 0.4

r3 : c← a ∧m b

The aggregator is AP (ρ) = ρ(r1) + ρ(r2) + ρ(r3), defined over the preorder (R,≤). As

AP (ρ>) = 3, we know that Π∗P,ρ> = {a0.8, b0.4, c0.4} is the 3-answer set of P .

3.2.2 General programs

Definition 10 of answer sets is only applicable to positive programs. The reason for this

limitation is that the definition depends crucially on the monotonicity of the fixpoint

operator. In this section, we extend the definition of answer sets to cover arbitrary

programs, similar to previous FASP proposals such as [53]. One might think that the

semantics of non-positive programs could again be given by minimal models, but it

turns out that minimal models are unsuitable. For example, consider the following

program:

r1 : 0←∼l a
r2 : a← a

with aggregator AP (ρ) = inf{ρ(r) | r ∈ RP }. The minimal 1-model is {a1}, but the

motivation for a depends on a itself and thus {a1} is not acceptable. The underlying

reason is that constraints should not be used as support of a atom, i.e. in (F)ASP,

stating that a is true is not at all the same as stating that solutions in which a is false

are not allowed.
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To solve this problem, we reduce the semantics of such a program P to that of

a simple reduct program PM , which is called the reduct w.r.t. a candidate answer

set M , similar to [53]. Note that this generalizes the well-known Gelfond-Lifschitz

transformation from [30].

Definition 11 Let I be an interpretation of an AFASP program P . The reduct of a

rule r : a← f(b1, . . . , bn; c1, . . . , cm), w.r.t. I, denoted as rI , is defined by

rI : a← f(b1, . . . , bn; I(c1), . . . , I(cm)) (8)

Similarly, the reduct w.r.t. I of an AFASP program P , denoted P I , is obtained from

P by replacing all rules r in RP by their reduct rI . We will also write RI , with R a

set of rules, to denote {r I | r ∈ R}.

Example 13 Consider a program P with rule base

r1 : a ← ∼l b
r2 : b ← 0.3

Then the reduct PA for the candidate answer set A = {a0 .7 , b0 .3 } contains the

following rule base:

rA1 : a ← 0.7

rA2 : b ← 0.3

Thus, P I is obtained by replacing each atom a in which the body function of a rule is

decreasing by its valuation I(a). Obviously, P I is a positive AFASP program. To see

that the above reduction generalizes the traditional Gelfond-Lifschitz (GL) transfor-

mation, it suffices to note that in traditional logic programming the only way to have a

negative occurrence of a proposition a in a rule body is via a negation-as-failure literal

not a. The GL transformation then essentially replaces such literals with their values

in the intended stable model interpretation, yielding a positive program.

Answer sets of these programs are then defined similarly as in the crisp case.

Definition 12 Let P be an AFASP program. An interpretation M is a k-answer set

of P (k ∈ PP ) iff M = Π∗PM ,ρM
and AP (ρM ) ≥ k.

Example 14 Consider program Pfgc from Section 1 together with interpretations I1
and I2 from Example 2. It turns out that both I1 and I2 are approximate answer sets

of this program. Indeed, for I1 the reduct P I1fgc becomes

(gen1)a : white(a)← 1

(gen1)b : white(b)← 0.7

(gen1)c : white(c)← 0.3

(gen2)a : black(a)← 0

(gen2)b : black(b)← 0.3

(gen2)c : black(c)← 0.7

(sim1)(a,a) : sim(a, a)← white(a)↔m white(a)

(sim1)(a,b) : sim(a, b)← white(a)↔m white(b)

(sim1)(a,c) : sim(a, c)← white(a)↔m white(c)
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(sim1)(b,a) : sim(b, a)← white(b)↔m white(a)

(sim1)(b,b) : sim(b, b)← white(b)↔m white(b)

(sim1)(b,c) : sim(b, c)← white(b)↔m white(c)

(sim1)(c,a) : sim(c, a)← white(c)↔m white(a)

(sim1)(c,b) : sim(c, b)← white(c)↔m white(b)

(sim1)(c,c) : sim(c, c)← white(c)↔m white(c)

(sim2)(a,a) : sim(a, a)← black(a)↔m black(a)

(sim2)(a,b) : sim(a, b)← black(a)↔m black(b)

(sim2)(a,c) : sim(a, c)← black(a)↔m black(c)

(sim2)(b,a) : sim(b, a)← black(b)↔m black(a)

(sim2)(b,b) : sim(b, b)← black(b)↔m black(b)

(sim2)(b,c) : sim(b, c)← black(b)↔m black(c)

(sim2)(c,a) : sim(c, a)← black(c)↔m black(a)

(sim2)(c,b) : sim(c, b)← black(c)↔m black(b)

(sim2)(c,c) : sim(c, c)← black(c)↔m black(c)

constr(a,a) : 0← edge(a, a) ∧m sim(a, a)

constr(a,b) : 0← edge(a, b) ∧m sim(a, b)

constr(a,c) : 0← edge(a, c) ∧m sim(a, c)

constr(b,a) : 0← edge(b, a) ∧m sim(b, a)

constr(b,b) : 0← edge(b, b) ∧m sim(b, b)

constr(b,c) : 0← edge(b, c) ∧m sim(b, c)

constr(c,a) : 0← edge(c, a) ∧m sim(c, a)

constr(c,b) : 0← edge(c, b) ∧m sim(c, b)

constr(c,c) : 0← edge(c, c) ∧m sim(c, c)

One can easily verify that Π∗
P

I1
fgc ,ρI1

= I1. Hence, combining this with the observation

that I1 is an 1.92-model of Pfgc using aggregatorA from Example 2, we obtain that I1 is

a 1.92-answer set of P . With aggregator A′ from Example 2 it would be a (0.7, 0.7, 0.3)-

answer set. Likewise we obtain that I2 = Π∗
P

I2
fgc ,ρI2

, which means I2 is a 2-answer set

with aggregator A and a (0.5, 0.5, 1)-answer set with aggregator A′.

Intuitively, answer sets need to be self-producing, i.e. by assuming the knowledge in

the answer set and starting from the empty interpretation of a program, we should

only be able to infer the same set. Any such set is guaranteed to contain a maximal

amount of knowledge as it is a fixpoint of the immediate consequence operator and

does not contain external knowledge due to the fixpoint computation starting from

the empty interpretation and assumptions that originate from this same set. Note that

Definition 12 supports programs with constraints, as these only influence the k-score

obtained in the aggregator, and not the fixpoint computation of the reduct program;
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therefore constraints can only restrict the results and cannot add atoms to solutions. A

first proposition ensures that answer sets are models of a program, as we would expect.

Proposition 10 Let M be a k-answer set of an AFASP program P . Then M is a

k-model of P .

A second proposition ensures that answer sets are minimal rule models of a program.

Proposition 11 Let M be a k-answer set of an AFASP program P . Then M is a

minimal ρM -model of P .

As is the case for classical answer set programming, the reverse of this proposition does

not hold:

Example 15 Consider the ρ>-rule model M = {a0, b1} of the following program P :

r : a←m∼l b

with aggregator AP (ρ) = inf{r | r ∈ P}. As any M ′ ⊂M must satisfy M ′(a) = 0 and

M ′(b) < 1, we obtain that M ′(r) = M ′(a)← (1−M ′(b)) = 0←m (1−M ′(b)). Since

0 ←m (1 −M ′(b)) ≥ 1 only if 1 −M ′(b) = 0, or M ′(b) = 1, we obtain M ′(r) < 1.

This means that M is a minimal ρ>-rule model of P . M is not a 1-answer set of P ,

however, as Π∗PM ,ρ>
= ∅ 6= M .

It turns out that for answer sets of AFASP programs without constraints, there is a

correspondence with minimal fixpoints of the non-monotonic function ΠP,ρM .

Proposition 12 Let P be a constraint-free AFASP program with a k-answer set M .

Then M is a minimal fixpoint of ΠP,ρM .

The converse of Proposition 12 does not hold in general, however, as witnessed by

the following example.

Example 16 Consider the program P with rule base over ([0, 1],≤):

r1 : a← a

r2 : p← (∼l p > 0) ∧m (∼l a > 0)

and the following aggregator over ([0, 1],≤): AP = r1 ∧m r2. It is easy to verify that

M = {a1 , p0 }, with ρM = ρ>, is the only, and thus minimal, fixpoint of ΠP,ρ> .

However, RPM is

rM1 : a← a

rM2 : p← (1 ∧m (0 > 0))

For PM it thus holds that Π∗PM ,ρ>
= {a0 , p0 } 6= M . From this it follows that the

minimal fixpoint of ΠP,ρ> is not an answer set of P .

Note that the above example corresponds to our intuition about answer sets: the

minimal interpretation M contains an atom a that is self-motivating and therefore

unwanted. Hence, not every minimal fixpoint is intuitively suitable as an answer set.

Finally, we would like to point out that constraints can be simulated using non-

monotonic functions, meaning the presented results are generally applicable. We show

this simulation in an upcoming paper as it is quite lengthy and does not fit the scope

of this paper.
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4 Illustrative Example

In this section we illustrate how the features of the AFASP framework are useful for

building real-life applications. The example we use is that of a “paper distribution”

problem, a problem that has attracted quite some attention from the research commu-

nity (see e.g. [29]). Specifically, we assume that there is a set of papers (named Papers)

about a certain set of topics (named Topics) that need to be assigned to reviewers (the

set of all reviewers is Reviewers) with a certain expertise on the aforementioned topics.

When assigning these papers, care must be taken to ensure that there are no conflicts

between reviewers and authors; furthermore, each paper should have enough reviewers

and no reviewer should be burdened with a high review workload. We assume that

the expertise of reviewers, the topics of papers and the affiliations of both authors and

reviewers are known and thus need not be calculated with an AFASP program, but

are given by a set of fact rules F . For example to denote that reviewer r1 is an expert

of degree 0.4 on topic t3 we add the fact expert(r1, t3) ← 0.4. The rule base RPpaper

of the program Ppaper solving this problem is defined over the lattice ([0, 1],≤) and

consists of the set F together with the following rules:

confl : conflict(R,P) ←m author(R,P ) ∨m (author(R′, P )

∧muniversity(R,U)

∧muniversity(R′, U ′) ∧m close(U,U ′))
appr : appropriate(R,P ) ←m (1− conflict(R,P))

∧m(about(P, T ) ∧l expert(R, T ))

inappr : inappropriate(R,P ) ←l (1− appropriate(R,P ))

qualr : overworked(R) ←l f1(
∑

p∈Papers
assign(R, p))

enough : enough(P ) ←m f2(
∑

r∈Reviewers
assign(r, P ))

qualp : 0 ←l 1− enough(P )

assgn : assign(R,P ) ←m ((1− inappropriate(R,P ))

∧m(1− overworked(R)) ≥ 1)

Where f1 is:

f1 (x) =


0 if x ≤ 3
x− 3

7
if x ∈ [4, 9]

1 if x ≥ 10

and f2 is:

f2 (x) =

{x

4
if x ≤ 3

1 otherwise

Note that, due to the process of grounding (see e.g. [4]), a rule as inappr actually

denotes the set of rules {inapprr,p : inappropriate(r, p)←l (1− appropriate(r, p)) |
r ∈ Reviewers, p ∈ Papers}.

The motivation for the rules is as follows. The confl rules determine when there

are potential conflicts with reviewer neutrality, i.e. conflict(R,P ) quantifies the degree

of conflict that diminishes the suitability of person R reviewing paper P . To keep the

discussion simple, we opted to only consider the degree to which universities are close

(by which we mean both geographical proximity as affiliations between universities) to
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determine these conflicts. The appr rules determine the degree to which an assignment

is appropriate, based on the knowledge of the reviewer (expert(R,T )), the topic of

the paper (about(P ,T )) and potential conflicts. Note that, due to the grounding pro-

cess, for a certain reviewer r and paper p there will be a set of rules determining the

value of appropriate(r, p), namely: {apprr,p,t : appropriate(r, p)←m (1−conflict(r , p))

∧m(about(p, t) ∧lexpert(r, t)) | t ∈ Topics}. Hence, since any answer set A is a fixpoint

of ΠP,ρA and by Definition 8 (definition of ΠP,ρ for some rule interpretation ρ), this

means that in any answer set A it must hold that

A(appropriate(r, p)) = sup{As(appr , ρA(appr)) | appr ∈ Pappropriate(r,p)}

We use the  Lukasiewicz t-norm for combining the reviewer knowledge and paper topic

to ensure that reviewers have enough knowledge about the paper content. The inappr

rules determine the inappropriateness of a given paper assignment. The qualr rules

determine when a reviewer is overworked, while the combination of the enough rules

and qualp constraints are used to score an answer set based on the number of reviews

papers have. Lastly, the assgn rules assign papers to reviewers based on the suitability

of the match between reviewer and paper and bearing in mind the amount of work of

reviewers.

Note that the inappr , qualr , and qualp rules are all evaluated with a  Lukasiewicz

implicator, while the other rules are evaluated with the Gödel implicator. The reason

for this is that the former rules are allowed to be partially fulfilled and we want their

fulfillment to change gradually, while the latter rules should be completely fulfilled,

hence any residual implicator can be used for their evaluation. We specifically write

the inappr rule to ensure that we can consider a lower inappropriateness score than

the (fixed) appropriateness score when this leads to better reviewer assignments. For

example, if a certain paper has a low number of reviewers, we can opt to also include

a reviewer that is less familiar with the topics of the paper in this way. Furthermore,

note that there is a strong interaction between the assgn, inappr , and qualr rules: if no

reviewer is assigned a paper, the assgn rule is triggered for that reviewer and a paper is

correspondingly assigned to him; this in turn leads to an increasing overworked score,

leading to either less further assignments or a violation of the overworked constraint if

this is needed to ensure that each paper has enough reviews for example.

The aggregator expression of Ppaper then is

APpaper
(ρ) = E1(ρ) · E2(ρ) · (E3(ρ) + 10 · E4(ρ) + 20 · E5(ρ)) (9)

where

E1(ρ) = min{ρ(f) | f ∈ F} ≥ 1

E2(ρ) = min{ρ(conflr,p) ∧m ρ(apprr,p) ∧m ρ(enoughp) ∧m ρ(assgnr,p)

| r ∈ Reviewers, p ∈ Papers} ≥ 1

E3(ρ) =
∑
{ρ(inapprr,p) | r ∈ Reviewers, p ∈ Papers}

E4(ρ) =
∑
{ρ(qualpp) | p ∈ Papers}

E5(ρ) =
∑
{ρ(qualrr) | r ∈ Reviewers}

The preorder for the aggregator is (R,≤). The aggregation expression ensures that

the confl , appr , enough, and assgn rules are completely fulfilled and allows partial
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fulfillment of the inappr , qualr , and qualp rules. The weights in the expression state

that solutions in which reviewers are not overworked are better than solutions in which

some reviewer is assigned a paper about a topic the reviewer is not familiar with or

where papers do not have a lot of reviews. This can be seen from the fact that the qualr

rules are satisfied to a lower degree when we underestimate overworked(R), i.e. when

we attach a lower value to overworked(R) than the one warranted, when this allows

us to find a solution where papers have an appropriate amount of reviewers. Thus the

qualr rules are less fulfilled when reviewers are actually more overworked, meaning that

giving the highest weight to these rules in the aggregator makes it more important to

estimate the overworked(R) values correctly.

As an example, suppose Papers = {p1, . . . , p10}, Authors = {a1, . . . , a10} such

that author(ai, pi) = 1 for any i ∈ 1 . . . 10 and Universities = {u1, . . . , u10} such that

university(ai, ui) = 1 for any i ∈ 1 . . . 10. Furthermore, suppose Reviewers = {r1, . . . ,
r5}, Universities ′ = {u′1, . . . , u′5} such that university(ri, u

′
i) = 1 for any i ∈ 1 . . . 5.

Tables 3, 4, and 5 (to be found at the end of the paper) then respectively give the

about, expert and close scores. Note that for any answer set of this program, the value

of these atoms must be as given in the aforementioned tables as these are added to the

program as fact rules that must be completely satisfied, i.e. things that must be true

in any answer set. In Tables 6 and 7 the corresponding conflict and appropriateness

scores are shown. Note that, as the confl and appr scores directly depend on the atoms

given as facts and since the rules defining these atoms always need to be completely

satisfied, these atoms must also have the same score in any answer set of Ppaper. The

difference between answer sets will be in the overworked, inappropriate, enough and

assign scores.

Now, consider an approximate answer set A1 with assignments as given in Table 8.

The corresponding inappropriate scores can be found in Table 9. One can check that

A1 indeed is an answer set by checking whether Π∗PA1 ,ρA1
= A1. For example, for

inappropriate(r1, p1) we can see that there is only one rule with inappropriate(r1, p1)

in its head, viz. inapprr1,p1 . Now the reduct of this rule is

inapprA1
r1,p1 : inappropriate(r1, p1)←l A1(1− appropriate(r1, p1))

which, by Table 7, is equivalent to

inapprA1
r1,p1 : inappropriate(r1, p1)←l 0.5 (10)

We can also compute ρA1
(inapprr1,p1) as

ρA1
(inapprr1,p1) = A1(inappropriate(r1, p1)←l 1− appropriate(r1, p1))

which, by Table 7 and Table 9, is equal to

ρA1
(inapprr1,p1) = 0←l 0.5 = 0.5 (11)

Now using (10) and (11) we know that

Π∗PA1 ,ρA1
(inappropriate(r1, p1)) = A1(0.5) ∧l ρA1

(inapprr1,p1)

= 0.5 ∧l 0.5

= 0

= A1(inappropriate(r1, p1))
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One can check that for all other atoms l ∈ BPpaper
we also obtain that Π∗PA1 ,ρA1

(l) =

A1(l) and thus that A1 is an answer set of Ppaper.

Now, from the inappropriate scores in Table 9, we for example already know that

ρA1
(inapprr1,p1) = 0.5 by (11). Likewise we can see from Table 7 and Table 9 that

A1(inapprr1,p4) = A1(inappropriate(r1, p4)←l (1−A1(appropriate(r1, p4)))

= 0.8←l 0.8 = 1

The values of inapprr,p for any r ∈ Reviewers and p ∈ Papers follow in the same

fashion and thus we can compute

E3(ρA1
) =

∑
{A1(inapprr,p) | r ∈ Reviewers, p ∈ Papers} = 385/10

As the enough rules should always be completely satisfied, we have that enough(p) for

a certain paper p always should be equal to f2(
∑
{assign(r, p) | r ∈ Reviewers}). Due

to each paper having three reviewers in A1 we then know that A1(enough(p)) for any

paper p will be equal to f2(3) = 3/4. This means that for any qualpp rule we have that

A1(qualpp) = 3/4. As there are 10 papers in total we can thus compute:

E4(ρA1
) =

∑
{A1(qualpp) | p ∈ Papers}

=
∑
{(3/4) | p ∈ Papers}

= 10 · (3/4)

= 15/2

Now, in this answer set we have that, even though reviewer r1 has 6 reviews, A1(

overworked(r)) = 0 for each assigned reviewer r; thus for some reviewers we under-

estimate their degree of being overworked to ensure that papers have enough reviews.

From the foregoing, we can compute

E5(ρA1
) =

∑
{A1(qualrr) | r ∈ Reviewers}

=
∑
{(f1(

∑
{A1(assign(r, p)) | p ∈ Papers}))→l 0 | r ∈ Reviewers}

=
∑
{1− (f1(

∑
{A1(assign(r, p)) | p ∈ Papers})) | r ∈ Reviewers}

= 19/7

Hence we obtain that

APpaper
(ρA1

) = E1(ρA1
) · E2(ρA1

) · (E3(ρA1
) + 10 · E4(ρA1

) + 20 · E5(ρA1
))

= 2349/14

≈ 167.8

There is room for improvement, however, as this answer set clearly contains a high

work burden for some reviewers, while creating a minimal workload for others. Due

to the nature of our aggregator expression, we can spread the papers among review-

ers, potentially giving papers to reviewers with a lower knowledge of the domain,

to obtain a better answer set. Answer set A2, for which the assignments are given

in Table 8, relieves the burden of reviewers r3 and r5 by assigning more reviews

to reviewer r4. Computing the value of the aggregator expression, we first obtain
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from the inappropriate scores in Table 10 that E3(ρA2
) =

∑
{A2(inapprr,p) | r ∈

Reviewers, p ∈ Papers} = 371/10; furthermore we can compute in a similar fash-

ion as for A1 that E4(ρA2
) =

∑
{A2(qualpp) | p ∈ Papers} = 15/2 as every paper

again has three reviewers assigned. Now, by calculating the assignments per reviewer

we obtain E5(ρA2
) =

∑
{A2(qualrr) | r ∈ Reviewers} = 20/7. The foregoing shows

APpaper
(ρA2

) = 11847/70 ≈ 169.2, hence answer set A2 is more suitable than A1, as

we expected.

The reader might wonder how the connectives and the input degrees in the reviewer

assignment program can be determined. For the connectives an interesting approach

is to first write a program that captures the overall solution and then use training

data and e.g. a hill-climbing algorithm to fine-tune this program. This is similar to the

techniques that are applied in rule-based systems for fuzzy control. To determine the

input degrees automatic methods can be used. For example, in the field of information

retrieval there are approaches that determine the expert degree of a person by means

of language models (see e.g. [3]). The inputs of the reviewer assigment program can

thus be seen as the outputs of such analyses.

5 Relationship to Existing Approaches

The combination of answer set programming and logic programming with uncertainty

theories has received a great deal of attention over the past years. Among others, there

have been extensions of logic programming using probabilistic reasoning [12,28,50,51,

61, 62, 74], possibilistic reasoning [2, 63, 64], fuzzy reasoning [8, 33, 52–56,67, 74, 80–82],

and more general many-valued or uncertainty reasoning [10, 11, 13–15, 24, 26, 38–41,

43–45, 47, 48, 60, 70, 72, 73, 75, 76]. Roughly, one can divide [73] these approaches in

two classes, viz. implication-based (IB) and annotation-based (AB) frameworks. In the

implication-based setting a rule is generally of the form

a
w← α

where a is an atom, α is a body expression, and w ∈ L, with L the lattice used for

truth values. Intuitively, such a rule denotes that in any model of the program the truth

degree of the implication α → a must be greater than or equal to the weight w. In

the annotation-based approaches one considers annotations, which are either constants

from the truth lattice L, variables ranging over this truth lattice, or functions over

elements of this truth lattice applied to annotations. A rule is then of the form

a : µ← b1 : µ1, . . . , bn : µn

where a, a1, . . . , an are atoms and µ, µ1, . . . , µn are annotations. Intuitively, an anno-

tated rule denotes that if the certainty of each bi, 1 ≤ i ≤ n, is at least µi, then the

certainty of a is at least µ. The links between these two approaches are well-studied in

e.g. [15,39,44,45] and we will therefore not repeat these results. In this section, we give

an overview of these related approaches and study the links between our framework

and related proposals.
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5.1 Fuzzy and Many-Valued Logic Programming Without Partial Rule Satisfaction

Many proposals for fuzzy and many-valued logic programming with rules that have to

be completely fulfilled have been published. In this category one finds most annotation-

based approaches, e.g. [8,38,39,67,73,76] and some implication-based approaches where

the weight of each rule is 1, e.g. [13–15, 41]. Some of these proposals only contain

monotonic functions in rules (e.g. the AB approach from [8,39] and the IB approaches

from [14, 15, 41]), while others feature negation (e.g. the AB approaches from [38, 67,

73, 76]) or even arbitrary decreasing functions (e.g. the IB approach from [13, 72]).

These proposals differ from ours as they do not incorporate the idea of partial rule

satisfaction.

We can readily embed the IB approaches in our framework by supplying these

programs with the infimum aggregator. When modelled like this, the 1-answer sets of

the embedding will correspond exactly to the answer sets of programs from the afore-

mentioned frameworks. Thanks to this embedding we also inherit the modelling power

that is already present in some of these proposals. For example, from the embeddings

shown in [12, 15], and using the fact that we can embed [13] in our approach, we in-

herit the capacity to model Generalized Annotated Logic Programs [39], Probabilistic

Deductive Databases [42], Possibilistic Logic Programming [21], Hybrid Probabilistic

Logic Programs [17]3 and Fuzzy Logic Programming [81].

The AB approach from [8] is interesting in that annotations are actually fuzzy sets,

which allows for an intuitive modelling language. Whether the semantics of this specific

framework can be truthfully embedded in our approach is not immediately clear, but as

the family of all fuzzy sets in a given universe forms a complete lattice, when equipped

with Zadeh intersection and union, the use of fuzzy sets, together with functions over

fuzzy sets is certainly possible in the AFASP language.

5.2 Weighted Rule Satisfaction Approaches

Some IB approaches to fuzzy and many-valued logic programming feature partial rule

fulfillment by adding “weights” to rules (e.g. [10,11,24,44,45,47,48,52,53,55–58,70]).

These weights are specified manually and they reflect the minimum degree of fulfillment

required for a rule. Formally, such a rule takes on the form of

a
w← α

where a is an atom, α is a body expression, ← is a residual implicator over [0, 1] and

w is a value of [0, 1]. We will use rh and rb to refer to the head, resp. the body of a

rule r as usual, and rw to refer to the weight w. In the case of [24, 52, 53, 55, 56, 70],

the bodies of rules are restricted to combinations of triangular norms, possibly with

negation-as-failure literals in [52,53,55–58], whereas in [10,11,44,45,47,48] the bodies

consist of monotonically increasing functions, where some approaches do not feature

non-monotonic negation [10, 11, 44, 45] and others feature negation under the well-

founded semantics [47,48]. Furthermore, [10] allows a combination of multiple lattices

to be used for rules. This last feature is obtained in the AFASP setting by using the

3 Note that the translation process in [12] is exponential in the size of the program, but, as
the authors point out, this is to be expected as reasoning in these programs in most cases is
exponential.
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cartesian product of all these lattices as the lattice for program rules and using the

corresponding projections to extend the operators used to this product lattice.

The semantics of a program consisting of weighted rules without negation-as-failure

is defined in two ways in the literature. We will take [53] and [10] as examples of

these two methods, but the following discussion equally applies to all the approaches

mentioned earlier, barring some minor syntactical issues. In the case of [53], an in-

terpretation M is called a model of a program P when for all r in P it holds that

M(rh) ≥ M(rb ∧r rw). Answer sets of these programs are then defined as minimal

models. In [10], answer sets are defined as the least fixpoints of an immediate conse-

quence operator, defined for a program P , interpretation I of P and atom l ∈ BP ,

as:

ΠP (I)(l) = sup{I (rb ∧r rw ) | r ∈ Pl}

It is known that these two semantics coincide, which can also be shown using the results

on AFASP, as demonstrated below.

Note that due to Proposition 1, it holds that ΠP = ΠP,ρw , where ρw(r) = rw.

Hence, for simple AFASP programs, the semantics of [10] can be obtained by taking

the least fixpoint w.r.t. the rule interpretation corresponding to the rule weights. Fur-

thermore, from Proposition 7, we know that the least fixpoint of ΠP,ρw corresponds

to the minimal ρw-rule model of P . An interpretation M is a ρw-rule model of P iff

for each rule r ∈ P it holds that M(rh ← rb) ≥ ρw(r) and hence, by the residuation

principle, that M(rh) ≥ M(rb) ∧r ρw(r). This means that ρw-rule models correspond

to models in the sense of [53]. Hence the semantics of [53] and [10] coincide and can

both be generated from a simple AFASP program.

Furthermore, due to the equivalence between ΠP and ΠP,ρw , we can use the ter-

mination conditions from [10] to determine structural conditions that ensure that the

computation of the least fixpoint of ΠP,ρ ends.

Note that, different to AFASP, programs with weight rules without negation-as-

failure only have a single answer set corresponding to the minimal model satisfying the

rules to the stated weights. This means that the weight of a rule should not simply be

seen as the minimal degree of satisfaction, but that the semantics of these programs

correspond to a cautious use of the rules and their weights.

At first, one might think that these semantics can easily be embedded in the AFASP

framework by moving the weights into the aggregator expression and using them as

lower bounds on the satisfaction of their corresponding rules. Formally, this means

that we define for a program P in the sense of [10, 53] and rule base {r1, . . . , rn}
with corresponding weights w1, . . . , wn, the program P ′ with rule base RP ′ = {ri :

rh ← rb | i ∈ 1 . . . n} and aggregator expression AP ′(ρ) = (ρ(r1) ≥ w1) ∧ . . . ∧
(ρ(rn) ≥ wn). The semantics of programs P and P ′ do not coincide, however, as

shown in the following example.

Example 17 Let P be a program in the sense of [10, 53] with rule base RP = {r :

a
0.5←m 1}. It is easy to see that the unique answer set of this program is {a.5 }. The

corresponding AFASP program P ′ with rule base RP ′ = {r : a ←m 1} and aggregator

expression AP ′(ρ) = ρ(r) ≥ 0.5, however, has multiple k-answer sets for varying

k ∈ [0, 1], such as the 1-answer set {a1 }. The original answer set of P is only an

0.5-answer set of P ′.

A proper embedding of these semantics in the AFASP framework can be obtained as

follows. Suppose P is a program with weighted rules, then the corresponding AFASP
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program Pweight is defined as

Pweight = {rh ← rb ∧r rw | r ∈ P}

The lattice to be used for evaluating the rules is then ([0, 1],≤), the aggregator lattice

is (B,≤). The aggregator expression is given as

APweight
(ρ) = ∀r ∈ Pweight · (ρ(r) = 1)

Example 18 Consider program P from Example 17. Using the proper embedding dis-

cussed above we obtain an AFASP program Pweight with rule base RPweight
= {r :

a ←m (1 ∧m 0.5)} and aggregator expression APweight
= (ρ(r) = 1). The 1-answer set

of Pweight is now {a0.5}, which corresponds to the answer set of P .

The following proposition shows that for simple AFASP programs, this is indeed a

truthful embedding of these semantics:

Proposition 13 Let P be a simple AFASP program in the sense of [10]. Then A is a

1-answer set of Pweight iff A = Π∗P .

For approaches featuring negation-as-failure under the answer set semantics in the

body of rules, we will again take [53] as a representative example. Although the ap-

proaches in [55, 56] are slightly different in that the reduct operation moves the value

of the negated literals in the weight of the rule instead of directly substituting it in the

rule body, the net result is the same. Negation-as-failure in this approach is denoted as

not∼ l, where l is an atom and ∼ a negator over [0, 1]. If P is a program with negation-

as-failure in the sense of [53], then an interpretation A is called an answer set of P if

A is the answer set of PA, where PA is a generalized Gelfond-Lifschitz transformation

replacing all negation-as-failure literals not∼ l by the value A(∼ l). It is easy to see

that this Gelfond-Lifschitz transformation is a special case of the reduct (Definition 11)

we introduced for AFASP programs. From this, it easily follows that the embedding

mentioned before still works in the presence of negation-as-failure. Hence we obtain

the following proposition.

Proposition 14 Let P be a program in the sense of [53]. Then A is a 1-answer set of

Pweight iff A is an answer set of P in the sense of [53].

Although these proposals feature partial rule satisfaction and are therefore better

equipped to model real-life phenomena than previous proposals, the use of weights in-

troduces the new problem of “weight-guessing”. The AFASP framework eliminates the

weight-guessing problem by using an aggregator expression, which encodes which com-

binations of partially satisfied rules are more desirable than others. In this light, one

could think of AFASP programs as programs with variables as rule-weights instead of

fixed weights, where the variables must be chosen according to the aggregator expres-

sion. In effect, due to Corollary 2 and the fact that rule interpretations are analogous

to weights on rules, this means that semantically, a single AFASP program corresponds

to a set of programs with weights. This shows that the aggregator expression has a

substantial modeling advantage over attaching arbitrary weights.

Interestingly, in [57,58], a measure is introduced that shows how the weights of the

rules of a program without stable models should be increased or decreased to obtain

a new program with stable models. This is related our approach, where rule weights
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are variable and can be changed to obtain approximate answer sets, if none exists.

Our approach differs in the fact that we do not have predefined weights on rules and

assume that the best solution is the solution satisfying all the rules best. Furthermore,

due to the aggregator, we can compare approximate answer sets in our framework with

a preference order that is chosen by the programmer.

5.3 Fuzzy Answer Set Programming

In [80], Fuzzy Answer Set Programming is introduced. Our presented approach

generalizes this framework by allowing a much richer vocabulary of expressions to use

in rules and by allowing more sophisticated aggregator expressions. Specifically, we

allow arbitrary monotonic functions in rule bodies, whereas [80] only allows t-norms

in bodies. Furthermore, we base our semantics on fixpoints, which more clearly shows

the link between other FASP approaches, and also fixes a problem with the semantics

of [80] when generalizing to arbitrary lattices as truth values, as demonstrated below.

Moreover, it is not clear how the semantics of [80] can be extended to deal with arbi-

trary monotonic functions in rule bodies, where this is straightforward in our fixpoint

approach.

Semantically, in [80], an answer set M has a degree k, which, as in the present

approach, reflects the value of an aggregator function that combines the degree of

satisfaction of the rules in the program. However, as opposed to the present approach,

this aggregator must have a value in the same lattice as the one used for the rules.

As shown throughout the examples in this paper, our more general aggregator can be

advantageous for modelling certain real-life problems. Furthermore, an answer set is

defined in [80] as a model that is free from unfounded sets. Intuitively, the concept of

unfounded set provides a direct formalization of “badly motivated” (as described in

Section 3.2) conclusions.

Formally, a set X of atoms is called unfounded w.r.t. an interpretation I of a

program P iff for all a ∈ X, every rule r : a← α ∈ P satisfies either

(i) X ∩ α 6= ∅, or

(ii) Is(a, ρI(r)) < I(a), or

(iii) I(rb) = 0

Intuitively, condition (i) above describes a circular motivation while (ii) asserts that

a is overvalued w.r.t. r. Condition (iii) is needed to ensure that the semantics are a

proper generalization of the classical semantics. Answer sets to a degree k are then

defined in [80] as k-models that are free from unfounded sets, i.e. a k-model M is a

k-answer set iff supp(M) ∩ X = ∅ for any unfounded set X. A nice feature is that

this single definition covers any program P , regardless of whether it is positive, or

has constraint rules. One may wonder whether the concept of unfounded set can be

generalized to AFASP programs. For example, a natural generalization would simply

replace the circularity definition X ∩ α 6= ∅ above by “some element of X occurs as

an argument in which the body expression α is increasing”. However, this approach

fails, as illustrated by the program P from Example 11 where it can easily be verified

that {a} would be unfounded w.r.t. the interpretation {a1} since r1: a←m 0.2 satisfies

(ii) above while r2: a←m (a > 0) satisfies (i). Note that this failure is only due to the

presence of (a > 0) in rule bodies, which are not allowed in the framework presented

in [80].
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In [35] it is shown that, when a total ordering is used in the lattice, the semantics

of [80] correspond to the semantics obtained through the fixpoint definition used in

this paper.

When the ordering used is not total, however, this equivalence is no longer valid. For

example, consider the lattice (B×B,≤) such that (1, 1) is the top element of the lattice,

(0, 0) is the bottom element and (0, 0) ≤ (0, 1) ≤ (1, 1) and (0, 0) ≤ (1, 0) ≤ (1, 1). Now

consider an AFASP program P , with AP (ρ) = inf{ρ(r) | r ∈ P}, over this lattice:

r1 : a← (1, 0)

r2 : a← (0, 1)

According to the property of residual implicators that x → y = 1 iff x ≤ y, any

interpretation I of P that satisfies rule r1 to the degree (1, 1) must obey I(a) ≥ (1, 0).

Likewise any interpretation I that satisfies r2 to the degree (1, 1) must obey I(a) ≥
(0, 1). Hence the only 1-model of P is I = {a(1,1)}. However, according to rule (ii)

above {a} is an unfounded set, which means that under the unfounded semantics I is

not an answer set of P . On the other hand, I = Π∗P I ,ρI
, and thus I is an answer set of

P according to the fixpoint semantics. If we consider rules as constraints that need to

be fulfilled, the fixpoint semantics correspond better to our intuition.

5.4 Valued Constraint Satisfaction Problems

A classical constraint satisfaction problem (CSP) consists of a set of variables X =

{x1, . . . , xn}, a set of finite domains D = {d1, . . . , dn} such that variable xi ranges over

domain di, and a set of constraints C of the form c = (Xc, Rc) such that Xc ⊆ X is a

set of variables and Rc is a relation between the variables in Xc. In Valued Constraint

Satisfaction Problems (VCSPs) [68], a CSP is augmented with a cost function ϕ, which

associates a cost to every constraint. A solution to a VCSP is then an assignment of

values to the variables in X such that the aggregated cost of all violated constraints is

minimal. Typically, costs are represented as real numbers, and the maximum or sum

is used to aggregate.

In the crisp case it has been noted that answer set programming can be used for

solving constraint satisfaction problems [59, 65]. The idea is to write an answer set

program containing generate rules4 that generate possible assignments of values to

each of the variables, and constraints which remove those assignments that violate

any constraints. In this way the resulting answer set program models a constraint

satisfaction problem in the sense that answer sets of the program correspond to the

solutions of the problem under consideration. It should come as no surprise that the

AFASP framework can likewise be used for modeling VCSPs, as VCSPs can be seen

as CSPs with an added aggregation operator. Basically, a VCSP corresponds to an

AFASP program that only uses choice rules (which are the fuzzy equivalent of generate

rules, i.e. rules assigning a random truth value to a certain atom) and constraints. Hard

constraints correspond to rules that are required to be greater than 1 in the aggregator,

whereas soft contstraints are rules whose valuation in the aggregator can be lower than

1, such as rules aggregated using the infimum. An example of the use of this paradigm

4 These are rules involving cyclic negation such as the ASP program {a← not b. b← not a}.
The answer sets of this program are {a} and {b}, hence this program allows us to choose one
of two options a and b in a solution of the modeled problem.
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is the fuzzy graph coloring program introduced in Section 1, where we model the

constraint satisfaction problem of coloring a graph with continuous colors, given some

soft and hard constraints.

5.5 Answer Set Optimization

In [6, 7], a framework for answer set optimization is proposed. The basic idea is that

one can state preference rules which are combined to define an ordering over answer

sets. For example, if we have a program that generates a class room schedule, this

framework allows to state that if teacher John is teaching Math, we prefer John to also

teach Physics as follows:

teaches(John,Physics) : 0 > teaches(Mark ,Physics) : 1← teaches(John,Math)

A rule is of the general form C1 : p1 > . . . > Ck : pk ← a1, . . . , an,not b1, . . . ,not bm,

where Ci : pi encodes that the penalty associated with the rule is pi if i is the lowest in-

dex for which the atom set Ci is true. However, the penalty of the rule is only taken into

account if the conditions on the left hand side, expressed as a conjunction of atoms, are

true. Different rules can then be combined using strategies, which encode importance

among these preference rules. Formally, [6] defines a Preference Description Language

PDL in which one can for example write that answer sets should be ordered using

the Pareto ordering on rules r1 and r2 as (pareto r1, r2). Many other complex (combi-

nations of) orderings can be written in this language, such as (lex (pareto r1, r2), r3)

which denotes that two answer sets first need to be compared using the Pareto ordering

on rules r1 and r2; if they are Pareto-equal, then one must try to discriminate between

them on the basis of rule r3.

It is clear that the ideas of this approach and the one we proposed in this paper are

very similar. In [36] we showed how this framework could be generalized to AFASP,

using an appropriate aggregator. For a practical implementation of AFASP it seems

interesting to adopt the same strategy of having a fixed language for specifying the

aggregator. For example, we could then write an aggregator defining a lexicographical

ordering over the program rules r1, r2, r3 as (lex r1, r2, r3).

5.6 Embedding AFASP in FASP

One may wonder whether AFASP can be trivially embedded in FASP. Indeed, at first

sight it seems that AFASP programs can be simulated by using a new rule aggr ←
f(a1, . . . , an), where ai, for i ∈ {1, . . . , n}, is a new atom that corresponds to the

value of rule ri. However, this intuitive embedding changes the semantics of an AFASP

program. For example, consider the following AFASP program P :

r1 : a ←m ∼l b
r2 : b ←m 0.7
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We assume that the aggregator is AP (ρ) = min(ρ(r1), ρ(r2)). Intuitively one may

expect that P can be simulated using the following program P ′:

r1 : a ← ∼l b
r2 : b ← 0.7

ra : r′1 ← (∼l b→m a)

rb : r′2 ← (0.7→m b)

raggr : aggr ← min(r′1, r
′
2)

Now consider the 0.5-answer set A = {a0.5, b0.5} of P . The corresponding interpretation

A′ = {a0.5, b0.5, r′1
1
, r′2

0.5
, aggr0.5} is not a model of P ′ because rule r2 is not satisfied

to the degree 1. Therefore it is also not an answer set of P ′, meaning this translation

does not preserve the semantics.

The correct translation is provided by the following program P ′′:

r1 : a ← ∼l b ∧m r′1
r2 : b ← 0.7 ∧m r′2
ra : r′1 ← (∼l b→m (∼l nota))

rb : r′2 ← (0.7→m (∼l notb))

rna : nota ← ∼l a
rnb : notb ← ∼l b

raggr : aggr ← min(r′1, r
′
2)

One can easily verify that A′′ = A′ ∪ {not0.5a ,not0.5b } is an answer set of P ′′. Fur-

thermore it can be shown that there is a bijection between the answer sets of P and

P ′′. However, as is evident from the above, this translation is not very intuitive. More-

over it only works for aggregators that map rule interpretations to the truth lattice of

the program and not for aggregators mapping rule interpretations to more interesting

preorders. Hence, even though (some) AFASP programs can be translated to FASP

programs, the study and use of AFASP on its own is still worthwhile.

6 Conclusions

FASP can be used for modeling continuous optimization problems. Due to the conti-

nuity, it is natural to have some notion of approximate answer sets, which correspond

to models that satisfy some of the rules only partially. In current approaches, however,

the idea of partial rule satisfaction is implemented in a rather limited way: users are

required to state to what extent each rule should be satisfied.

In this paper, we have introduced a more flexible method for handling partial rule

satisfaction, which is based on aggregation operators that combine the degrees to which

each of the rules are satisfied to a single value from a preordered set. In this sense, in

our approach, the weights that are assigned to rules are variable, and the aggregator

determines which combinations of rule weights are most desirable. Our work extends

a previous proposal for using aggregators for FASP programs in two ways. First, the

preorder determined by the aggregator is decoupled from the truth lattice considered in

the program. This makes it possible to express preference among solutions of problems

in a more flexible way. Second, we have developed a fixpoint semantics, in contrast to

existing work which is based on unfounded semantics. This has the advantage that we

are no longer restricted to using t-norms in rule bodies and more closely shows the
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links between the other FASP approaches. Furthermore it solves a problem with the

previous proposal when generalizing from ([0, 1],≤) to arbitrary truth lattices.

We have also illustrated our approach on two examples: continuous graph coloring

and the reviewer assignment problem. By means of these examples we have illustrated

the practical usefulness of our framework.

The implementation of our framework depends on the aggregators and body func-

tions that are used. In [34] we have shown that when the aggregator ranges over the

truth lattice of the program and the body functions are t-norms, we can solve AFASP

programs using fuzzy SAT solvers. When the leximin or discrimin is used, we can use

techniques from constraint satisfaction solving such as [20]. Last, for programs with

a linear aggregator and linear functions in rule bodies we can use multi-level mixed

integer programming, as mentioned in [69]. In future research we plan to investigate

these implementation methods in more detail.
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A Proofs

A.1 Proofs of Section 3

Proof (Proof of Proposition 1) Suppose r : a← α is defined over a lattice L, then:

Is(r, c) = 〈Def. Is(r, c)〉 inf{y ∈ L | I (α)→ y ≥ c}
= 〈Residuation principle〉 inf{y ∈ L | y ≥ I (α) ∧r c}
= 〈See below〉 I(α) ∧r c

The last step follows from the fact that I(α) ∧r c is an element of L and is a lower bound of
{y ∈ L | y ≥ I (α) ∧r c}.

Proof (Proof of Proposition 3)

ΠP,ρ1 (I)(a) = 〈Def. ΠP,ρ1 〉 sup{Is(ρ1 , r) | r ∈ Pa}
= 〈Proposition 1〉 sup{I (rb) ∧r ρ1 (r) | r ∈ Pa}
≤ 〈Monot. t-norm〉 sup{I (rb) ∧r ρ2 (r) | r ∈ Pa}
= 〈Proposition 1〉 sup{Is(ρ2 , r) | r ∈ Pa}
= 〈Def. ΠP,ρ2 〉 ΠP,ρ2 (I)(a)

Proof (Proof of Proposition 4) It is straightforward to show, using transfinite induction and
Propositions 2 and 3, that, for any ordinal i, J1

i ≤ J2
i , where S〈P, ρ1〉 = 〈J1

i | i an ordinal〉
and S〈P, ρ2〉 = 〈J2

i | i an ordinal〉.
Indeed: J1

0 = J2
0 = ∅. Propositions 2 and 3 then ensure that, for a successor ordinal i,

J1
i = ΠP,ρ1 (J1

i−1) ≤ ΠP,ρ2 (J2
i−1) = J2

i follows from ρ1 ≤ ρ2 and the induction hypothesis. For

a limit ordinal i, J1
i =

⋃
j<i J

1
j ≤

⋃
j<i J

2
j = J2

i is immediate from the induction hypothesis.

Proof (Proof of Proposition 5) Since P is constraint-free, we know that RP =
⋃
a∈BP Pa.

Using this property we obtain the stated as follows:

M = ΠP,ρ(M)
≡ 〈Def. ΠP,ρ(M)〉 ∀a ∈ BP ·M(a) = sup{Ms(r , ρ(r)) | r ∈ Pa}
⇒ 〈sup is upper bound〉 ∀a ∈ BP · ∀r ∈ Pa ·M(a) ≥Ms(r, ρ(r))
≡ 〈Prop. 1, RP = ∪a∈BP Pa〉 ∀r ∈ RP ·M(rh) ≥M(rb) ∧r ρ(r)
≡ 〈Residuation principle〉 ∀r ∈ RP ·M(rb)→M(rh) ≥ ρ(r)
≡ 〈Def. ρ-rule model〉 M is a ρ-rule model of P



35

Proof (Proof of Proposition 6) Since P is constraint-free, we know that RP =
⋃
a∈BP Pa.

Now, suppose that M is a minimal ρ-rule model of P and not a fixpoint of ΠP,ρ. Then we first
show that ∀a ∈ BP ·M(a) ≥ supr∈Pa

Ms(r, ρ(r)) as follows:

M is a ρ-rule model of P
≡ 〈Def. ρ-rule model〉 ∀r ∈ RP ·M(rb)→r M(rh) ≥ ρ(r)
≡ 〈Residuation principle〉 ∀r ∈ RP ·M(rh) ≥M(rb) ∧r ρ(r)
≡ 〈Prop. 1, RP = ∪a∈BP Pa〉 ∀a ∈ BP · ∀r ∈ Pa ·M(a) ≥Ms(r, ρ(r))
≡ 〈Def. upper bound, sup〉 ∀a ∈ BP ·M(a) ≥ supr∈Pa

Ms(r, ρ(r))

AsM is not a fixpoint ofΠP,ρ, for some a ∈ BP it must hold thatM(a) > supr∈Pa
Ms(r, ρ(r)).

Consider then the interpretation M ′ defined as

M ′(x) =

{
M(x) if x 6= a
supr∈Pa

Ms(r, ρ(r)) if x = a

Clearly M ′ < M . We will show that M ′ is a ρ-rule model, leading to a contradiction with the
minimality of M . For any x ∈ (BP \ {a}) we show that

∀r ∈ Px ·M ′(rb)→M ′(x) ≥ ρ(r) (12)

Indeed:

M ′ < M ⇒ 〈Body is incr. function〉 M ′(rb) ≤M(rb)
⇒ 〈Anti-monoton. →〉 M ′(rb)→M(x) ≥M(rb)→M(x)
⇒ 〈M is ρ-rule model〉 M ′(rb)→M(x) ≥ ρ(r)
≡ 〈Def. M ′, rh = x 6= a〉 M ′(rb)→M ′(x) ≥ ρ(r)

For a we show that
∀r ∈ Pa ·M ′(rb)→M ′(a) ≥ ρ(r) (13)

as follows:

M ′(a) = supr∈Pa
Ms(r, ρ(r))

⇒ 〈sup is upper bound〉 ∀r ∈ Pa ·M ′(a) ≥Ms(r, ρ(r))
≡ 〈Prop. 1〉 ∀r ∈ Pa ·M ′(a) ≥M(rb) ∧r ρ(r)
⇒ 〈M ′ < M , Monot. ∧r, (*)〉 ∀r ∈ Pa ·M ′(a) ≥M ′(rb) ∧r ρ(r)
≡ 〈Residuation principle〉 ∀r ∈ Pa ·M ′(rb)→M ′(a) ≥ ρ(r)

The (*) justification is that rb contains an increasing function. By combining (12) and (13),
we obtain that M ′ is a ρ-rule model, contradicting the assumption that M is a minimal ρ-rule
model. Hence M must be a fixpoint of ΠP,ρ.

Proof (Proof of Proposition 7) First, we show that Π∗P,ρ is a minimal ρ-rule model of P . Due

to Proposition 5 we know that Π∗P,ρ must be a ρ-rule model of P . Suppose M is a ρ-rule model

such that M ≤ Π∗P,ρ. Without loss of generalisation, we can assume that M is a minimal ρ-rule

model. Now from Proposition 6 we know that M must be a fixpoint of ΠP,ρ and hence, as
Π∗P,ρ is the least fixpoint of ΠP,ρ, that M = Π∗P,ρ. Thus Π∗P,ρ is a minimal ρ-rule model of P .

Second, we show that no other minimal ρ-rule models of P exist. Suppose M is a minimal
ρ-rule model of P . From Proposition 6 we know that M must be a fixpoint of ΠP,ρ and hence
Π∗P,ρ ≤M as Π∗P,ρ is the least fixpoint of ΠP,ρ. From this it follows that M = Π∗P,ρ.

Proof (Proof of Corollary 1) Follows immediately from Proposition 7.

Lemma 1 Let P be an AFASP program and I an interpretation of this program, then for
each a ∈ BP it holds that I(a) is an upper bound of the set {Is(r , ρI (r)) | r ∈ Pa}.

Proof We show that for any a ∈ BP and r ∈ Pa it holds that I(a) ≥ Is(r, ρI(r)), from which
the stated readily follows.

Is(r, ρI(r)) = 〈Def. Is(r, ρI(r))〉 inf{y ∈ LP | I (rb)→ y ≥ ρI (r)}
= 〈Def. ρI〉 inf{y ∈ LP | I (rb)→ y ≥ I (rb)→ I (a)}
≤ 〈Def. inf〉 I(a)
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Proof (Proof of Proposition 8) First, note that from Proposition 5 we can immediately see
that ρ ≤ ρM as M is a fixpoint of ΠP,ρ . Second, we show that ΠP,ρM (M) = M :

M = Π∗P,ρ ⇒ 〈Def. fixpoint〉 ∀a ∈ BP ·M(a) = ΠP,ρ(M)(a)

⇒ 〈ρ ≤ ρM , Prop. 3〉 ∀a ∈ BP ·M(a) ≤ ΠP,ρM (M)(a)
≡ 〈Def. ΠP,ρM 〉 ∀a ∈ BP ·M(a) ≤ supr∈Pa

Ms(r, ρM (r))
⇒ 〈Lemma 1〉 ∀a ∈ BP ·M(a) = supr∈Pa

Ms(r, ρM (r))
≡ 〈Def. ΠP,ρM 〉 ∀a ∈ BP ·M(a) = ΠP,ρM (M)(a)

By Proposition 4 and the fact that ρ ≤ ρM we obtain that Π∗P,ρ ≤ Π∗P,ρM and thus by

definition of M that M ≤ Π∗P,ρM . As we have shown that M is a fixpoint of ΠP,ρM , and thus

Π∗P,ρM ≤M , this means that M = Π∗P,ρM .

Proof (Proof of Proposition 9) Due to Proposition 8 we already know that M = Π∗P,ρM .

We thus only need to show that AP (ρM ) ≥ AP (ρ). From Proposition 5, we know that M is
a ρ-rule model, i.e. ∀r ∈ RP · ρM (r) ≥ ρ(r). This implies AP (ρM ) ≥ AP (ρ) because AP is
increasing.

Proof (Proof of Corollary 2) First, suppose M is a k-answer set of a simple AFASP program
P . By definition of k-answer sets it must then hold that AP (ρM ) ≥ k and that M = Π∗P,ρM ,

hence some rule interpretation ρ exists such that M = Π∗P,ρ and AP (ρ) ≥ k.

Second, suppose there is some rule interpretation ρ for which AP (ρ) ≥ k and M = Π∗P,ρ.

From Proposition 9 we then know that M is a AP (ρ)-answer set of P , from which we know
that AP (ρM ) ≥ AP (ρ) and hence, as AP (ρ) ≥ k, it follows that AP (ρM ) ≥ k. Thus M is a
k-answer set.

Proof (Proof of Corollary 3) Let P be a simple AFASP program. The desired answer set is
obtained by applying Proposition 8 to the rule interpretation ρ>.

Proof (Proof of Proposition 10) From definitions 11 and 12, it immediately follows that
AP (ρM ) = APM (ρM ) ≥ k.

Proof (Proof of Proposition 11) Let M be a k-answer set of P , then by definition of answer
sets we know that M = Π∗

PM ,ρM
. We will show by contradiction that no M ′ ⊂ M can exist

such that M ′ is a ρM -rule model of P . Suppose M ′ ⊂ M such that M ′ is a ρM -rule model
of P . From this it follows that for any rule r ∈ P we have M ′(rb) ≥ M ′(rMb ) as only the
arguments in which the body function is decreasing are replaced by their value in M . We can
then proceed as follows:

M ′ is a ρM -rule model of P
≡ 〈Def. ρM -rule model〉 ∀r ∈ RP ·M ′(rb)→M ′(rh) ≥ ρM (r)
≡ 〈Property reduct〉 ∀r ∈ RP ·M ′(rb)→M ′(rh) ≥ ρM (rM )
⇒ 〈M ′(rb) ≥M ′(rMb )〉 ∀r ∈ RP ·M ′(rMb )→M ′(rh) ≥ ρM (rM )
≡ 〈rh ∈ BP , Def. reduct〉 ∀r ∈ RP ·M ′(rMb )→M ′(rMh ) ≥ ρM (rM )
≡ 〈Def. PM 〉 ∀r ∈ RPM ·M ′(rb)→M ′(rh) ≥ ρM (r)
≡ 〈Def. ρM -rule model〉 M ′ is a ρM -rule model of PM

From Proposition 7 and the fact that M = Π∗
PM ,ρM

we know that M is the unique minimal

ρM -rule model of PM , leading to a contradiction with the fact that M ′ is a ρM -rule model of
PM and M ′ ⊂M .

Lemma 2 Let P be an AFASP program, then an interpretation I is a fixpoint of ΠP,ρ iff it
is a fixpoint of ΠP I ,ρ.

Proof First, remark that for any expression α and interpretation I we have that I(α) = I(αI).
Then we proceed as follows.

I = ΠP,ρ(I)
≡ 〈Equality of functions〉 ∀a ∈ BP · I(a) = ΠP,ρ(I)(a)
≡ 〈Def. ΠP,ρ〉 ∀a ∈ BP · I(a) = supr∈Pa

Is(r, ρ(r))
≡ 〈Prop. 1〉 ∀a ∈ BP · I(a) = supr∈Pa

I(rb) ∧r ρ(r)
≡ 〈I(α) = I(αI)〉 ∀a ∈ BP · I(a) = supr∈Pa

I(rIb ) ∧r ρ(r)
≡ 〈Def. ΠP,ρ, Def. P I〉 ∀a ∈ BP · I(a) = ΠP I ,ρ(I)(a)

≡ I = ΠP I ,ρ(I)
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Proof (Proof of Proposition 12) From Lemma 2, we know that any answer set M must be a
fixpoint of ΠP,ρM . Suppose M is not a minimal fixpoint and thus, that some N exists, N ⊂M ,
such that N is a fixpoint of ΠP,ρM . We will show that any such N is also a ρM -rule model of

PM , leading to N ⊇M due to Proposition 7, a contradiction.
First, as N ⊂ M and since the reduct only substitutes negative subexpressions for their

corresponding values, it follows that, for any expression α:

N(αN ) ≥ N(αM )

and thus, since N(α) = N(αN ) that

N(α) ≥ N(αM )

We can now show that N is a ρM -rule model of PM as follows.

N = ΠP,ρM (N)
⇒ 〈Prop. 5〉 ∀r ∈ RP ·N(rb)→ N(rh) ≥ ρM (r)
⇒ 〈Anti-monot. →, N(rb) ≥ N(rMb )〉 ∀r ∈ RP ·N(rMb )→ N(rh) ≥ ρM (r)
≡ 〈Def. reduct〉 ∀r ∈ RPM ·N(rb)→ N(rh) ≥ ρM (r)
≡ 〈Def. N(r)〉 ∀r ∈ RPM ·N(r) ≥ ρM (r)

A.2 Proofs of Section 5

Proof (Proof of Proposition 13) First, remark that there is only a single rule interpretation
ρ such that ∀r ∈ Pweight · ρ(r) = 1 holds, viz. ρ>. As A is only a 1-answer set of Pweight iff
A = Π∗P,ρ for some rule interpretation satisfying ∀r ∈ Pweight · ρ(r) = 1 due to Corollary 2,

it must hold that there is a unique 1-answer set A of Pweight where A = Π∗P,ρ>
. We can

now show that ΠP = ΠP,ρ> , leading to the stated equivalence, as follows. Suppose I is some
interpretation of P (and hence also of Pweight) and l ∈ BP (and hence also l ∈ BPweight

),

then:
ΠP (I)(l) = 〈Def. ΠP 〉 sup{I (rb ∧r rw ) | r ∈ Pl}

= 〈Def. Pweight〉 sup{I (rb) | r ∈ (Pweight )l}
= 〈Def. ρ>〉 sup{I (rb ∧r ρ>(r)) | r ∈ (Pweight )l}
= 〈Def. ΠPweight,ρ> 〉 ΠPweight,ρ> (I)(l)

From this, the stated readily follows.

Proof (Proof of Proposition 14) The proof follows easily from Proposition 13 and the fact that
the Gelfond-Lifschitz reduct introduced in [53] is a special case of our reduct.
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7. Brewka, G., Niemelä, I., Truszczyński, M.: Answer set optimization. In: Proceedings of
the 18th International Joint Conference on Artificial Intelligence, pp. 867–872 (2003)

8. Cao, T.H.: Annotated fuzzy logic programs. Fuzzy Sets & Systems 113(2), 277–298 (2000)
9. Choquet, G.: Theory of capacities. Annales de l’Institut Fourier 5, 131–295 (1954)

10. Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Sorted multi-adjoint logic programs: termi-
nation results and applications. In: Proceedings of the 9th European Conference on Logics
in Artificial Intelligence (JELIA’04), pp. 260–273 (2004)

11. Damásio, C.V., Medina, J., Ojeda-Aciego, M.: Termination of logic programs with im-
perfect information: applications and query procedure. Journal of Applied Logic 5(3),
435–458 (2007)

12. Damásio, C.V., Pereira, L.M.: Hybrid probabilistic logic programs as residuated logic pro-
grams. In: Proceedings of the 7th European Workshop on Logics in Artificial Intelligence
(JELIA’00), pp. 57–72 (2000)

13. Damásio, C.V., Pereira, L.M.: Antitonic logic programs. In: Proceedings of the 6th Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01),
pp. 379–392 (2001)

14. Damásio, C.V., Pereira, L.M.: Monotonic and residuated logic programs. In: Proceedings
of the 6th European Conference on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty (ECSQARU’01), pp. 748–759 (2001)

15. Damásio, C.V., Pereira, L.M.: Sorted monotonic logic programs and their embeddings. In:
Proceedings of Information Processing and Management of Uncertainty (IPMU04), pp.
807–814 (2004)

16. De Cock, M.: A thorough study of linguistic modifiers in fuzzy set theory. Ph.D. thesis,
Ghent University (2002)

17. Dekhtyar, A., Subrahmanian, V.S.: Hybrid probabilistic programs. In: Proceedings of
the Fourteenth International Conference on Logic Programming (ICLP’97), pp. 391–405
(1997)

18. Detyniecki, M.: Numerical aggregation operators: state of the art. In: Proceedings of
the First International Summer School on Aggregation Operators and their Applications
(2001)

19. Dubois, D., Fargier, H., Prade, H.: Refinements of the maximin approach to decision-
making in a fuzzy environment. Fuzzy Sets & Systems 81(1), 103–122 (1996)

20. Dubois, D., Fortemps, P.: Computing improved optimal solutions to max-min flexible
constraint satisfaction problems. European Journal of Operational Research 118, 95–126
(1999)

21. Dubois, D., Lang, J., Prade, H.: Towards possibilistic logic programming. In: Proceedings
of the Eigth International Conference on Logic Programming (ICLP’91), pp. 581–595
(1991)

22. Dubois, D., Prade, H.: Weighted minimum and maximun operations in fuzzy sets theory.
Information Sciences 39(2), 205–210 (1986)

23. Dubois, D., Prade, H.: Advances in the egalitarist approach to decision-making in a fuzzy
environment. In: Y. Yoshida (ed.) Dynamical Aspect in Fuzzy Decision Making, Studies
in Fuzziness and Soft Computing, vol. 73, pp. 213–240 (2001)

24. Emden, M.H.v.: Quantitative deduction and its fixpoint theory. Journal of Logic Pro-
gramming 30(1), 37–53 (1986)

25. Fagin, R., Wimmers, E.L.: A formula for incorporating weights into scoring rules. Theo-
retical Computer Science 239, 309–338 (1998)

26. Fitting, M.: Bilattices and the semantics of logic programming. Journal of Logic Program-
ming 11(2), 91–116 (1991)

27. Fodor, J.C., Yager, R.R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness
Knowl.-Based Syst. 5(4), 411–427 (1997)

28. Fuhr, N.: Probabilistic datalog: implementing logical information retrieval for advanced
applications. Journal of the American Society for Information Science 51(2), 95–110 (2000)

29. Garg, N., Kavitha, T., Kumar, A., Mehlhorn, K., Mestre, J.: Assigning papers to referees
(2008)

30. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Pro-
ceedings of the Fifth International Conference and Symposium on Logic Programming
(ICLP/SLP’88), pp. 1081–1086 (1988)

31. Grabisch, M.: k-additive fuzzy measures. In: Proceedings of the 6th international con-
ference on information processing and management of uncertainty in Knowledge-Based
systems (IPMU96) (1996)



39
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about(P, T ) t1 t2 t3 t4 t5 t6 t7
p1 0.8 1 0.2 0.4 0.2 0 0
p2 0 0.2 0.7 0.5 0.9 0.4 0.3
p3 1 0.1 0.1 0.2 0.3 0.2 0
p4 0.5 0 0 1 0.2 0.4 0.8
p5 0.3 0.9 0.8 0.9 0.4 0.2 0.1
p6 0.6 0.8 0.3 0.7 0.8 0.3 0
p7 0 1 1 1 0 0.3 0.1
p8 0.9 0.2 0.1 0.7 0 0.1 1
p9 0.1 0.7 0.1 0.2 0.1 1 0.7
p10 0.7 0.6 0.6 0.3 0.2 1 0.1

Table 3: about(P ,T ) scores

expert(R, T ) t1 t2 t3 t4 t5 t6 t7
r1 0.8 0.5 0.2 0.5 0.9 1 0
r2 0.2 0.9 1 0.4 0.2 0.1 0.1
r3 0.5 0.2 0.8 0.7 0.4 0.6 0.2
r4 0 0.3 0.2 0.4 0.5 0.9 0.9
r5 1 0.7 0.8 0.6 0.9 0.7 0.7

Table 4: expert(R,T ) scores

close(U,U ′) u1 u2 u3 u4 u5 u6 u7 u8 u9 u10
u′1 0.5 0.3 0.4 0.8 0.1 1 0.4 0.3 0.9 0.4
u′2 0.5 0.8 0.5 0.4 0.4 0.5 0.1 0 0.4 0.1
u′3 0 0 0 1 0.3 0.6 0.3 0.9 0.2 0.1
u′4 1 0.9 0.4 0.2 0.1 1 0.5 0.2 0.9 1
u′5 0.8 0.1 0.1 0.4 0.2 0.3 1 0.3 0.1 0.2

Table 5: close(U ,U ′) scores

conflict(R,P ) p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
r1 0.5 0.3 0.4 0.8 0.1 1 0.4 0.3 0.9 0.4
r2 0.5 0.8 0.5 0.4 0.4 0.5 0.1 0 0.4 0.1
r3 0 0 0 1 0.3 0.6 0.3 0.9 0.2 0.1
r4 1 0.9 0.4 0.2 0.1 1 0.5 0.2 0.9 1
r5 0.8 0.1 0.1 0.4 0.2 0.3 1 0.3 0.1 0.2

Table 6: conflict(R,P) scores

appropriate(R,P ) p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
r1 0.5 0.7 0.6 0.2 0.4 0 0.5 0.7 0.1 0.6
r2 0.5 0.2 0.2 0.4 0.6 0.5 0.9 0.1 0.6 0.6
r3 0.3 0.5 0.5 0 0.6 0.4 0.7 0.1 0.6 0.6
r4 0 0.1 0.1 0.7 0.3 0 0.4 0.8 0.1 0
r5 0.2 0.8 0.9 0.6 0.6 0.7 0 0.7 0.7 0.7

Table 7: appropriate(R,P) scores
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assignments A1 A2

p1 r1, r2, r3 r1, r2, r4
p2 r1, r3, r5 r1, r3, r4
p3 r1, r3, r5 r1, r4, r5
p4 r2, r4, r5 r2, r4, r5
p5 r2, r3, r5 r2, r3, r5
p6 r2, r3, r5 r2, r3, r5
p7 r1, r2, r3 r1, r2, r3
p8 r1, r4, r5 r1, r4, r5
p9 r2, r3, r5 r2, r3, r5
p10 r1, r3, r5 r1, r3, r5

Table 8: Assignments for answer sets A1 and A2

inappropriate(R,P ) p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
r1 0 0 0 0.8 0.6 1 0 0 0.9 0
r2 0 0.8 0.8 0 0 0 0 0.9 0 0.4
r3 0 0 0 1 0 0 0 0.9 0 0
r4 1 0.9 0.9 0 0.7 1 0.6 0 0.9 1
r5 0.8 0 0 0 0 0 1 0 0 0

Table 9: inappropriate(R,P) scores for A1

inappropriate(R,P ) p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
r1 0 0 0 0.8 0.6 1 0 0 0.9 0
r2 0 0.8 0.8 0 0 0 0 0.9 0 0.4
r3 0.7 0 0.5 1 0 0 0 0.9 0 0
r4 0 0 0 0 0.7 1 0.6 0 0.9 1
r5 0.8 0.2 0 0 0 0 1 0 0 0

Table 10: inappropriate(R,P) scores for A2


