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Abstract

Person name queries often bring up web pages that correspond to individu-
als sharing the same name. The Web People Search (WePS) task consists of
organizing search results for ambiguous person name queries into meaningful
clusters, with each cluster referring to one individual. This paper presents a
fuzzy ant based clustering approach for this multi-document person name dis-
ambiguation problem. The main advantage of fuzzy ant based clustering, a
technique inspired by the behavior of ants clustering dead nestmates into piles,
is that no specification of the number of output clusters is required. This makes
the algorithm very well suited for the Web Person Disambiguation task, where
we do not know in advance how many individuals each person name refers to.
We compare our results with state-of-the-art partitional and hierarchical cluster-
ing approaches (k-means and Agnes) and demonstrate favorable results. This
is particularly interesting as the latter involve manual setting of a similarity
threshold, or estimating the number of clusters in advance, while the fuzzy ant
based clustering algorithm does not.

Key words: Web People Search, Web Person Disambiguation, document
clustering, fuzzy ant based clustering

1. Introduction

Searching for people on the web is a very popular online activity that is
receiving increasing support from specialized search engines. Besides the major
search engine Yahoo! offering a people search service1, there are a fair number
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of smaller search engines, such as pipl2 and spock3, whose core business is
Web People Search. One significant problem faced by all of these “web people
finders” is person name ambiguity due to the fact that one person name can
refer to different individuals. Given the high ambiguity of person names (the
most common name in the UK “David Jones” e.g. refers to 157,630 different
individuals [4]) and the rapidly increasing amount of information on the web,
the person name ambiguity problem becomes increasingly important in many
natural language processing (NLP) fields, such as information extraction, cross-
document summarization and question-answering. In the context of this paper,
Web People Search (WePS) refers to the problem of organizing all search results
for a person name query into meaningful clusters that group together all web
pages corresponding to an individual.

At first sight the Web People Search or “Web Person Disambiguation” prob-
lem can be linked to the better known Word Sense Disambiguation (WSD)
problem, as both try to disambiguate instances of usage based on context infor-
mation. The main difference between both natural language processing appli-
cations is the sense inventory involved, which is rather fixed for common words
(the target of WSD), but not known in advance for person names, where we do
not know in advance how many unique persons are involved. In this way, the
WePS problem has more in common with Word Sense Discrimination, where
similar examples of word senses are grouped together. As a consequence, it is
much harder to develop a classification algorithm for person name disambigua-
tion (since the classes are not known in advance), which motivates the proposed
clustering approach.

As mentioned above, a particularly challenging aspect of the WePS problem
is that it is usually not known beforehand how many clusters to expect in
the search results for a person name query. Some names occur rarely, while
others are shared by a large group of people. Furthermore, celebrity names
tend to monopolize search results. For instance, while there may be many
people out there with a not very unusual name like “Michael Jordan”, the first
100 results returned by a search engine might be for a large part about the
American basketball player and about the computer science professor with the
same name at UC Berkeley. This makes it hard to predict how many different
individuals will be covered in the first search results, which is problematic since
most clustering algorithms require an estimate of the number of clusters that
needs to be found in the data.

In this paper we propose the use of a fuzzy ant based clustering algorithm
that does not require specification of the number of clusters. Ant based clus-
tering algorithms are inspired by the clustering of dead nestmates, as observed
to be done by several ant species under laboratory conditions. Without direct
communication about where to gather the corpses, ants manage to cluster all
corpses into one or two piles. The conceptual simplicity of this phenomenon,

2http://www.pipl.com/
3http://www.spock.com/
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together with the lack of centralized control and the lack of a need for a priori
information, is the main motivation for using clustering algorithms inspired by
this behavior. Real ants are, because of their very limited brain capacity, often
assumed to reason only by means of rules of thumb. The fuzzy ant based clus-
tering method proposed in [37] is inspired by the idea that the behavior of ants
in picking up and dropping items can be expressed flexibly by fuzzy IF–THEN
rules. As in other ant based clustering algorithms, no initial partitioning of
the data is needed, nor need the number of clusters be known in advance. The
machinery of approximate reasoning from fuzzy set theory endows the ants with
some intelligence. As a result, on each time step the ants are capable of deciding
for themselves whether to pick up or drop an item or a heap, and a clustering
automatically emerges from this process.

The fuzzy ant based clustering algorithm has been successfully applied to
group search results for ambiguous queries such as rem, travelling to Java, and
salsa [37]. Snippets4 returned by the search engine are turned into bags of
words with a binary weighting scheme and subsequently clustered. While this
method is useful for detecting documents that discuss a similar topic, the WePS
problem calls for a different approach. Indeed, different web pages about the
same individual might contain a significantly different kind of content, such as
a professional web page versus an account page on a social networking site.
Furthermore, the presence of a biographical fact or a telephone number by itself
might give an important clue to the identity of the individual at hand. While
such information is rather rare, it is very reliable: we can be almost sure that
identical phone numbers in different documents refer to the same person. In our
approach we therefore represent every web document as a rich feature vector,
containing biographical facts, named entities5, URL and email addresses, IP
location, as well as distinctive keywords from the title and the snippet, and a
weighted bag of words extracted from the full text of the document.

Existing approaches to Web Person Disambiguation use either a classification
or a more classical (partitional or hierarchical) clustering approach. The main
drawback of these approaches is that the number of classes/clusters must be
defined in advance. We contribute to solving the WePS task by using a fuzzy ant
based clustering algorithm and by comparing its performance with a partitional
and an agglomerative hierarchical clustering approach (k-means and Agnes).
This use of a fuzzy ant based algorithm overcomes the main drawback of existing
approaches that require the number of clusters to be defined in advance.

This paper is organized as follows: in Section 2 we give an overview of related
research. In Section 3 we provide details about the construction of the feature
vectors and the keyword matrices, while the flow of the clustering algorithm is
explained in Section 4. Section 5 describes experimental results on the WePS

4A snippet is a small sample of content shown to users on the search results page.
5Named entities are names of persons, organizations, locations, expressions of times, quan-

tities, monetary values, percentages, etc. The NLP task of Named Entity Recognition (NER),
which is a subtask of information extraction, aims to locate and classify words into these
predefined categories.
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data sets from the SemEval competitions. In Section 6, we summarize our main
findings and suggest future work.

2. Related research

The Web Person Disambiguation task has already been approached from
different angles. The approaches differ from each other concerning the data
that is used, being the features that are extracted from the document as well
as external data that can be used, and the type of algorithm that is applied,
viz. classification versus clustering, different clustering techniques, etc. One
direction leads to unsupervised clustering based on a rich feature space. Mann
and Yarowsky [26], for example, extract features containing biographical facts,
such as birth and death place or date, that are combined with associated names
such as family and employment relationships, and nationality. To extract these
patterns, they further develop the method of Ravichandran and Hovy [35] that
bootstraps information extraction patterns from a set of examples (e.g. for birth
date an example query such as “Mozart, 1756” returns a set of examples that can
be used for generating patterns, which are then used to extract the biographical
information from the data). They finally combine learned patterns and hand-
coded rules. In this way each instance of the ambiguous name is represented
by a feature vector and clustering is done by grouping the most similar feature
vectors, using bottom-up centroid agglomerative clustering based on the cosine
similarity distance.

Pedersen [32] presents an unsupervised approach that uses statistically sig-
nificant bigrams in the documents to be clustered (“significant” meaning that
the log-likelihood ratio between the two words is greater than a given thresh-
old). A matrix based on these bigrams is built with the rows representing the
first word, and the columns representing the second word in the bigram; each
cell contains the log-likelihood ratio associated with the bigram. Because of its
large size and sparsity, singular value decomposition is applied to reduce the
dimensionality. In this way, the words that make up the columns are reduced
from a word level feature space into a concept level semantic space that is sup-
posed to capture indirect relationships between words. Afterwards, instances
(documents) that have similar context vectors are placed into the same cluster
by means of a hybrid clustering approach called repeated bisections clustering.
This clustering algorithm combines a hierarchical divisive approach with parti-
tioning: it starts with all instances in a single cluster and at each iteration a
cluster is bisected using the standard k-means method with k = 2.

Other researchers use additional web resources for better measuring docu-
ment similarities. Vu et al. [30] use web directories such as Dmoz’s www.dmoz.org,
Google’s directory.google.com, and Yahoo!’s dir.yahoo.com as an additional
knowledge base. These collections of web documents are categorized accord-
ing to different topics and can be used to enrich the extractable information
in web documents. In this way, the authors determine the topic of the web
document and link other documents containing similar contexts. Bollegala et
al. [10] try to disambiguate personal names by using automatically extracted
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keyphrases. The proposed unsupervised algorithm extracts key phrases from the
web that uniquely identify a person. These phrases are then added to the person
name query to narrow down the web search. Clustering is done with a group
average agglomerative clustering algorithm, which is a hybrid of single-link and
complete-link clustering. Clustering stops when the cluster quality drops below
a preset threshold that is experimentally obtained.

A problem faced by most clustering approaches is how to accommodate
nominal features such as string features. Such features pose a problem to the
similarity measure computation because typically such measures accept only nu-
merical input. Several approaches were proposed to overcome this problem. Lee
and Brouwer [22] propose a method to integrate a similarity measure between
ordinal features in the fuzzy c-means algorithm. However, ordinal features as-
sume an underlying ordering relation such as child,youth,adult ; many nominal
features do not fit into this category. Another approach aimed at dealing with
nominal features is explained in Guha et al. [18], who propose a clustering algo-
rithm called ROCK that groups similar sets of categorical features, i.e. features
that take values from a certain set. However, this approach is not applica-
ble when every feature uses its own category, as it is not possible to infer the
relations among the values of one category from the feature vector.

The Web Person Disambiguation task can also be considered as a multi-
document coreference problem. Bagga and Baldwin [5] opt for personal name
disambiguation using document context profiles or vectors. They first do coref-
erence resolution within each document in order to form coreference chains.
Next they take the surrounding context of these reference chains for creating
summaries about each entity and convert these summaries into a bag of words.
Documents get clustered using the standard vector space model; each vector
contains the words that occur in the window around the ambiguous name and
the similarity is measured using the cosine measure. Clustering continues until
a predefined threshold is reached.

Web Person Disambiguation can also be treated as a classification task.
Fleischman and Hovy [17], for example, introduce a maximum entropy model
in which a binary classifier determines whether two concept-instance pairs (the
concept is represented by a complex noun phrase such as “president of the united
states”, the instance by a name) refer to the same individual. The classifica-
tion is based on a trained probability threshold. The features they use for the
classification are related to the names themselves (common/uncommon names,
famous names), web features (e.g. number of hits returned for a query using the
instance name and the heads of each concept in the match pair), overlap fea-
tures (similarity between the sentential contexts of the concept-instance pairs,
expressed in word overlap score) and semantic features (semantic relatedness of
the concepts using the WordNet ontology).

In previous work we presented a hybrid approach that combined the results
of both classification and clustering [23]. First, supervised classification based
on feature vectors containing binary and symbolic disambiguation information
on pairs of documents is done by means of the eager ripper rule learner [12]
which induces a set of easily understandable if-then classification rules for the
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minority class, and a default rule for the remaining class. Second, different
clustering approaches are applied to the weighted keyword matrices. In a final
step, the seed clusters obtained by the classification algorithm are enhanced by
the results from the clustering algorithms.

Our present work, that further elaborates the approach presented in [24],
is mostly related to the research of Mann and Yarowsky, in the sense that we
also do unsupervised clustering on a rich feature space. It is different from
the approaches mentioned above because of the clustering algorithm we use
and because of the integration of very different features. In particular, we use
biographical facts, named entity overlap, IP location information, URL and
email overlap, and weighted keywords, combined into one feature vector per
document. As an alternative to existing approaches that typically use a top-
down or bottom-up agglomerative clustering algorithm, we have experimented
with a fuzzy ant based algorithm that is able to cluster without using any kind
of a priori information, such as the required number of clusters.

3. Feature vector construction

For the construction of the feature vectors we extract information from the
content of the web pages themselves, the snippets and the titles. Our choice of
features is inspired by previous research (see Section 2) where certain features
have already shown to be very well suited for the task, as well as new features
(e.g. location features) that are likely to be informative to distinguish a specific
person.

All data is preprocessed by means of a memory-based shallow parser (MBSP)
[13]. The following preprocessing steps are taken. Tokenization (i.e. splitting
punctuation from adjoining words) is performed by the MBSP using a rule
based system with regular expressions. Part-of-Speech (PoS) tagging and text
chunking is performed by the memory based tagger MBT [14], which was trained
on the Wall Street Journal corpus in the Penn Treebank [28], the Brown corpus
[21] and the Air Travel Information System (ATIS) corpus [19]. During text
chunking syntactically related words are combined into non-overlapping phrases.

On the basis of the preprocessed data we construct a rich feature vector that
combines biographical facts and distinctive characteristics for a given person, a
list of weighted keywords and metadata information about the web page.

3.1. Extracted features
We extract the following features from the preprocessed web pages:

• Biographical facts, such as date of birth and death. We have training
data available in which these kind of biographical facts have been manually
labeled (see Section 5 for more details on the training data). This training
data serves as the basis for the development of a regular-expression based
procedure similar to the approach used by Ravichandran and Hovy [35].
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• Information on named entities is extracted on the basis of the shallow
syntactic information provided by the memory-based shallow parser and
additional gazetteer information (in-house constructed lists of male and
female person names and lists of locations). Three named entity features
are extracted:

1. The first feature aims at the extraction of further interesting name
information, e.g other surnames or family names of the person in
focus, leading to the extraction of for example Ann Hill Carter Lee
and Jo Ann Hill for the person Ann Hill.

2. The second named entity feature contains all geographic locations
named in the particular document.

3. The last feature extracts all other named entity information, such as
other person names, company names, etc.

Another location feature we extract is the IP location, based on the
simple assumption that if two documents are hosted in the same city,
they most probably refer to the same person (but not vice versa). For
converting IP-addresses to city locations, we use the MaxMind GeoIP(tm)
open source database6.

•• As URLs and email addresses can be used to identify a person, we also
extract URL, email and domain addresses from the web pages. In
order to do so, we combine pattern matching rules and markup information
such as the HTML <href> tag. The URL of the document itself is added
to the set of URL links. Some filtering on the list is performed concerning
the length of extracted URLs (to exclude garbage) and the content (to
exclude non-distinctive URL addresses such as index.html).

Table 1 gives an overview of all extracted features. In an early version of the al-
gorithm, we also extracted telephone and fax numbers. However, as the WePS2
data set (see Section 5) contains very little information of this kind, we decided
to omit it in the final version as presented in this paper. For similar reasons,
we rejected an early idea of mapping locations to their geographic coordinates
(which can be done using e.g. the GeoNames geographic database7) and com-
puting the distance between them.

Example 1. Below are some examples of features extracted from web search
results for the name “Alexander Macomb”. All web pages listed here, which
are referred to as “Doc” followed by a 3 digit identifier, are from the SemEval
data sets. We refer to Section 5 for more details about these data sets. The list
below is not exhaustive.

6http://www.maxmind.com/app/geolitecity
7http://www.geonames.org/about.html
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Biographical Facts Date of birth
Date of death

Named Entities Person name
Locations

Other named entities
URL and Email URL addresses

Email addresses
Domain names

Location IP addresses

Table 1: Overview of features extracted from the web documents

PERSON NAME: Alexander Macomb

1. Biographical facts
(a) Date of birth

Doc 004: was born in 1717
Doc 009: 4 February 1888
Doc 017: (1783
Doc 019: (1782
Doc 064: (1748

(b) Date of death
Doc 004: death in 1796
Doc 009: DEATH : 3 March 1970
Doc 010: death in 1841
Doc 014: death in 1841
Doc 019: died on June 25 , 1842

2. Named entities
(a) Name

Doc 004: General Alexander Macomb
Doc 007: General Alexander Macomb
Doc 075: Alexander Macomb Miller
Doc 016: Colonel Alexander Macomb

(b) Location
Doc 004: Belle Isle, Cherokee, Chicago, Detroit, Grosse Ile, ...
Doc 076: Belle Isle, Detroit, Grosse Isle, Macomb County, ...

3. URL and Email
(a) URL page

Doc 000: http://www.answers.com/main/business.jsp
Doc 000: http://librarians.answers.com
Doc 000: http://www.answers.com/topic/macomb-illinois
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Doc 000: http://www.answers.com/topic/alexander-macomb-j
(b) Email

Doc 004: mlloyd@sms-va.com
Doc 005: mlloyd@sms-va.com
Doc 014: sales@galleryofhistory.com
Doc 008: booklists@historiclakes.org
Doc 054: editor@wreckhunter.net

(c) Domain
Doc 000: librarians.answers.com
Doc 000: teachers.answers.com
Doc 006: teachers.answers.com

4. IP location

Doc 03: www.multied.com

resolved to Saddle Brook

3.2. Keyword features
Besides the features mentioned above, we also use distinctive keywords from

both the entire content of the web pages as well as from the snippets and
titles of the documents. The keyword selection is based on a preprocessed
text file which is cleaned by removal of markup and other HTML information,
tokenized, and PoS tagged (see Section 5.1). Only the content words, including
nouns, adjectives, and verbs, are kept for further processing. The person name
itself is removed from the snippets and titles because it is not useful for the
disambiguation process.

To determine the relevance of the words extracted from the content of the
web pages, we compute the TF-IDF score (term frequency – inverse document
frequency) for each term-document pair, i.e. the relative frequency of the term
in a document compared to the relative frequency of the term over all docu-
ments [36]. Words with high TF-IDF scores imply a strong relationship with
the document they appear in. The relevance scores are stored in a document-
term matrix DT . The rows of this matrix correspond to the documents, while
the columns correspond to all keywords of all documents. An entry in the
document-term matrix denotes the weight of a particular word in a particular
document.

As the keywords extracted from snippets and titles are likely to be highly
informative, we associate with every document a set of snippet words and title
words. This snippet and title keyword feature is treated in a similar way as
e.g. the named entity or biographical facts features discussed above, in the sense
that any snippet or title keyword overlap is considered to be a strong indication
that the documents are related to the same person.
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4. Clustering

4.1. Document similarity measure
At this point, we performed document analysis and extracted a set of dis-

criminatory features that can be useful for person disambiguation. However, the
clustering algorithm can not be readily applied to these features vectors that
are of mixed nature; some features are numeric while others are nominal. To
apply a clustering algorithm we require a way of comparing two feature vectors
by developing a custom similarity measure.

To solve this problem, we construct a comparison vector for each pair of
documents (d1, d2):

C(d1, d2) = (C1(d1, d2), C2(d1, d2), . . . , Cn(d1, d2))

which is used by the clustering algorithm to compare documents d1 and d2.
Each component Ci(d1, d2) of the comparison vector corresponds to a feature i.

If A and B are sets of values for this feature for d1 and d2 respectively, then

Ci(d1, d2) =
{

1, if A ∩B 6= ∅,
0, otherwise

Example 2. From the information for Alexander Macomb in Example 1 we
obtain for instance

CDateOfBirth(d19, d64) = 0

but
CLocation(d4, d76) = 1

because both documents d4 and d76 contain “Belle Isle” and “Detroit”.

Note that this approach is very tolerant in the sense that the smallest overlap
in the sets of values for a particular feature already results in a perfect match
of the two documents for that feature; we opted for this approach because all
features discussed in Section 3 (except for the weighted keywords, see below)
are strong indicators that two documents refer to the same person. A less
tolerant approach would be to use the Jaccard measure as a gradual similarity
measure between the sets A and B, reflecting that the more values A and B
have in common, the better the match is between d1 and d2 on the feature at
hand, and a perfect match would then only be achieved when A equals B. In a
more tolerant approach, on the other hand, one could take into account gradual
similarities of the values of the features themselves, acknowledging that two sets
of values A and B overlap if they contain at least one element that is similar,
even if not exactly the same. In practice the similarity between feature values
such as location names (“Belle Isle” and “Belle Ile”) could then be computed
using the edit distance.

The weighted bags of keywords in our approach are compared using the
cosine similarity measure
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Ckws(d1, d2) =
m∑

t=1

DTd1,t ·DTd2,t

whereDTd1,t andDTd2,t are values from the document-term matrixDT (cfr. Sec-
tion 3.2), i.e. the TF-IDF scores of term t in documents d1 and d2 respectively,
and m is the number of columns in DT .

The second step is the aggregation of the components of the comparison vec-
tor into one value in [0, 1] which will be used by the clustering algorithm as the
similarity measure between the two documents. We aggregate the comparison
vector by means of a weighted average. In other words, let w1, w2, . . . , wn be
nonnegative numbers that sum up to 1, then

S(d1, d2) =
n∑

i=1

wi · Ci(d1, d2)

This is a number between 0 and 1 that represents the overall similarity be-
tween d1 and d2. An important question that arises, is what the value of the
weights should be, because these weights reflect the importance of the various
components for person name disambiguation.

As a baseline system, one can give all components of the comparison vector
equal weight, i.e. w1 = w2 = . . . = wn = 1

n .
In order to give higher weights to components that contribute more to a

correct clustering decision, we refine this by using the gain ratio of the different
components as their weights [33]. Note that every document comparison vector
C(d1, d2) needs to be classified in one of two classes: it belongs to class csame

if documents d1 and d2 are about the same person, while it belongs to class
cdiff if d1 and d2 concern different persons. Every component Ci(d1, d2) gives
some clue about whether C(d1, d2) belongs to csame or cdiff . However, some
components contain more information than others. The information gain of a
given component Ci(d1, d2) is the reduction in uncertainty about which class
C(d1, d2) belongs to, when we know the value of Ci(d1, d2). Gain ratio is a
normalized version of information gain that reduces the bias of information
gain towards selecting components with a large number of values. We have
experimentally optimized the gain ratio weights output in order to determine the
weight settings that have been used for all clustering experiments (see Section 5).

4.2. Fuzzy ant based clustering
The third step, after feature extraction and document similarity computa-

tion, is clustering. A particular challenge of the WePS problem is that it is
not known in advance how many people in the data set share the same name.
Clustering algorithms mimicking the behavior of ants are interesting candidates
for tackling this problem. In this section we describe a fuzzy ant based algo-
rithm, that does not depend on a priori knowledge of the number of clusters,
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while in Section 4.3 and Section 4.4 we describe a hierarchical and a partitional
clustering algorithm, that require the expected number k of clusters as an input.

Ant based clustering algorithms are usually inspired by the clustering of
dead nestmates, as observed in the behavior of several ant species under labo-
ratory conditions. Without negotiating about where to gather the corpses, ants
manage to cluster all corpses into one or two piles. The conceptual simplicity of
this phenomenon together with the lack of centralized control and a priori in-
formation are the main motivations for designing clustering algorithms inspired
by this behavior (see e.g. [15], [25], [31]).

Monmarché’s algorithm [31] involves a pass in which artificial ants can only
pick up one item and a separate pass during which ants can only pick up an
entire “heap” of items. In [37] a fuzzy ant based clustering algorithm was
introduced where the artificial ants are endowed with intelligence in the form of
IF–THEN rules that allow them to do approximate reasoning. As a result, at
any time the ants can decide for themselves whether to pick up a single item or
an entire heap, which makes a separation of the clustering into different passes
superfluous. The corresponding algorithm is not only more elegant but it also
outperforms Monmarché’s algorithm on benchmark data sets as shown in [37].

In the algorithm, a certain stimulus and a response threshold value are asso-
ciated with each task an ant can perform. The response threshold value is fixed,
but the stimulus can change and represents the need for the ant to perform the
task. The probability that an ant starts performing a task with stimulus s and
response threshold value θ is defined as

Tn(s; θ) =
sn

sn + θn

where parameter n is a positive integer, s ∈ [0, 1] and θ ∈ ]0, 1].
An ant with a load has only one possible task, which is to drop its load. Let

sdrop be the stimulus associated with this task and θdrop the threshold value.
The probability of dropping the load is then given by

Pdrop = Tni(sdrop; θdrop)

where i ∈ {1, 2} and parameters n1 and n2 are positive integers. When the ant
is only carrying one item, n1 is used, otherwise n2 is used. An ant without a
load can perform two tasks when encountering a heap: picking up one item or
picking up all items. Let sone and sall be the respective stimuli, and θone and
θall the respective response threshold values. The probabilities for picking up
one item and picking up all the items of a heap are given by

Ppickup one =
sone

sone + sall
· Tm1(sone; θone)

Ppickup all =
sall

sone + sall
· Tm2(sall; θall)

where parameters m1 and m2 are positive integers.
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As described below, the values of the stimuli sdrop, sone, and sall are cal-
culated by evaluating fuzzy IF-THEN rules, using the rule bases provided in
[37]. The values we used for parameters n1, n2, m1, and m2 are discussed in
Section 5.

A major asset of humans is their flexibility in dealing with imprecise, gran-
ular information, that is, their ability to abstract from superfluous details and
to concentrate instead on more abstract concepts (represented by words from
natural language). One way to allow a machine to mimic such behavior is to
construct an explicit interface between the abstract symbolic level, i.e. linguistic
terms like high, old, etc. and an underlying, numerical representation that allows
for efficient processing; this strategy lies at the heart of fuzzy set theory, which,
since its introduction in the 1960s [41], has rapidly acquired an immense popu-
larity as a formalism for the representation of vague, linguistic information, and
which in [37] is exploited as a convenient vehicle for constructing commonsense
rules that guide the behavior of artificial ants in a clustering algorithm.

A fuzzy set A in a universe U is a mapping from U to the unit interval [0, 1].
For any u in U , the number A(u) is called the membership degree of u to A; it
expresses to what extent the element u exhibits the property A. A is often also
referred to as a membership function. A fuzzy rule base is of the form

IF X is A1 and Y is B1 THEN Z is C1

IF X is A2 and Y is B2 THEN Z is C2

. . .
IF X is An and Y is Bn THEN Z is Cn

where X, Y , and Z are variables taking values in the respective universes U ,
V , and W , and where for i in {1, . . . , n}, Ai (resp. Bi and Ci) is a fuzzy set in
U (resp. V and W ). The aim is then to deduce a suitable conclusion about Z
for every specific input of X and Y . This can, of course, be generalized to an
arbitrary number of variables in the antecedent and the consequent.

The stimulus for a loaded ant to drop its load L on an already existing heap
H is based on the average similarity A among the items in H and the average
similarity B between the center of H and items of L [37]. If B is smaller than
A, the stimulus for dropping the load should be low, because this would destroy,
or at least decrease, the homogeneity of heap H; if B is greater than A, the
stimulus should be high. Because heaps should be able to grow, we should also
allow the load to be dropped when A is approximately equal to B. An ant will
perceive the values of A and B to be very high (VH), high (H), medium (M), low
(L), or very low (VL). The stimulus will be perceived as very very high (VVH),
very high (VH), high (H), rather high (RH), medium (M), rather low (RL),
low (L), very low (VL), or very very low (VVL). These linguistic terms can be
represented by fuzzy sets in [0, 1] (see [37] for their exact shape). The rules for
the stimulus for dropping the load L onto an existing heap H are presented in
Table 2.

The stimuli for an unloaded ant to pick up one item or a whole heap are
computed in a similar way. An unloaded ant should pick up the most dissimilar
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VH H M L VL
VH RH H VH VVH VVH
H L RH H VH VVH
M VVL L RH H VH
L VVL VVL L RH H

VL VVL VVL VVL L RH

Table 2: Fuzzy rules to infer the stimulus for dropping a load L on an existing heap H. The
columns correspond to the average similarity A of H, while the rows correspond to the average
similarity B between the center of H and the items of L. For example, if A is high, i.e. the
heap is homogeneous, and B is low, i.e. the load is quite different from the heap, then the
stimulus to drop the load on the heap is very very low.

item from a heap if the similarity between this item and the center of the heap
is far less than the average similarity of the heap. This means that by taking
the item away, the heap will become more homogeneous. An unloaded ant
should only pick up an entire heap, if the heap is already homogeneous. Thus,
the stimulus for an unloaded ant to pick up a single item from a heap and the
stimulus to pick up all items from that heap are based on the average similarity
of the heap and the minimal similarity among two items in the heap. We refer
to [37] for the respective fuzzy rule bases to compute these stimuli.

During execution, the algorithm maintains a list of all heaps. Initially there
is a heap, consisting of a single element, for every item in the data set. Picking
up an entire heap H corresponds to removing a heap from the list. At each
iteration an ant acts as follows (k is a small integer constant, set to 5 in our
experiments):

• If the ant is unloaded, a heap H from the list is chosen at random.

– If H consists of a single item, this item is always picked up.

– If H consists of two items, a and b, both items are picked up with
probability S(a, b)k and one of the two items is picked up with prob-
ability (1− S(a, b))k, with S(a, b) the similarity of items a and b.

– If H consists of more than two items, a single element is picked up
with probability Ppickup one, while all elements are picked up with
probability Ppickup all.

• If the ant is loaded, a new heap containing the load L is added to the
list of heaps with a fixed probability (set to 0.001 in our experiments).
Otherwise, a heap H from the list is chosen at random.

– If H consists of a single item a and L consists of a single item b, L is
dropped onto H with probability S(a, b)k.

– If H consists of a single item and L consists of more than one item,
the ant does nothing. The main reason for separating this special
case is efficiency. Because the average similarity avg(H) will always
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be 1 in this case, the only situation where it would be desirable to
merge H and L is when all the items in L are approximately equal
to the single element in H. But in this unlikely case, L and H would
be merged at a later iteration of the algorithm.

– If H consists of more than one item, L is dropped onto H with
probability Pdrop.

4.3. Agglomerative hierarchical clustering
The output of a hierarchical clustering algorithm is a tree where the root

corresponds to a cluster containing all documents, and the leaves correspond to
clusters containing only one document. An agglomerative clustering algorithm
builds this tree from the leaves to the top, in each step merging the two clusters
with the largest similarity. Cutting the tree at a given height gives a clustering
at a selected number k of clusters. Alternatively, one can define a cutting
threshold, i.e. the clustering stops when the similarity between clusters is less
than a given threshold.

Techniques to automatically determine the best value for k often rely on the
use of a validity index such as the Dunn index [16] or the silhouette statistic
to estimate the quality of a particular clustering of the data set. In [11], the
silhouette index is mentioned as the index of choice, but at the same time this
study warns that, depending on the model of the data, validity indices do not
always correlate well to the actual error rate of the clustering algorithm. For
an overview of the well known and more recent fuzzy clustering validity indices,
we refer to [40] and [42].

In Section 5 we compare the performance of the fuzzy ant based clustering
algorithm with an implementation of Agnes (Agglomerative Nesting) that is
fully described in [20]. Agnes is run with single linkage (or single-link), meaning
that in each step the algorithm merges the two clusters with the smallest mini-
mum pairwise distance (which comes down to the nearest neighbor method). In
order to determine the number of output clusters, we have decided to cut the
tree at different similarity thresholds between the document pairs, with intervals
of 0.1 (e.g. for threshold 0.2 all document pairs with similarities above 0.2 are
clustered together).

4.4. Partitional clustering
Partitional clustering aims to directly decompose the data set into a set

of disjoint clusters. Typically, the clustering algorithm tries to minimize some
dissimilarity measure in the samples within each cluster, and to maximize the
dissimilarity of different clusters.

A commonly used partitional clustering method is the k-means clustering
algorithm. The k-means clustering method aims to partition n data items into a
predefined number of k clusters, in which each data item belongs to the cluster
whose center (or centroid) is nearest. The algorithm starts off by randomly
generating k clusters and determining the cluster centers. In a next step each
point is assigned to the nearest cluster center and the new cluster centers are
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recomputed. The two final steps are repeated until the convergence criterion is
met.

In Section 5 we compare the performance of the fuzzy ant based clustering
algorithm with k-means clustering. To run k-means clustering we need to pro-
vide a desired number of clusters as an input. Obviously, there is no universal
number of clusters that can fit to any type of data, thus this requirement poses
a serious restriction on the algorithm’s applicability. To partially overcome this
problem we decided to use not an absolute number of clusters but a proportion
of the number of documents per person. In particular, we look at results where
k is 20, 40 and 60% of the document set size.

5. Evaluation

In this section we compare the results of the fuzzy ant based algorithm on
web people data with both an agglomerative hierarchical clustering approach
and a k-means clustering approach, since these two methods are most frequently
used in the related research. One of the main weaknesses of the hierarchical and
k-means clustering algorithms is that they require a predefined number of output
clusters or a similarity treshold as an input. This is an impractical restriction
for the problem at hand since the number of clusters strongly depends on the
name, a phenomenon that is clearly reflected in the striking difference between
the training data described below (an average of 11 clusters per name) and the
test data (an average of 46 clusters per name). The similarity threshold, in turn,
depends on the clusters density, i.e. on the similarity of the objects within one
cluster. For one name it could be very high (e.g. one person is a politician and
another is a sportsman), while for another relatively low (e.g. both persona are
actors). In this case, no universal threshold can be set to fulfill both clustering
cases. The fuzzy ant based algorithm does not depend either on the number of
clusters, nor on the cluster density, which makes it a very suitable candidate for
solving this task.

5.1. Data sets
Given the high relevance of the Web People Search problem for various NLP

domains, a first WePS task was organized in the framework of the SemEval
2007 Fourth International Workshop on Semantic Evaluations8, an international
competition on semantic evaluation which was organized in conjunction with the
Annual Meeting of the Association for Computational Linguistics (ACL-2007).
In this SemEval framework, the task organizers [2] provided the participants
with training data and test data9. The training set covers different degrees
of ambiguity, including very common names, uncommon names, and celebrity
names, which tend to monopolize search results.

8http://www.senseval.org/
9Available at http://nlp.uned.es/weps
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The names were selected from the US Census corpus (32 names), from
Wikipedia (7 names) and from the Program Committee listing of the ECDL-
2006 conference (10 names). The Wikipedia and ECDL sets contain documents
corresponding to the first 100 results for a person name query to the Yahoo!
search engine, whereas the US Census sets contain a varying number of search
engine results (from 2 to 405 documents) per person name. These documents
were manually clustered. Documents that could not be clustered properly were
put in a “discarded” section.

The test data were constructed in a similar way (30 sets of 100 web pages).
Unfortunately, there was a general increase in ambiguity relative to the train-
ing set. The global ambiguity average (number of different entities per person
name) is 10.76 for the training data, whereas for the test data it is 45.93 [2].
The largely different distributions in the training and test sets makes the task
very challenging for a machine learning approach (e.g. for training the distance
threshold for clustering).

The first WePS competition has been followed by a second WePS workshop
[3], that was organized in conjunction with the International World Wide Web
Conference (WWW2009). The test set for the second competition again con-
tains 30 data sets (each corresponding to a person name) and the names were
selected from Wikipedia, the Program Committee listing of the ACL-2008 con-
ference and from the US Census corpus. The second test set has on average
18.64 entities per person name.

5.2. Evaluation metrics
Clustering quality can be evaluated against internal criteria (how similar

are documents within a cluster and how dissimilar are documents from differ-
ent clusters) or external criteria (by comparing the output clusters against a
set of reference clusters) [27]. The first approach is often the method of choice
when no reference clusters (also called categories) are available. In our eval-
uation however, we focus on the second criterion and compare our clustering
output against the gold standard that has been made available within the WePS
competition framework.

Different evaluation metrics have been proposed for measuring clustering
quality when reference clusters or categories are available: purity and inverse
purity (and their combined F-measure) [2], mutual information [39], clusters
and class entropy [6], rand statistics [34], Jaccard coefficient [7], etc. Amigó et
al. [1] tested different clustering metrics against a number of formal constraints,
being:

• cluster homogeneity: clusters should only contain items belonging to one
category

• cluster completeness: items belonging to the same category should be
grouped into the same cluster

• “rag bag”: it is preferable to have clean clusters plus a “rag bag” contain-
ing miscellaneous
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• cluster size versus cluster quality: a small error in a large cluster is prefer-
able to a large number of small errors in small clusters

Although there is no single metric satisfying all constraints, the BCubed
metric combines most features of the existing metrics and scores best compared
to the output of a human quality assessment test [1]. This motivates our choice
for using purity and inverse purity, since these are the official evaluation metrics
of the WePS competition, and the BCubed measure, since that has been found
to be a reliable clustering metric. We briefly recall their definitions below.

5.2.1. Purity and inverse purity
The purity and inverse purity metrics assume a one to one mapping between

the predicted clusters and the manually labeled clusters in the gold standard
data set (henceforth “categories”) and rely on the precision and recall concepts
from the field of information retrieval. Purity focuses on the proportion of the
most frequent class in each cluster, while inverse purity considers the cluster
with highest recall for each category. Perfect scores for purity are obtained by
assigning all items to separate clusters, while putting all items together in one
single cluster results in maximum scores for inverse purity. In our evaluation, we
have implemented purity, inverse purity and their harmonic mean F according
to the definition in [1].

Given a set of manually labeled categories (gold standard) L = {L1, L2, . . . ,
Lm}, a set of clusters C = {C1, C2, . . . , Ck} to be evaluated, and the number
of clustered items n, purity is obtained by taking the weighted average of the
maximal precision values:

Purity =
k∑

i=1

(
|Ci|
n

)
m

max
j=1

Precision(Ci, Lj)

where precision is defined as

Precision(Ci, Lj) =
|Ci ∩ Lj |
|Ci|

Inverse purity looks for the cluster with maximum recall for each category:

InversePurity =
m∑

i=1

(
|Li|
n

)
k

max
j=1

Recall(Cj , Li)

where Recall(Cj , Li) = Precision(Li, Cj).

To calculate their harmonic mean, the F-measure of [38] is used:

Purity F =
m∑

i=1

(
|Li|
n

)
k

max
j=1
{F (Cj , Li)}
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where the maximum is taken over all clusters. F (Cj , Li) is defined as:

F (Cj , Li) =
2 ·Recall(Cj , Li) · Precision(Cj , Li)
Recall(Cj , Li) + Precision(Cj , Li)

5.2.2. BCubed
The BCubed metric [5] was originally designed for scoring coreference al-

gorithms. Precision and recall are computed for each entity in the document,
and are combined to calculate final precision and recall for the entire output.
If we extend the BCubed algorithm for clustering evaluation, we can state that
two items are correctly linked (clustered together) if they share a category and
appear in the same cluster. The precision score then expresses how many items
in the same cluster belong to its category, while the recall represents how many
items from its category appear in the cluster. The main advantage compared
to the purity measure is that the calculated precision of the items depends on
the reference item and not on the predominant category in the cluster.

Amigó et al. [1] describe the BCubed measure using a function correctness
that maps a pair of items to 0 or 1. In particular, correctness(e, e′) = 1 when
items e and e′ share a category if and only if they appear in the same cluster.
In other words, with L(e) the category of an item e, and C(e) the cluster to
which item e is assigned:

correctness(e, e′) =
{

1, if L(e) = L(e′) and C(e) = C(e′)
0, otherwise

The BCubed precision of an item is then defined as the proportion of correctly
related items in its cluster (including the item itself), and the overall BCubed
precision as the averaged precision over all items:

PrecisionBCubed = AvgeAvge′∈C(e)correctness(e, e′)

The BCubed recall of an item is defined as the proportion of correctly related
items in its category, and the overall BCubed recall as the averaged recall over
all items:

RecallBCubed = AvgeAvge′∈L(e)correctness(e, e′)

Finally, the harmonic mean BCubed F (with parameter α = 0.5) of BCubed
precision and recall is calculated as follows:

BCubed F =
1

α 1
PrecisionBCubed + (1− α) 1

RecallBCubed

5.3. Evaluation results
In order to evaluate the quality of the fuzzy ant based clustering algorithm

for Web People Search, we have compared it, using all evaluation metrics, with
a state-of-the-art hierarchical clustering approach (Agnes) as well as with a well-
known partitional clustering approach (k-means). The evaluation metrics used
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are BCubed precision, recall and F-score, purity, inverse purity and purity–
inverse purity F-score. We have fine-tuned all algorithms parameters on the
SemEval training data, and evaluated their performance on the WePS test sets
(referred to as WePS1 and WePS2). Table 3 lists the weights for all features we
used (common for all algorithms).

Biographical Facts Date of birth 0.10
Date of death 0.10
Year of birth 0.10

Named Entities Person name 0.02
Locations 0.07

Other named entities 0.04
URL and Email URL addresses 0.10

Email addresses 0.10
Domain names 0.10

Location IP addresses 0.07
Keywords Content of web page 0.08

Title and snippet 0.12

Table 3: Overview of all extracted features and the corresponding feature weights

We first present the performance results obtained with Agnes and k-means
using three different clustering thresholds. Next, we compare these results with
the fuzzy ant based clustering.

5.3.1. Hierarchical clustering
Figure 1 shows the results for Agnes with three different clustering thresholds

(threshold 0.1, threshold 0.2, and threshold 0.3) applied to the training data.
Figure 2 shows the results for Agnes applied to the first WePS test set, whereas
Figure 3 shows the results on the second WePS test set. Note the trade-off
between BCubed precision and BCubed recall in all figures: when the precision
goes up, the recall decreases, and vice versa. A similar tendency can be observed
for the purity and inverse purity on the test data. The F-scores (BCubed F and
Purity F) are in this sense the most informative, as they provide a summary of
the performance in terms of both precision and recall.

The Agnes results show the large impact of the clustering threshold. The
first threshold (only documents with similarity above 0.1 get clustered) clearly
outperforms the other two thresholds when applied to the training data. Indeed,
both BCubed F and Purity F decrease as the threshold increases. When applied
to the first test set however, this trend is reversed for BCubed F, indicating the
first threshold as the worst choice, while for Purity F all thresholds lead to
relatively similar results. The scores on the second test set show again much
better performance for the first threshold compared to the other two.

The remarkable difference in performance among the various data sets is
probably due to the different ambiguity level for the training and test data sets.
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Figure 1: Results for Agnes using three different clustering thresholds on training data

In the training data there are on average 10.67 entities per person name, while
the first test set has on average 45.93 and the second test set 18.64 entities per
person name. The large impact of the threshold setting is important, as the
threshold has to be predefined for each hierarchical clustering task, and for Web
People Search we do not know the ambiguity, or in other words, the number of
desired output clusters in advance.

5.3.2. Partitional clustering
Figure 4 represents the results for k-means on the training data with the

number of clusters k equal to 20, 40 and 60% of the document set size. It
can be seen in Figure 4 that the trade-off between BCubed recall and BCubed
precision for k-means becomes more exposed with the growth of the number of
clusters, while a smaller number of clusters provides more balanced scores. The
results suggest that setting the number of clusters as 20% of the document set
size is an optimal choice in terms of BCubed F and Purity F.

However, the disadvantage of explicit specification of the number of clusters
becomes evident when we apply the algorithm to the test sets. In Figure 5 it is
clear that 20% of the data set size is not the best choice here since it provides
the worst results both in terms of BCubed F and Purity F. This effect is due
to the drastic drop in the precision for the smaller number of clusters. The
results for the second test set provided in Figure 6 show the same trend as for
the training data, however the values for all metrics are significantly smaller.
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Figure 2: Results for Agnes using three different clustering thresholds on WePS1 test data

It is interesting to observe that the performance of the k-means algorithm
on the training data set is in line with that on the second test set, but diverges
from that on the first test set. Notice how we observed a similar phenomenon
for the hierarchical clustering approach.

5.3.3. Fuzzy ant based clustering
Table 4 lists the parameter values we used in all experiments involving the

fuzzy ant based clustering algorithm.

n1 parameter for probability of dropping one item 1
m1 parameter for probability of picking up one item 1
n2 parameter for probability of dropping an entire heap 5
m2 parameter for probability of picking up a heap 5

Table 4: Parameter settings for fuzzy ant based clustering

Figure 7 shows the results for our fuzzy ant based clustering approach when
applied to the training data, whereas figure 8 and figure 9 show the results
for our fuzzy ant based clustering implementation when applied to both test
data sets. All three figures display results after 800 000 ant runs in which an
individual ant can decide to do a drop or a pick up. In addition, the figures
include the results obtained with Agnes and with k-means with the parameter
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Figure 3: Results for Agnes using three different clustering thresholds on WePS2 test data

Figure 4: Results for k-means using three different numbers of clusters on training data

settings that came out as the best ones on the training data, i.e. a threshold of
0.1 for Agnes, and a number of clusters equal to 20% of the document set size
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Figure 5: Results for k-means using three different numbers of clusters on WePS1 test data

Figure 6: Results for k-means using three different numbers of clusters on WePS2 test data

for k-means.
When applied to the training data, all three algorithms (fuzzy ants, Agnes,

k-means) show a comparable best performance in terms of BCubed F, with a
slightly worse performance of k-means in terms of Purity F. The results for the
first test set show a completely different picture. The fuzzy ant based algorithm
clearly outperforms both other approaches in terms of both BCubed F and
Purity F. On the second test set, Agnes is the winner, with the fuzzy ant based
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Figure 7: Results for fuzzy ant based clustering compared with Agnes and k-means on training
data

Figure 8: Results for fuzzy ant based clustering compared with Agnes and k-means on WePS1
test data

algorithm being a close runner-up. Note how the fuzzy ant based algorithm
outperforms k-means clustering for both test sets.

The differences in results over the various data sets are due to the highly
imbalanced composition of the training data set (the number of documents per
person name varies from 2 to over 400 documents, which makes it hard to train
a learning algorithm) and the different level of ambiguity between the data sets.

To further differentiate the described clustering algorithms we performed a
statistical significance testing for every pair of methods. The null hypothesis in
this case is that the two algorithms being tested perform equally. To perform
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Figure 9: Results for fuzzy ant based clustering compared with Agnes and k-means on WePS2
test data

WePS1 test data WePS2 test data
Agnes vs. Fuzzy Ants 27.03 15.56

Agnes vs. k-means 1.05 0
Fuzzy Ants vs. k-means 3.75 4.21

Table 5: Results of McNemar’s test for clustering algorithms

the test we consider every pair of documents and observe whether this pair was
correctly assigned to the same cluster by both algorithms, i.e. we have paired
observations. On the other hand we are not able to draw a definite conclusion
about the data distribution, thus we choose to perform a non-parametric test.
Since we can have only two possible outcomes — two documents are assigned to
the same cluster correctly or not correctly — we choose a McNemar’s test [29]
to define whether the algorithms provide statistically significant results. The
significance was calculated for every person name, and we consider the minimal
significance results to evaluate the difference between the algorithms. These
significance numbers are provided in Table 5. It can be seen that all algorithms
are very different in terms of statistical significance except Agnes and k-means.
which produce an identical cluster for one of the person names in the second
WePS test set (hence the 0 in the table); however the results for other names
are still significantly different.

6. Conclusions

We have proposed a new approach to Web People Search, which is the prob-
lem of organizing search results for ambiguous person name queries into mean-
ingful clusters, each cluster referring to one single individual. In particular we:
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• represent every search result (i.e. document or web page) as a feature
vector containing relevant information extracted from the search result

• calculate the similarity of two search results as the weighted average of
the similarity of the individual features, using gain ratio to determine the
weights

• apply a fuzzy ant based algorithm for clustering the search results accord-
ing to similarity

The fuzzy ant based clustering approach has as its main advantage that the
number of output clusters does not have to be known or estimated a priori,
which makes it very well suited for the Web People Search task. We have
applied our algorithm to the WePS data sets that were used for the WePS-
2007 and WePS-2009 competitions, and compared its performance to that of
agglomerative hierarchical clustering (Agnes) and k-means clustering.

Our main finding is that the fuzzy ant based algorithm is more robust than
the two state-of-the-art algorithms. The choice of a specific clustering threshold
or a heuristic to determine the number of clusters before the start of the cluster-
ing process, has a very large impact on the hierarchical and k-means clustering
performance, while the fuzzy ant based algorithm does not require any a priori
information. This advantage of the fuzzy ant based algorithm is very clearly
noticeable on the WePS1 test data set, which has characteristics that are quite
different from those of the training set. Indeed, the global ambiguity average
(number of different entities per person name) is 10.76 for the training data,
whereas for the WePS1 data set it is 45.93. Information about the expected
number of clusters or the similarity threshold learned on the training data, and
consumed by Agnes and k-means, is not the best fit for the WePS1 data set. As
a result, these algorithms are outperformed by the fuzzy ant based clustering
algorithm. On the WePS2 test data set, which adheres closer to the original
training data, Agnes performs the best, but the fuzzy ant based algorithm is
still a close runner-up, making it the best choice overall.

In future research we would like to apply a genetic algorithm that combines
feature selection with parameter optimization for finding the best settings for
this WePS task. The different variables that have to be combined and optimized
are the feature weight settings, the probability parameter settings, the fuzzy
sets, and the optimal number of ants runs. In addition we would also like to
investigate the use of adding a postprocessing step after the ants runs in order
to merge additional clusters based on the cluster similarities.
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