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Abstract In this paper we show how the concepts of answer set programming and
fuzzy logic can be successfully combined into the single framework of fuzzy answer
set programming (FASP). The framework offers the best of both worlds: from
the answer set semantics, it inherits the truly declarative non-monotonic reasoning
capabilities while, on the other hand, the notions from fuzzy logic in the framework
allow it to step away from the sharp principles used in classical logic, e.g., that
something is either completely true or completely false. As fuzzy logic gives the user
great flexibility regarding the choice for the interpretation of the notions of negation,
conjunction, disjunction and implication, the FASP framework is highly configurable
and can, e.g., be tailored to any specific area of application. Finally, the presented
framework turns out to be a proper extension of classical answer set programming,
as we show, in contrast to other proposals in the literature, that there are only minor
restrictions one has to demand on the fuzzy operations used, in order to be able to
retrieve the classical semantics using FASP.
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1 Introduction

The answer set programming (ASP) paradigm [15] has gained a lot of popularity in
the last years, due to its truly declarative non-monotonic semantics, which has been
proven useful in a number of interesting applications, e.g. [12, 16, 20, 23]. The idea
behind the answer set semantics, a generalization of the stable model semantics [14],
is both intuitive and elegant. Given a program P and a candidate answer set M, one
computes a reduct program PM of a simpler type for which a semantics (PM)

� is
known. The reduct PM is obtained from P by taking into account the consequences
of accepting the proposed truth values of the literals in M. The candidate set M is
then an answer set just when (PM)

� = M, i.e. M is “self-producible.”
An alternative characterization of answer sets is given in [22, 26] in terms of

unfounded sets. Intuitively, an unfounded set is a set of literals for which there is
no motivation to suppose that these literals have to be true. The reason herefore is
that these literals either depend on each other, or the rules that can motivate them
are not applicable. A candidate answer set M is then an answer set of P iff it is a
model of P and it does not contain such unfounded sets.

Although ASP provides a powerful solution for knowledge representation and
non-monotonic reasoning, it has some drawbacks regarding the configurability of the
semantics w.r.t. the type of application under consideration, as witnessed by the large
number of extensions, both syntactically and semantically, that have been proposed
in the literature [2, 5, 7, 10]. E.g., most1 ASP semantics demand that a solution to a
program satisfies all the rules. Further, the literals available in the program, i.e. the
building blocks of rules, can only be true or false (or unknown when one considers
e.g. the well-founded semantics [27]), and classical consistency is mandatory, i.e. a
and ¬a cannot be true at the same time (or not even “a bit” true at the same time).
Also the interpretation of negation as failure, the construct that gives ASP its non-
monotonicity, is very sharp: not a is true iff a is not true.

Sometimes however, one wants to work with concepts that are not easily catego-
rized as being either true or false. Consider e.g. the atoms shiver, high_temperature
and sick in the following rule

sick ← high_temperature, shiver .

In the traditional setting this implies that a person is sick if she suffers from shivering
and has a high temperature. However, when is a temperature to be considered
“high” and when can one say that someone is shivering? Since in ASP literals can
only be true or false, these problems would be tackled by imposing thresholds, e.g.
stating that high_temperature is true if the temperature is at least 38◦, and false
otherwise. The choice of the exact values of such thresholds is often quite arbitrary
but nevertheless has a large impact on the outcome. A temperature variation as small
as 0.1◦ can make the difference in whether or not the rule is applicable. Doctors and
patients on the other hand do not perceive such a dramatic difference between a
temperature of 37.9◦ and one of 38◦; they rather perceive a gradual transition instead
of an abrupt one. To model this, one should be able to express that literals are true
to a certain extent, as opposed to being either true or false.

1Some semantics dealing with preferences on rules [6, 13, 28] are more flexible.
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Further, it is sometimes impossible to find a solution that fully satisfies all rules
of the program. In this case, one might still wish to look for a solution satisfying
the program at least to a reasonably high degree. At other times, it may not even be
required to obtain a solution that satisfies a program fully. That is, one might be more
interested in a solution satisfying the program to a satisfactory high degree, especially
if this solution comes at a lower cost. Consider the following problem based on an
example from [2].

Example 1 There are four different kinds of sports that we like to practice to
some degree. However, only certain combinations of sports lead to a full body
exercise. Furthermore, some of the sports complement each other, i.e. less practice
of one automatically leads to more practice of the other (rules r1 . . . r4 in the
program below).

r1 : lift_weights ← not swim
r2 : swim ← not lift_weights
r3 : run ← not play_ball
r4 : play_ball ← not run
r5 : full_body_exercise ← lift_weights, run
r6 : full_body_exercise ← swim, play_ball
r7 : ← not full_body_exercise

The two classical answer sets of this program are

M = {full_body_exercise, lift_weights, run}
and

N = {play_ball, full_body_exercise, swim} .

Hence, to achieve a full body exercise, one needs to practice either weight lifting
and running (M), or ball playing and swimming (N) to the highest degree. ASP only
considers the alternatives of practicing a sport to the highest degree, or not practicing
it at all. Likewise, ASP only considers either achieving a full body exercise, or none
at all. However, in practice, we might be reluctant to carry out the complete sport
programs necessary to achieve a full body exercise. Nevertheless we may want to
put in some physical effort: say, we might be interested to know which combinations
of the four sports we should practice, and to what degree, such that an acceptable
degree, e.g. 0.7, of full body exercise is obtained.

Fuzzy logic is a suitable framework for dealing with degrees of truth and satis-
faction [31]. In its most general form, fuzzy logic considers a complete lattice L of
truth values on which it redefines the classical operations of negation, conjunction,
disjunction and implication; in such a way that they correspond to the classical ones
in the top and bottom elements of the lattice. One of the strengths of fuzzy logic
regarding these operations is that a user can freely choose, depending on the type of
application under consideration, which specific definition she uses for the operations.

A combination with fuzzy logic increases the flexibility and hence the application
potential of ASP. Such flexibility can be introduced at several levels. In the fuzzy
answer set programming (FASP) framework introduced in this paper, we consider
fuzzy answer sets, which means that literals can belong to an answer set to a certain
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extent, as opposed to either belonging to the answer set or not. In accordance, the
literals in a program can be true to a certain degree. We also relax the definition of
consistency to allow that, if desired, both a and ¬a can be true to a certain degree
at the same time without necessarily loosing consistency. Similarly, we allow for a
more flexible interpretation of negation as failure. Crucial to our approach is the
notion of a satisfaction function, as it enables us to compute the extent to which a
rule is satisfied under a given fuzzy interpretation. The satisfaction function is then
used to develop the concept of a fuzzy model. Next, we adapt the classical notion
of an unfounded set to the setting of fuzzy interpretations, which allows us to bring
to surface whether a fuzzy model is indeed supported by a program, in other words
whether it deserves the name of fuzzy answer set.

The rest of the paper is organized as follows. In Section 2 we give some pre-
liminaries on fuzzy logic and answer set programming, while we introduce the
combination of both, i.e. fuzzy answer set programming (FASP), in Section 3.
Section 4 shows how FASP can be combined with fuzzy input while the relationship
between minimal fuzzy models and answer sets is discussed in Section 5. Before
giving some comparison with related work in Section 7, we show in Section 6 how
the classical answer set semantics can be retrieved from FASP. Finally, we conclude
and give some directions for future research in Section 8.

2 Preliminaries

2.1 Truth lattices

In this paper, we consider a complete truth lattice, i.e. a partially ordered set (L, ≤L)

such that every subset of L has an infimum (greatest lower bound) and a supremum
(least upper bound), which we denote by inf and sup respectively [4]. Such a lattice is
often denoted by L, tacitly assuming the ordering ≤L. Furthermore, we use 0L and
1L to denote respectively the smallest and the greatest element2 of L. If the lattice
L under consideration is clear from the context, we omit the subscripts and use ≤, 0
and 1 to denote the ordering, the smallest and the greatest element respectively.

The traditional logical operations of negation, conjunction, disjunction, and
implication can be generalized to logical operators acting on truth values of L
(see e.g. [21]).

A negator on L is any L → L mapping N satisfying N (0) = 1 and N (1) = 0.
Moreover we require N to be decreasing, i.e. x1 ≤ x2 implies N (x1) ≥ N (x2) for
all x1 and x2 in L. A negator N is called involutive if N (N (x)) = x for all x in L.

A triangular norm T on L is any commutative and associative L2 → L mapping T
satisfying T (1, x) = x, for all x in L. Moreover we require T to be increasing in both
of its components, i.e.3 x1 ≤ x2 implies T (x1, y) ≤ T (x2, y) for all x1, x2 and y in L.
A triangular norm, or t-norm for short, corresponds to conjunction.

A triangular conorm S on L is any increasing, commutative and associative
L2 → L mapping satisfying S(0, x) = x, for all x in L. Moreover we require S to

2In the literature one will also find the notation ⊥ and � to denote 0L and 1L respectively.
3Note that the monotonicity of the second component immediately follows from that of the first
component due to the commutativity.
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be increasing in both of its components. A triangular conorm, t-conorm for short,
corresponds to disjunction.

An implicator I on L is any L2 → L–mapping satisfying I(0, 0) = 1, and I(1, x) =
x, for all x in L. Moreover we require I to be decreasing in its first, and increasing in
its second component, i.e. x1 ≤ x2 implies I(x1, y) ≥ I(x2, y) as well as I(y, x1) ≤
I(y, x2) for all x1, x2 and y in L. Every implicator induces a negator by defining
N (x) = I(x, 0).

The dual of a t-norm T w.r.t. a negator N is a t-conorm S defined as S(x, y) =
N (T (N (x),N (y))) for all x and y in L. The mapping IS,N defined by IS,N (x, y) =
S(N (x), y) is an implicator, usually called S-implicator (induced by S and N ). On
the other hand, the mapping IT defined by IT (x, y) = sup{λ|λ ∈ L and T (x, λ) ≤ y}
is an implicator, usually called the residual implicator or R-implicator (of T ). If
the partial mappings of T are supmorphisms,4 then T and IT satisfy the residual
principle or adjoint condition

T (x, y) ≤ z iff x ≤ IT (y, z)

While the framework we will introduce to perform fuzzy answer set programming
in Section 3 can be used in combination with any complete lattice, we will mostly
restrict ourselves for the examples in the current paper to the complete lattice
([0, 1], ≤). The following example presents some fuzzy logical operators on this
lattice.

Example 2 The mapping Ns defined as Ns(x) = 1 − x for all x in [0, 1] is called the
standard negator. The t-norms TM, TP, and TW and their dual t-conorms SM, SP, and
SW w.r.t. the standard negator, are defined as

TM(x, y) = min(x, y) SM(x, y) = max(x, y)

TP(x, y) = x · y SP(x, y) = x + y − x · y
TW(x, y) = max(x + y − 1, 0) SW(x, y) = min(x + y, 1)

for all x and y in [0, 1]. They induce the following implicators (the mappings on the
right are R-implicators while those on the left are S-implicators; for ease of notation
the inducing negator Ns has been omitted):

ISM(x, y) = max(1 − x, y) ITM(x, y) =
{

1, if x ≤ y
y, else

ISP(x, y) = 1 − x + x · y ITP(x, y) =
{

1, if x ≤ y
y
x , else

ISW(x, y) = min(1 − x + y, 1) ITW(x, y) = min(1 − x + y, 1)

Each of these t-norms and its associated R-implicator satisfy the residuation princi-
ple. The above mentioned S-implicators induce the standard negator Ns, while ITM

and ITP induce the Gödel negator5 Ng defined by Ng(x) = 1 if x = 0 and Ng(x) = 0
otherwise.

4A L → L mapping g is called a supmorphism iff for each family (xi)i∈I in L it holds that sup{g(xi) |
i ∈ I} = g(sup{xi | i ∈ I}).
5This negator is also known in the literature as the Heyting negator.
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A fuzzy set in U is a U 
→ L mapping. The set of all elements that have a non-zero
membership degree in a fuzzy set A in U is called the support, i.e. supp(A) = {x|x ∈
U ∧ A(x) ≥L 0L}. For fuzzy sets A and B in U , A is said to be included in B, denoted
by A ⊆L B, iff A(u) ≤L B(u) for all u in U . As usual, we have A ⊂L B iff A ⊆L B
and not B ⊆L A. When the lattice under consideration is clear from the context, we
will omit the subscripts.

2.2 Answer set programming

We give some preliminaries concerning the answer set semantics for logic pro-
grams [3]. A literal is an atom a or a negated atom ¬a. For a set of literals X, we
use ¬X to denote {¬l | l ∈ X} where ¬¬a = a. When X ∩ ¬X = ∅ we say that X is
consistent. An extended literal is a literal or a naf-literal of the form not l where l is
a literal. The latter form denotes negation as failure. For a set of extended literals
Y, we use Y− to denote the set of ordinary literals underlying the naf-literals in Y,
i.e. Y− = {l | not l ∈ Y}. Further, we use not X to denote the set {not l | l ∈ X}. An
extended literal l is true w.r.t. X, denoted X |= l, if l ∈ X in case l is ordinary, or
a �∈ X if l = not a for some ordinary literal a. As usual, X |= Y iff ∀l ∈ Y · X |= l.

A rule is of the form a ← β, where6 a is either a literal or the symbol ⊥ and β is
a finite set of extended literals. To denote the head a of the rule, we use H(a ← β),
while B(a ← β) is used to denote the body β. When the head of a rule r is the symbol
⊥, i.e. H(r) = ⊥, the rule is called a constraint, while rules with an empty body, i.e.
B(r) = ∅ are called facts. For constraints, we normally omit the head symbol, i.e. we
use ← β instead of ⊥ ← β.

A finite set of rules is called a (logic) program. The Herbrand base BP of a program
P contains all atoms appearing in P. The set of all literals that can be formed with
the atoms in P, denoted by LitP, is defined by LitP = BP ∪ ¬BP. Similarly, we define
the set of all extended literals that can be formed with the atoms in P as ElitP =
LitP ∪ not LitP. Any consistent subset I ⊆ LitP is called an interpretation of P.

A rule r = a ← β is satisfied by an interpretation I, denoted I |= r, if I |= a,
whenever I |= β, i.e. if r is applicable (I |= β), then it must be applied (I |= {a} ∪ β).
As I �|= ⊥, this implies that a constraint rule can only be satisfied if it is not applicable
(I �|= β). For a program P, an interpretation I is called a model of P if ∀r ∈ P · I |= r,
i.e. I satisfies all rules in P. It is a minimal model of P if there is no model J of P such
that J ⊂ I.

A simple program is a program without negation as failure. For simple programs
P, we define an answer set of P as a minimal model of P. On the other hand,
for a program P, i.e. a program containing negation as failure, we define the GL-
reduct [14] for P w.r.t. I, denoted PI , as the program consisting of those rules7

a ← (β\not β−) where a ← β is in P and I |= not β−. Note that all rules in PI are
free from negation as failure, i.e. PI is a simple program. An interpretation I is then
an answer set of P iff I is a minimal model of the GL-reduct PI .

6For simplicity, we assume that programs have already been grounded.
7As usual, \ denotes set difference.
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Example 3 Consider the program

r1 : a ← not b r2 : b ← not a

Clearly, both {a} and {b} are answer sets of this program as the GL-reducts P{a} =
{a ← } and P{b} = {b ← } have {a} and {b} respectively as their minimal model. On
the other hand, ∅ and {a, b} are not answer sets. For the former interpretation, the
reduct P∅ = {a ← ; b ← } has {a, b} as its minimal model which differs from ∅,
while the latter has an empty reduct, thus an empty minimal model, which differs
from {a, b}.

An alternative characterization of answer sets can also be given in terms of
unfounded sets [22, 26]. For a program P and an interpretation I, a set of literals
X ⊆ LitP is called an unfounded set w.r.t. I iff for each literal l ∈ X and each rule
l ← β ∈ P we either have (1) β ∩ X �= ∅, or (2) I �|= β. Intuitively, (1) covers the
case of literals that depend on each other to motivate their presence in I, while (2)
singles out rules that are not applicable, as they cannot motivate the presence of a
literal in I. An interpretation I is then called unfounded-free iff I ∩ X = ∅ for every
unfounded set X w.r.t. I. Now, it can be shown that a model S is an answer set of P
iff S is unfounded-free.

Example 4 Consider the program

r1 : a ← not b r2 : b ← not a r3 : c ← c, a r4 : c ← not a

One can see that S = {a, c} is a model of the above program. However, X = {c} is
unfounded w.r.t. S as the body of r3 contains a literal from X, and the body of r4 is
not applicable w.r.t. S, i.e. S �|= not a. As a result, S is not unfounded free and thus
not an answer set of the program.

On the other hand, one can check that T = {a} is an answer set of the program
as T is a model and clearly not unfounded. Indeed, the only rule with a in the head
is r1 which only contains naf-literals, i.e. condition (1) is not satisfied, and its body is
satisfied w.r.t. T, i.e. condition (2) is not satisfied.

3 Fuzzy answer set programming

Classical ASP, as defined in the previous subsection, is in some ways a very strict
framework in its semantics. In particular, an answer set is required to satisfy all rules
of the program fully. In a more flexible setting, we wish to be able to deal with
interpretations that satisfy rules possibly only to a certain extent. To this end, we
allow literals to be true to a degree, as opposed to either being true or not true. As
such, interpretations, and hence also answer sets, become fuzzy sets in LitP.

As the high configurability of fuzzy logic can be seen as one of its main strengths,
we will adopt this behavior to the FASP framework presented in this section.
Therefore, we allow a user to choose, in function of the application at hand, how
the different classical operations need to be interpreted. More specifically, a user has
to fix a complete lattice L first. Then, she has to choose two negators Nc and Nn,
which will be used to define consistency and the semantics of negation as failure
respectively. Further, two t-norms Tc and Ta need to be fixed, respectively used
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for defining consistency and applicability of rules. Also an implicator I is needed
to obtain the degree of satisfaction of a rule. Finally, two aggregators Ac and Ap

are needed, where Ac combines the consistency degrees of the different atoms and
their negation into a consistency degree for the interpretation, while Ap combines
all the degrees of satisfaction of rules into a single truth value denoting the degree in
which a fuzzy interpretation is a fuzzy model. For the rest of this paper, we assume,
without loss of generality, that the above choices have been made, and we will not
repeat them everytime in the definitions, but just use them. Section 6 contains a
discussion on choices of the fuzzy logical operators that behave more answer set like
than others.

The first classical notions that need to be tackled are containment and consistency.
In ASP a literal l is either true or false; and thus it is either contained in an
interpretation or not. When both l and ¬l are contained in an interpretation, it is
said to be inconsistent. In a fuzzy context, an interpretation is a fuzzy set to allow for
a literal l to be true to a degree. Furthermore, both l and ¬l can be a bit true in a
consistent way, making a modified notion of consistency necessary.

Definition 1 Let P be a program. A fuzzy interpretation I for P is a fuzzy set in
LitP, i.e. a I : LitP 
→ L mapping. With I we associate a consistency function Ic :
BP 
→ L, defined as Ic(a) = Nc(Tc(I(a), I(¬a))) for each a ∈ BP. Further, I is called
x-consistent, x ∈ L, iff Ac(BP, Ic) ≥ x.

Intuitively, the consistency function computes the degree of consistency of
a particular atom and its negation in an interpretation, while the definition of
x-consistency allows a user to choose how the individual consistencies of the atoms
and their negations have to be combined into a degree of consistency for the whole
interpretation. By choosing an appropriate lower bound x, the user can then fix
the point where an interpretation is no longer considered consistent. Note that by
using the aggregator Ac the user can choose to ignore certain inconsistencies, or she
can allow certain literals to be more inconsistent than others. However, we demand
that an aggregator is increasing whenever the degrees of the individual consistencies
are increasing. The classical notion of an interpretation emerges from the above
definition for the lattice L = {0, 1} by taking Ac(BP, Ic) = inf{Ic(a) | a ∈ BP}. In this
particular case, an interpretation I is called 1-consistent iff there does not exist an a
in BP such that both I(a) = 1 and I(¬a) = 1.

As fuzzy interpretations only assign truth values to ordinary literals explicitly,
we need a mechanism to retrieve truth values for naf-literals. While complementary
literals l and ¬l are only weakly related to each other using Nc, Tc, Ac and a certain
x-consistency boundary, naf-literals l and not l need a tighter connection since,
intuitively, a naf-literal not l can only be true to the degree that the underlying
ordinary literal l is false, and vice versa. Hence, we use Nn to extend a fuzzy
interpretation I to cover naf-literals by defining I(not l) = Nn(I(l)) for each l ∈ LitP.

Having fuzzy interpretations and x-consistency, we need to redefine the satisfac-
tion of rules. While a rule in ASP is either satisfied or not, in a more flexible setting
we should allow a rule to be partially (to a certain degree) satisfied. Further, each rule
does not have to be satisfied to the same degree, which is, e.g., useful in applications
having preferences among rules. To obtain these degrees, we use Ta and I to induce,
for a fuzzy interpretation I, a satisfaction function I|= that assigns a truth value to the



An introduction to fuzzy answer set programming 371

bodies of rules and to the rules themselves. Later on, this satisfaction function will be
used, in combination with the aggregator Ap, to obtain the degree in which a fuzzy
interpretation is a model of a program.

Definition 2 Let P be a program and let I be a fuzzy interpretation. The induced
satisfaction function I|= : 2ElitP ∪ P 
→ L is defined by

I|=(∅) = 1

I|=({l} ∪ β) = Ta(I(l), I|=(β))

I|=( ← β) = I(I|=(β), 0)

I|=(l ← β) = I(I|=(β), I(l))

Note that I|=({l}) = I(l) and I|=(not l) = Nn(I(l)), as {l} = {l} ∪ ∅ and Ta(I(l), 1) =
I(l). Intuitively, I|=(s), with s ∈ P, defines to which degree a rule s is satisfied taking
into account the truth assignments of the head and body of s in I. To define a fuzzy
model, the different I|=(s), with s ∈ P, need to be accumulated in some way. The user
defined aggregator Ap, which takes as input a program and a satisfaction function,
will accomplish this job and result in a truth value denoting the degree in which the
fuzzy interpretation I is a model of P. E.g., in an application working with different
knowledge bases, where each knowledge base has a certain degree of trust, one
could take a weighted aggregator into account. We demand that the aggregator is
increasing whenever the degrees of satisfaction of the rules increase.

Definition 3 Let P be a program and let I be an x-consistent fuzzy interpretation.
Then, I is an x-consistent fuzzy y-model of P, y ∈ L, iff Ap(P, I|=) ≥ y.

In the rest of the paper, a 1-consistent fuzzy y-model is also referred to as a fuzzy
y-model, for short.

Example 5 Consider the lattice L = [0, 1] and the program

r1 : a ← not b r2 : b ← not a r3 : c ← a

and consider the fuzzy interpretations8 K = {(a, 0.9), (b , 0.3), (c, 0.2)} and L =
{(a, 0.4), (b , 0.7), (c, 0.8)}. Both of these fuzzy interpretations are 1-consistent, taking
Ac(BP, Ic) = inf{Ic(a) | a ∈ BP} and independently of the choices for Nc and Tc.
For negation as failure, we use the negator Ns. To compute the satisfaction of the
rules, we use the implicator ISM . Finally, as an aggregator for the rules, we use
Ap(P, I|=) = inf{I|=(s) | s ∈ P}, i.e. the weakest rule dominates the solution.

Now, one can check that we have

K|=(r1) = max(1 − K(not b), K(a)) = max(1 − Ns(K(b)), K(a))

= max(1 − (1 − 0.3), 0.9) = 0.9

8As usual, a fuzzy set I in LitP is denoted as {(l, x) | I(l) = x ∧ l ∈ LitP}, omitting the literals (l, 0).
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Similarly, we have K|=(r2) = max(1 − (1 − 0.9), 0.3) = 0.9 and K|=(r3) = max (1−
0.9, 0.2) = 0.2 . As a result, K is a fuzzy 0.2-model of P. On the other hand, one
can verify that L|=(r1) = L|=(r2) = 0.7 and L|=(r3) = 0.8, yielding that L is a fuzzy
0.7-model of P.

Example 6 In Example 5, the weakest rule dominates the outcome. The inf operator
used in Example 5 for aggregating the satisfaction of the rules is the fuzzy logical
counterpart of the universal quantifier, expressing that all rules need to be satisfied
(more accurately, the program can only be a fuzzy model to the degree to which all
rules are satisfied). A more flexible approach can aim for satisfaction of most of the
rules. To model the vague quantifier “most,” we use an ordered weighted averaging
(OWA) operator [30]. Such an aggregator is defined by means of a weighting vector
(w1, w2, . . . , wn). All weights are positive and they sum up to 1. The corresponding
aggregator for rules is given by

Ap(P, I|=) =
∑
s j∈P

w j · I|=(s j)

with I|=(s j) being the jth largest satisfaction value of all rules in P. A key feature
of an OWA operator is thus the ordering of the rules according to their satisfaction
values prior to calculating the weighted average.

Going back to Example 5, we can use the weighting vector (0.5, 0.5, 0.0), express-
ing that 2 out of the 3 rules of the program need to be satisfied. Aggregating the
values K|=(r1) = 0.9, K|=(r2) = 0.9, and K|=(r3) = 0.2, we obtain 0.5 · 0.9 + 0.5 · 0.9 +
0.0 · 0.2 = 0.9, in other words K is a fuzzy 0.9-model of P. Similarly we aggregate
L|=(r3) = 0.8, L|=(r1) = 0.7, and L|=(r2) = 0.7 as 0.5 · 0.8 + 0.5 · 0.7 + 0.0 · 0.7, hence
L is a fuzzy 0.75-model of P. In both cases we ignored the rule that is least satisfied in
computing the overall satisfaction. As a result, one weak rule can no longer dominate
the solution. In contrast with the outcome in Example 5, K is now considered to be
a slightly better fuzzy model than L because it satisfies most of the rules to a slightly
higher degree.

The above definitions are conservative extensions of classical principles, i.e. the
classical definitions are special cases of the ones presented here. Hence it is not
surprising that the extensions suffer the same difficulties as the classical ones when
used to define a fuzzy answer set semantics. The first problem encountered is
illustrated by the following example.

Example 7 Consider the program

r1 : a ← b r2 : b ← a

Both I = {(a, 0), (b, 0)} and J = {(a, 1), (b, 1)} are “perfect” fuzzy models of the
program as they both satisfy all rules to a maximal degree 1. However, in traditional
ASP, the set I′ = {a, b} is unfounded [using condition (1) of the unfounded set
definition], making I′ not an answer set of the program.
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To solve the above problem, we could adopt condition (1) of unfounded sets
to a fuzzy version of unfounded sets. However, we also need a fuzzy adaption for
condition (2) of the unfounded set definition, as witnessed by the following example.

Example 8 Consider the program

r1 : a ← r2 : b ← a, not c r3 : d ← not b

and the fuzzy interpretations K = {(a, 0.9), (b, 0.2), (c, 0.9), (d, 0.9)} and L =
{(a, 0.9), (b, 0.9), (d, 0.1)}. For negation as failure, we use the negator Ns. To evaluate
the body of r2 we use Ta = TM, while the implicator that we use is I = ITM . Further,
we use again Ap(P, I|=) = inf{I|=(s) | s ∈ P}. One can verify that K and L are both
fuzzy 0.9-models. However, intuitively, K seems less acceptable than L. E.g., when
the rule r2 is considered w.r.t. K, we see that K(b) = 0.2, while K(b) = 0.1 would
suffice to obtain the same degree of satisfaction for r2, i.e. K|=(r2) = I(Ta(0.9, 1 −
0.9), 0.2) = I(0.1, 0.2) = 1 = I(0.1, 0.1). Further, there is no support for accepting c
at degree 0.9, as there is no applicable rule with c in the head.

On the other hand, L does not suffer from these problems as each literal in L
appears in the head of a rule and none of the truth degrees of the head literals can be
lowered without lowering the degree of satisfaction of the corresponding rule.

In traditional ASP, the above problem is solved by taking the GL-reduct which
will remove, for I = {a, b, c, d}, the rule r3 from the reduct PI , because r3 is not
applicable due to the not b literal in its body. Now, the minimal model of this reduct
does not equal I, hence, it is rejected as an answer set. Note that the removal of
a rule does not mean that this rule does not have to be satisfied anymore. On the
contrary, in the example above, rule r3 is removed because it is not applicable under
interpretation I, hence it is satisfied by default, independently of the truth value
of d. Therefore, the above case is handled by condition (2) in the unfounded set
characterization of answer sets.

Note that in traditional ASP, there are two possible scenarios for a model I to
satisfy a rule of the form l ← β. Either it is applicable (I |= β), hence l must assume
the truth value 1 to satisfy the rule, or it is unapplicable (I �|= β), hence the rule is
satisfied by default and l can assume any truth value from the lattice L = {0, 1}. In
the first case, the truth value of l is fully determined by the rule, while in the latter
case, the rule does not impose any restrictions on the truth value of l, hence taking it
into account does not influence the result and we can remove the rule.

In FASP, such a removal strategy for naf-literals is not feasible as such literals
may be true only to a certain degree, making the bodies of some rules applicable to a
certain degree, which requires that they also need to be applied to a certain degree.
Hence, as opposed to either fully determining the truth value of the head of a rule
(full information), or leaving it completely arbitrary (no information), in FASP a rule
may also carry some information that delimits the set of possible truth values that can
be assumed by the head.

Thus, in a fuzzy adaption of condition (2) of unfounded sets, we will need to
define for each rule r in the program a subset Y of L such that assigning any value
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from Y to the head of r does not lower r’s degree of satisfaction. However, when
the lower values in the range are chosen, the rule is said to support its head literal
better. Formally, the support of a rule l ← β ∈ P w.r.t. a fuzzy interpretation I is
defined as

Is(l ← β) = inf{y | I(I|=(β), y) ≥ I|=(l ← β)} .

Combining the above allows us to define a version of unfounded sets for fuzzy
models.

Definition 4 Let P be a program and let I be a fuzzy interpretation. A set of literals
X is an unfounded set w.r.t. I iff for each literal l ∈ X and each rule l ← β ∈ P:

1. β ∩ X �= ∅; or
2. I(l) > Is(l ← β); or
3. I|=(β) = 0 holds.

An interpretation I is unfounded-free iff supp(I) ∩ X = ∅ for every unfounded
set X w.r.t. I. An x-consistent unfounded-free fuzzy y-model of P is called an
x-consistent fuzzy y-answer set of P.

In the rest of the paper, a 1-consistent fuzzy y-answer set is also referred to as a
fuzzy y-answer set, for short.

Example 9 Reconsider Example 7. Clearly, supp(J) is unfounded w.r.t. J as both
r1 and r2 satisfy condition (1) of Definition 4. Obviously, I is unfounded-free as
supp(I) = ∅, yielding that I is a fuzzy 1-answer set.

Example 10 Reconsider Example 8. One can check that X = {b, c, d} is an un-
founded set w.r.t. K, as

– For b ∈ X, we have Ks(r2) = inf{y | I(0.1, y) ≥ 1} = inf[0.1, 1], yielding that
K(b) = 0.2 > Ks(r2) = 0.1;

– For c ∈ X, we have no rules in P with c in the head of the rule, vacuously
satisfying the conditions in Definition 4; and

– For d ∈ X, we have K|=(r3) = I(1 − 0.2, 0.9) = I(0.8, 0.9) = 1 and thus Ks(r3) =
inf{y | I(0.8, y) ≥ 1} = inf[0.8, 1], yielding that K(d) = 0.9 > Ks(r3) = 0.8.

On the other hand, for L and the rules in P, we have

L(a) = inf{y | I(1, y) ≥ 0.9} = inf[0.9, 1]
L(b) = inf{y | I(0.9, y) ≥ 1} = inf[0.9, 1]
L(d) = inf{y | I(0.1, y) ≥ 1} = inf[0.1, 1]

As a result, L is clearly unfounded-free and thus a fuzzy 0.9-answer set of P.

The next example illustrates the need for condition (3) in the definition of an
unfounded set. Without this condition, the fuzzy version would not behave similar
to the classical one.
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Example 11 Consider the single rule a ← b and the fuzzy interpretation I =
{(a, 0), (b, 0)}. Without the third condition, one can check that the set X = {a} is
not unfounded w.r.t. I. However, in the classical setting X is unfounded w.r.t. the
interpretation ∅, as the only rule with the literal in the head is not applicable. The
third condition handles this particular situation, i.e. when a rule is neither applicable,
nor applied.

Note that our definition of unfounded set also correctly handles cases where a
rule r has a low applicability w.r.t. a fuzzy interpretation I and because of that only
motivates the head to the degree 0L, i.e. I(H(r)) = 0, Is(r) = 0 and I|=(B(r)) > 0.
In this setting, the head literal H(r) of such a rule should not be a member of
an unfounded set and our definition behaves like this as neither condition (2) nor
condition (3) will be satisfied by such rules.

The following is a straightforward property, but useful in the context of computing
fuzzy answer sets.

Proposition 1 Let P be a program and let M be an x-consistent fuzzy y-answer set of
P. Then, M is an x-consistent fuzzy z-answer set of P, with z ≤ y.

Proof Clearly, it follows from Definition 3 that a fuzzy y-model is a fuzzy z-model
whenever z ≤ y. Further, M being unfounded (Definition 4) does not depend on M
being a fuzzy y-model, and thus the result follows. ��

Intuitively, this implies that one can demand a lower bound z for the quality of the
fuzzy answer set, which can lead to three possible scenarios during fuzzy answer set
computation: (1) we get a solution of quality z, the minimum we demanded; or (2)
we get a solution of quality y > z, i.e. for the price of computing a solution of quality
z, we get one of a higher quality y; or (3) we get a solution of quality x < z, i.e. we
need to backtrack and find a better solution.

Example 12 Reconsider Example 1 from the introduction. We are interested to
know to what degrees we have to practice the various sports such that an acceptable
degree, e.g. 0.7, of full body exercise is obtained. Since our main concern is a
satisfactory degree of full body exercise, we will use an aggregator that gives more
importance to the constraint rule r7. An appropriate choice could be an aggregator
that only takes r7 into account. In this case a fuzzy interpretation is a model to the
degree to which it satisfies r7. Of course we also require the model to be unfounded-
free, which is where other rules come into play.

Further, we will also use Ta = TM to evaluate the body of rules, and the implicator
I = ITW to evaluate the satisfaction of the rules. A fuzzy 0.7-answer set K for the
above program must at least satisfy K|=(r7) ≥ 0.7. This yields that

min(1 − K(not full_body_exercise) + 0, 1) ≥ 0.7 ,

which implies that K(not full_body_exercise) ≤ 0.3, and thus, using Ns for negation
as failure, that K(full_body_exercise) ≥ 0.7. To have support for the literal, i.e. to
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avoid that full_body_exercise is part of an unfounded set, one of the two rules r5 or
r6 have to be made applicable to a certain degree in such a way that not both satisfy
condition (2) of Definition 4, i.e.

0.7 ≤ K(full_body_exercise) = inf{y | I(K|=(B(r5)), y) ≥ K|=(r5)} , or

0.7 ≤ K(full_body_exercise) = inf{y | I(K|=(B(r6)), y) ≥ K|=(r6)}
must hold. In turn this implies that some of the four sports will have to be exercised
in a higher degree than others to achieve that sufficient degree of applicability of r5

or r6.9

One can verify that

K = {(lift_weights, 0.8), (swim, 0.2), (run, 0.7), (play_ball, 0.3),

(full_body_exercise, 0.7)} ,

is a fuzzy 0.7-answer set of the above program.
Intuitively, this solution is acceptable as it describes a configuration where two

sports, which are together in rule r5, are assigned a higher degree than their
complementary variants, and due to this choice we have support for full body exercise
up to a degree of 0.7.

Similarly, it can be checked that

L = {(lift_weights, 0.9), (swim, 0.1), (run, 0.8), (play_ball, 0.2),

(full_body_exercise, 0.8)} ,

is a fuzzy 0.7-answer set of the program, and even a 0.8-answer set.
On the other hand, one can check that for the fuzzy interpretation

M = {(lift_weights, 0.8), (swim, 0.2), (run, 0.3), (play_ball, 0.7),

(full_body_exercise, 0.7)} ,

it turns out that {full_body_exercise} is an unfounded set w.r.t. M. Indeed, for the
rule r5 we have

inf{y | min(1 − 0.3 + y, y) ≥ 1} = inf[0.3, 1] = 0.3 �= 0.7 ,

while for the rule r6 we have

inf{y | min(1 − 0.2 + y, y) ≥ 1} = inf[0.2, 1] = 0.2 �= 0.7 .

Hence, M is not a fuzzy 0.7-answer set of the program, fitting our intuition.

Finally, the following example illustrates the usefulness of our semantics in cases
where the classical answer set semantics fails to provide solutions.

9Note that this example also illustrates how the proposed framework can be used to do fuzzy
diagnostic reasoning. The constraint r7 can be seen as an encoding of the observations, r5 and r6
represent the system description, while r1, r2, r3 and r4 provide the explanations.
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Example 13 Consider the program

r1 : a ← not b r2 : b ← not c r3 : c ← not a

which clearly has no classical answer sets.
Now, take Nn = Ns, I = ISP and Ap(P, I|=) = inf{I|=(s) | s ∈ P}. One can check

that this program has no fuzzy 1-answer sets. The only possibility satisfying all rules to
degree 1 would be {(a,1),(b,1),(c,1)}, which is clearly unfounded because of condition
(3) in Definition 4.

However, if we relax to e.g. fuzzy 0.9-answer sets, we do get solutions.
One such a solution is I = {(a, 0.8), (b, 0.8), (c, 0.8)}, where each rule is satis-
fied to the degree ISP(0.2, 0.8) = 1 − 0.2 + 0.16 = 0.96. Another solution is J =
{(a, 0.9), (b, 0.7), (c, 0.8)}, yielding that J|=(r1) = 0.97, J|=(r2) = 0.94 and J|=(r3) =
0.98. On the other hand, going too low with the truth values for a, b and c will no
longer yield fuzzy 0.9-answer sets. E.g., K = {(a, 0.3), (b, 0.3), (c, 0.3)} is only a fuzzy
0.51-answer set of the program.

Intuitively, the latter result is correct as the lower you go with the truth values,
the higher the applicability of a rule becomes, and thus the lower the degree of rule
satisfaction.

4 Fuzzy answer set programming with fuzzy input

In this section, we show how the fuzzy answer set semantics can be used in cases
where we want to combine a fuzzy program with a fuzzy input set of literals. In
classical answer set programming, one will construct for a program P and a set of
input literals I, a program �(P, I) whose answer sets correspond to the solutions of
the program enriched with the input. In the classical case, the program �(P, I) is
defined as

�(P, I) = P ∪ {l ← | l ∈ I} .

Example 14 Consider the program containing the rules

sell(S) ← sell_advice(S, A)

buy_share(S) ← buy_advice(S, A1), buy_advice(S, A2), A1 �= A2, not sell(S)

which intuitively encodes that we buy a share on the stock market if we have two
different buying advices for the share and there is no selling advice that we are aware
of.10 To avoid the long predicate names, we will use, in what follows, s, bs, ba and sa
to denote sell, buy_share, buy_advice and sell_advice respectively.

10Note that the rule sell(S) ← sell_advice(S, A) does not mean we sell a share from the moment we
have a single sell advice, but it is introduced to have a correct interpretation of the second rule. If we
would have written the second rule as

buy_share(S) ← buy_advice(S,A1), buy_advice(S,A2), A1 �= A2,
not sell_advice(S, A3)

the program would have a totally different meaning (due to the process of grounding), i.e. we buy a
share with two buy advices and if there is a source which has no selling advice.
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Suppose we get the following input from the outside world, i.e.

I = {ba(c1, a1), ba(c1, a2), ba(c2, a2), ba(c2, a3), ba(c3, a4), sa(c2, a4)} .

One can easily verify that �(P, I) has a single answer set

S = I ∪ {bs(c1), s(c2)} ,

which corresponds with our intuition.

However, in a fuzzy context the above input I will be more like

I f = {(ba(c1, a1), 0.8), (ba(c1, a2), 0.7), (ba(c2, a2), 0.9),

(ba(c2, a3), 0.6), (ba(c3, a4), 0.3), (sa(c2, a4), 0.7)} .

Intuitively, this means for example that adviser a1 advises strongly, i.e. to degree
0.8, to buy the share c1, while there is only a weak advice from source a4 to buy c3,
i.e. to degree 0.3.

To handle this kind of input, we can still use the construction �(P, I f ).
To be formally correct, its definition is slightly different, i.e. �(P, I f ) = P ∪
{l ← | l ∈ supp(If )}. Further, we will assume, without loss of generality, that for a
given fuzzy input I f , there is no rule a ← β ∈ P such that a ∈ supp(I f ), i.e. none of
the input literals appears in the head of the rules in P.

To retrieve intuitively correct solutions for �(P, I f ), one has to use an aggregator
that satisfies an additional constraint, i.e. an aggregator Ap for �(P, I f ) has to be
defined such that11 Ap(�(P, I f ), S) = 0 if there exists an l ∈ supp(I f ) for which
S|=(l ← ) �= I f (l). Intuitively, as an implicator always satisfies the condition I(1, x) =
x for every x ∈ L and because the input literals do not appear in the head of the rules
in P, such an aggregator implies that any fuzzy y-model S, with y > 0, will always
contain the fuzzy input I f .

Example 15 Reconsider the program from Example 14 and the fuzzy input I f we de-
fined before. The program �(P, I f ) contains, besides the rules {l ← | l ∈ supp(If )}
for the input, the rules12

r1 : s(c2) ← sa(c2, a4)

r2 : bs(c1) ← ba(c1, a1), ba(c1, a2), not s(c1)

r3 : bs(c2) ← ba(c2, a2), ba(c2, a3), not s(c2)

In what follows, we will use Ta = TM to evaluate the bodies of the rules, i.e. the
weakest literal in the body decides the degree of applicability. Further, we will use
the implicator I = ITM and we will use an aggregator that computes the infimum
of the satisfaction degrees of the rules in P, but which results in 0 if there is an

11Note that we allow the aggregator to be not increasing for input fact rules. Indeed, to guarantee
that the answer set contains each input fact exactly to the degree specified in the fuzzy input, the
aggregated value of the rule satisfactions drops to 0 as soon as the specified degree is surpassed in
one (or more) of the input fact rules.
12Note that we only provide the grounded rules that are useful, as the full grounding would make the
program unnecessarily large.
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l ∈ supp(I f ) for which S|=(l ← ) �= I f (l). Finally, we will restrict ourselves to fuzzy
1-answer sets in this example, i.e. all the rules in P have to be fully satisfied, and drop
the “1-” qualification accordingly.

Clearly, as we have no selling advices for the share c1, any fuzzy answer set S
will always yield S(s(c1)) = 0. Further, for c2, we will have, due to the rule r1, that
S(s(c2)) = S(sa(c2, a4)) = 0.7. If not, then S(s(c2)) < 0.7 would yield that S|=(r1) < 1
making S not a 1-answer set. On the other hand, if S(s(c2)) > 0.7, then {s(c2)} is an
unfounded set w.r.t. S as inf{y | I(0.7, y) ≥ 1} = inf[0.7, 1] = 0.7.

To evaluate the rule r2, first note that, using Ns for negation as failure, S(s(c1)) = 0
implies S(not s(c1)) = 1. Applying Ta on the body of r2 yields min{0.8, 0.7, 1} = 0.7,
which in turn implies that S(bs(c1)) = 0.7. Similarly, we have for the rule r3 that
S(s(c2)) = 0.7 implies that S(not s(c2)) = 1 − 0.7 = 0.3. This time, applying Ta on
the body of r3 yields min{0.9, 0.6, 0.3} = 0.3.

As a result, S = I f ∪ {(s(c2), 0.7), (bs(c1), 0.7), (bs(c2), 0.3)} is a fuzzy 1-answer
set for P and input I f .

The above example illustrates the usefulness of fuzzy answer set programming in
comparison with classical answer set programming. While in the classical case we
have either bs(x) or not bs(x) for each share x under consideration, the fuzzy case
results in bs(x) for each share, but with an additional degree indicating to what extent
bs(x) holds. E.g., if we lower the degree of the selling advice to 0.2 in the previous
example, one can check that S = I f ∪ {(s(c2), 0.2), (bs(c1), 0.7), (bs(c2), 0.6)} is also
a fuzzy answer set, which is intuitively acceptable as we have two relatively strong
buying advices for c2 and only a very weak selling advice.

5 Minimal fuzzy models and answer sets

From Proposition 1, it is clear that fuzzy answer sets are not truth minimal. However,
if one wants such an additional minimization step, and not necessarily truth minimal,
that can be accomplished in the usual way, e.g. as is done in the context of preferences
in answer set programming [28].

Definition 5 Let P be a program and let � be a partial order on the fuzzy interpreta-
tions of P. An x-consistent fuzzy y-answer set M of P is ≺-minimal (or ≺-preferred)
iff M is minimal w.r.t.13 ≺ among the x-consistent fuzzy y-answer sets of P.

Example 16 Consider the simple single rule program a ← . Clearly, {(a, 0.7)},
{(a, 0.8)} and {(a, 0.9)} are fuzzy 0.7-answer sets of this program. However, when
we consider ⊆ and apply it to the above fuzzy 0.7-answer sets, we get

{(a, 0.7)} ⊂ {(a, 0.8)} ⊂ {(a, 0.9)} ,

yielding that {(a, 0.7)} is a ⊂-minimal fuzzy 0.7-answer set of this simple program.

13As usual we have x ≺ y iff x � y and not y � x.
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In the classical answer set semantics, we have for simple programs, i.e. programs
without negation as failure, that minimal, w.r.t. subset inclusion, models coincide with
answer sets. In the fuzzy answer set semantics, such a result does not hold in general
for ⊂-minimality, as witnessed by the following example.

Example 17 Consider the lattice L f defined as 0 < γ < 1 and 0 < δ < 1, which can
be graphically represented as

Now, consider the simple program

r1 : a ← r2 : b ← a

and the implicator Iz defined as

Iz(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

δ if x = γ ∧ y = 0
γ if x = δ ∧ y = 0
y if x = 1
1 otherwise

One can check14 that for this implicator the fuzzy interpretation I = {(a, δ), (b, δ)}
is a ⊂-minimal 1-consistent fuzzy δ-model. If we lower the truth of a to 0, the rule
satisfaction of r1 also lowers to 0, making {(b, δ)} or ∅ at most fuzzy 0-models.
Similarly, the fuzzy interpretation {(a, δ)} is only a fuzzy 0-model as Iz(δ, 0) = γ and
inf({Iz(r1), Iz(r2)}) = inf({γ, δ}) = 0.

However, one can check that I is not unfounded-free, as {b} is an unfounded set
w.r.t. I. Indeed, we have that

I|=(r2) = Iz(δ, δ) = 1 ,

and thus we get for b

inf{y | Iz(δ, y) ≥ 1} = inf{δ, γ, 1} = 0 �= I(b) = δ .

As a result, I is not a 1-consistent fuzzy δ-answer set of P.

Intuitively, such problematic cases regarding minimality can happen in two cases,
i.e. when we have non-total lattices and when the inverse use of the implicator yields
a set of truth values that does not contain its own infimum. However, when we put
a restriction on the type of lattices and on the implicator used, we can avoid the
problems and show that ⊂-minimal models are fuzzy answer sets.

14As the example is so simple, we do not need to specify any fuzzy operations for evaluating the body
of rules or for defining consistency, as we only use the global conditions each negator or t-norm have
to satisfy. For the aggregation of the rules, we will use inf.
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In what follows, we assume that programs are simple, the lattice L is total and
the implicator is a residual implicator that satisfies the residual principle or adjoint
condition.

A mapping f : P 
→ L is called an y-rule interpretation, y ∈ L, for A iff
A(P, f ) ≥ y. For an y-rule interpretation f , a fuzzy interpretation I is called an
f -rule model iff I|=(r) ≥ f (r) for all r ∈ P. Due to the increasingness of the aggre-
gator A, an f -rule model is a fuzzy y-model.

The set of all ⊂-minimal y-rule interpretations for A and P is denoted by Ry
A.

The intuition is that each f ∈ Ry
A assigns truth values to the rules such that if these

values are used as satisfaction of the rules, the resulting solution must be a y-model
and none of the satisfactions may drop or we cannot have a y-model anymore.

For an y-rule interpretation f and a fuzzy interpretation I, we define the
f -support of a rule r ∈ P w.r.t. I as

Is( f, r) = inf{y | I(I|=(B(r)), y) ≥ f (r)} .

The support of a rule w.r.t. I is retrieved by choosing the satisfaction function I|= for
f , i.e. Is(r) = Is(I|=, r). The following lemma holds due to the monotonicity of the
fuzzy logical operators.

Lemma 1 Let f be an y-rule interpretation, and let I and J be fuzzy interpretations.
If I ⊆ J then for every rule r ∈ P it holds that Js( f, r) ≥ Is( f, r).

In what follows, Pl is used, l ∈ LitP, to denote the set {r ∈ P | H(r) = l}.

Definition 6 Let f be an y-rule interpretation, the immediate consequence operator
TP, f is defined on a fuzzy interpretation I by, for any literal l ∈ LitP,

TP, f (I)(l) = sup{Is( f, r) | r ∈ Pl} . (1)

The following is immediate from Definition 6 and Lemma 1.

Proposition 2 The TP, f operator is monotonic, i.e. TP, f (I)⊆TP, f (J) whenever I ⊆ J.

Because of the restriction we placed on the implicator, we could also define our
immediate consequence operator using the t-norm T underlying I , as is done in the
immediate consequence operator defined in [9], i.e.

TP, f (I)(l) = sup{T ( f (r), I|=(B(r))) | r ∈ Pl} .

The following technical lemma will be useful later on. It says that TP, f (I)(a) is the
minimal choice for a that is needed to increase I to an f -rule model on Pa.

Lemma 2 Let I be a fuzzy interpretation and let f be an y-rule interpretation. Then

∀a ∈ BP ∪ ¬BP · ∀z < TP, f (I)(a) · ∃r ∈ Pa · I(I|=(B(r)), z) < f (r)

and

∀a ∈ BP ∪ ¬BP · ∀r ∈ Pa · I(I|=(B(r)), TP, f (I)(a)) ≥ f (r) .
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In what follows, we will use the notation Ti
P, f (X) to denote the i-fold application

of TP, f starting on X. Further, due to Proposition 2 and the results of Tarski [25],
TP, f has a least fixpoint which we denote by T�

P, f .

Proposition 3 Let P be a simple program and f an y-rule interpretation on P.
Then, T�

P, f (∅) is an f -rule model and for each i ≥ 0, if X is an f -rule model then
Ti

P, f (∅) ⊆ X.

Proof The first part, follows directly from the second equation of Lemma 2.
For the second part, the proof is by induction. For i = 0, the proposition vacuously

holds. Suppose that the lemma holds for i and consider I = Ti
P, f (∅) and J = Ti+1

P, f (∅).
By Proposition 2, I ⊆ J. Let X be a f -rule model. From the induction hypothesis, it
follows that I ⊆ X. We consider two cases:

1. If I = J, then, trivially, J ⊆ X and we are done.
2. Otherwise, I ⊂ J. Assume that, on the contrary J �⊆ X, i.e. ∃a · X(a) < J(a).

From Lemma 2, we know that ∃r ∈ Pa · I(I|=(B(r)), X(a)) < f (r). From the
induction hypothesis we have I|=(B(r)) ≤ X|=(B(r)) and thus, because an im-
plicator is decreasing in its first argument, we obtain that I(X|=(B(r)), X(a)) ≤
I(I|=(B(r)), X(a)) < f (r), and thus X is not an f -rule model, a contradiction.

��

Next, we define a variant of unfounded set w.r.t. a rule interpretation.

Definition 7 Let f be a rule interpretation of a simple program P and let I be a
fuzzy interpretation. A set of literals X is an f -unfounded set w.r.t. I iff for each
literal l ∈ X and each rule r ∈ Pl :

B(r) ∩ X �= ∅ or (2)

I(l) > Is( f, r) or (3)

I|=(B(r)) = 0 (4)

holds. I is f -unfounded-free iff supp(I) ∩ X = ∅ for each f -unfounded set X.

Clearly, if I is f -unfounded free and ∀r∈ P · I|=(r)≥ f (r), then I is unfounded free.

Proposition 4 Let f be an y-rule interpretation. Then for each i ≥ 0, Ti
P, f (∅) is

f -unfounded-free.

Proof We have two cases to consider, i.e. either Ti
P, f (∅) = ∅ or Ti

P, f (∅) �= ∅. Clearly,
the case Ti

P, f (∅) = ∅ is trivial, as ∅ ∩ X = ∅, and thus ∅ is always f -unfounded-free.
For the case Ti

P, f (∅) �= ∅, let J = Ti
P, f (∅) and assume that J is not f -unfounded-

free, i.e. there exists some unfounded set X w.r.t. J such that supp(J) ∩ X �= ∅.
Define the function Xmax on interpretations by

Xmax(K) = {K(a) | a ∈ X ∧ ∀b ∈ X · K(b) ≤ K(a)} ,

i.e. Xmax(K) contains the maximal value of K for the elements in X.
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Let m < i be the maximal number satisfying Xmax(Tm
P, f (∅)) < Xmax(J). Clearly, as

TP, f is monotonic and we start our computation from ∅, such an m always exists.
Using I to denote Tm

P, f (∅), this implies the existence of a literal a ∈ X such that

I(a) < TP, f (I)(a) = J(a) > 0 , (5)

and, moreover,

∀b ∈ X · I(b) < TP, f (I)(a) . (6)

By Definition 6, we have

TP, f (I)(a) = supr∈Pa
Is( f, r) . (7)

We consider the following partition, due to X being unfounded w.r.t. J, of the
rules r ∈ Pa:

– If B(r) ∩ X �= ∅ then the implicator being residual, together with (6) and the
properties of a t-norm, implies that Is( f, r) ≤ I(B(r)) ≤ I(X) < TP, f (I)(a).

– If J(B(r)) = 0 then, because TP, f is monotonic, I(B(r)) = 0 and thus Is( f, r) =
0 < J(a) = TP, f (I)(a).

– Otherwise, (5) and Definition 7 yield TP, f (I)(a) = J(a) > Js( f, r). But Js( f, r) >

Is( f, r) because of Lemma 1 and J ≥ I.

From the above, it follows that

∀r ∈ Pa · Is( f, r) < TP, f (I)(a) , (8)

which, due to the fact that supM ∈ M for any finite M ⊆ L in a total lattice L,
contradicts (7). ��

Proposition 5 Let I be a ⊂-minimal fuzzy y-model for a simple program P. Then
there exists a rule interpretation f ∈ Ry

A such that T�
P, f (∅) = I.

Proof Since I is a fuzzy y-model, there exists a rule interpretation f ∈ Ry
A such that

∀r ∈ P · I(r) ≥ f (r). Proposition 3 then implies that T�
P, f (∅) ⊆ I and that T�

P, f (∅) is
an f -rule model, and therefore a y-model. The minimality of I implies T�

P, f (∅) = I.
��

Theorem 1 Any ⊂-minimal x-consistent fuzzy y-model for P is an x-consistent fuzzy
y-answer set for P.

Proof Let I be a ⊂-minimal x-consistent fuzzy y-model for P. By Proposition 5,
I = T�

P, f (∅) for some rule interpretation f . On the other hand, Proposition 4
implies that T�

P, f (∅) is f -unfounded-free and thus, because T�
P, f (∅) is a TP, f -fixpoint,

unfounded-free. ��

Note that for the total lattice L = [0, 1], the R-implicators defined in Section 2.1
always satisfy the residual principle.
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Clearly, the reverse of Theorem 1 does not hold. However, if we restrict ourselves
to ⊂-minimal fuzzy y-answer sets, the reverse result trivially follows.

Theorem 2 Any ⊂-minimal x-consistent fuzzy y-answer set of P is a ⊂-minimal
x-consistent fuzzy y-model of P.

Proof Let S be an ⊂-minimal x-consistent fuzzy y-answer set of P and suppose that
S is not a ⊂-minimal x-consistent fuzzy y-model, i.e. there exists a fuzzy y-model S′ ⊂
S. Take S′, without loss of generality, such that it is ⊂-minimal. Then, by Theorem 1,
we have that S′ is a fuzzy y-answer set, contradicting that S is ⊂-minimal. ��

6 Retrieving classical answer sets

The FASP framework presented in the previous section turns out to be a proper
generalization of the classical answer set programming paradigm with the notions of
fuzzy logic. First of all, ASP can be retrieved as a special case of FASP by choosing
the truth lattice L = {0, 1}.

Theorem 3 Consider a program P and let L be the lattice {0, 1}. Furthermore let the
aggregator Ac be such that Ac(BP, Ic) = 1 iff Ic(a) = 1 for every atom a ∈ BP, and let
the aggregator Ap be such that Ap(P, I|=) = 1 iff I|=(s) = 1 for every rule s ∈ P. An
interpretation M is an answer set of P iff the fuzzy interpretation fM, with fM(l) = 1 if
l ∈ M and fM(l) = 0 otherwise, is a 1-consistent fuzzy 1-answer set of P.

Proof Let M be a classical interpretation, and let fM be its fuzzy variant on {0, 1}
defined by fM(l) = 1 if l ∈ M and fM(l) = 0 otherwise.

Clearly, M is consistent iff fM is 1-consistent and M is a model of P iff fM is a
fuzzy 1-model of P.

Hence we need to show that on the lattice {0, 1}, the classical definition of
unfounded set coincides with the one of Definition 4. As the first condition is the
same in both definitions, we only have to show that M �|= β is the same as condition
two and three in Definition 4, i.e. either

fM(a) > inf{y | I( fM|=(β), y) ≥ fM|=(a ← β)}, or

fM|=(β) = 0

holds on the lattice {0, 1}. From M �|= β we derive that there exists at least one
x ∈ β such that M �|= x, which by construction of fM yields that fM(x) = 0, thus
fM|=(β) = 0. For the reverse direction, we still have to show that the condition
fM(a) > fMs(a ← β) results in M �|= β. However, when this condition is satisfied
on {0, 1}, we can only have one possibility, i.e. fM(a) = 1 and fMs(a ← β) = 0.
As fM|=(a ← β) = 1, it must be that fM|=(β) = 0; because fM|=(β) = 1 would yield
fMs(a ← β) = 1. Now, fM|=(β) = 0 implies that there exists at least one x ∈ β such
that fM(x) = 0, yielding that M �|= x by construction of M and fM; and thus M �|= β.

��
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Note that 1-consistency is needed to forbid (classical) contradictions, and the
restriction to fuzzy 1-answer sets is mandated by the need to classically satisfy all
rules and have the foundedness property of answer sets.

Example 18 Reconsider the program from Example 3. The empty set is not a
1-model of this program as it satisfies neither of the rules to degree 1. K =
{(a, 1)}, L = {(b, 1)}, and M = {(a, 1), (b, 1)} are 1-models. The latter is obviously
not unfounded-free, while the first two are unfounded-free, i.e. K and L are both
1-consistent fuzzy 1-answer sets.

In the proposition above, no choice for Nc, Nn, Tc, Ta, and I is specified as all
negators, t-norms and implicators on {0, 1} coincide. However, when we allow for
intermediate truth values, a choice for logical operators opens up. Below we argue
that certain choices are more “answer set behaved” than others.

Classical answer sets cannot contain both a and ¬a. If one wants to preserve this
behavior for fuzzy answer sets, i.e. such that a 1-consistent fuzzy answer set can not
contain a and ¬a simultaneously, not even to some degree, Tc should be chosen
with care. E.g., on L = [0, 1], take Tc = TW and consider the fuzzy interpretation
I = {(a, 0.4), (¬a, 0.4)}. Then, Tc(I(a), I(¬a)) = max(0.4 + 0.4 − 1, 0) = 0. For this
t-norm it holds, in general, that Tc(I(a), I(¬a)) = 0 iff I(a) + I(¬a) ≤ 1, which
certainly does not correspond to a classical answer set semantics. However, there
exist alternative choices for Tc that do not suffer from this problem, i.e. for which
Tc(I(a), I(¬a)) = 0 iff I(a) = 0 or I(¬a) = 0. Both TM and TP are such t-norms, and
can be used to retrieve fuzzy answer sets with a classical ASP consistency notion.

Next, we consider the possible choices for the implicator. By definition, an
implicator satisfies I(0, 0) = I(0, 1) = I(1, 1) = 1 and I(1, 0) = 0, which implies that
any choice for I is sufficient to retrieve classical answer sets from the 1-consistent
fuzzy 1-answer sets. However, when intermediate truth values are considered, certain
choices for I are more answer set alike, as witnessed by the following example.

Example 19 Reconsider the program from Example 3 and consider the fuzzy
interpretation J = {(a, 0.6), (b, 0.4)}. When using ISM , we get J|=(r1) = max(1 −
0.6, 0.6) = 0.6 and J|=(r2) = max(1 − 0.4, 0.4) = 0.6, yielding that J will be at most
a 0.6-answer set when inf is used as the aggregator. However, in a classical answer set
context this looks a bit unintuitive as the heads of both rules are satisfied to exactly
the same degrees as to which their bodies are applicable, and thus intuitively the rules
should be totally satisfied. Applying ITM on the program yields J|=(r1) = J|=(r2) = 1,
which fits that intuition.

The implicator ITM belongs to the class of R-implicators, for which, in general,
it holds that I(x, y) = 1 whenever x ≤ y. All R-implicators in Example 2 satisfy the
residuation principle or adjoint condition, i.e. T (x, y) ≤ z iff x ≤ IT (y, z) for all x, y,
and z in L. Note that for such implicators there is a direct expression to compute the
support of a rule, namely Is(l ← β) = T (I|=(l ← β), I|=(β)).

Finally, to preserve classical answer set semantics, an interpretation should be said
to satisfy a program to degree 1 iff it satisfies all rules of the program to degree 1. The
aggregator A(P, I|=) = inf{I|=(s) | s ∈ P} we introduced before satisfies this condition
and can be used to retrieve classical answer sets.
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7 Related work

Logic programming in the presence of uncertainty or imprecision has received
a considerable amount of attention (see e.g. [1, 8] for overviews). It is however
interesting to observe that the well known existing frameworks, including those that
consider fuzzy interpretations, hold on to two valued concepts of rule satisfaction,
model, etc. in the sense that a fuzzy interpretation satisfies a rule or not, it is a model
or not, etc. This clearly sets them apart from the approach introduced in this paper.

The enrichment of ASP with concepts from fuzzy logic as well as from the
closely related possibilistic logic [11] has been studied from various angles already.
A particularly interesting approach is annotated answer set programming [24]. Here
a rule is of the form

l{f (z1, z2, . . . , zn)} ← l1{z1}, l2{z2}, . . . , ln{zn} ,

where l, l1, l2, . . . , ln denote literals and z1, z2, . . . , zn are annotation terms that can
be understood as truth degrees. Such a rule asserts that l is true at least to degree
f (z1, z2, . . . , zn) whenever li is true at least to degree zi (for i = 1 . . . n). Because of
this early revertment to the two-valued case, the approach in [24] does not consider
to compute the actual degree to which a fuzzy interpretation is an answer set.

The implication based approach in [17] adheres closer to ours. A rule of the form
α

z← β is said to be satisfied by the interpretation iff (in our notation) I|=(α) ≥L
T (I|=(β), z). The residuation principle reveals a clear connection with our approach
when committing to an R-implicator IT : namely that I satisfies the rule α

z← β

according to [17] iff I satisfies this rule at least to degree z in our approach. This
is also in accordance with [9] where the use of adjoint pairs (T ,IT ) is strongly
advocated to preserve important theoretical results. Being able to impose specific
satisfaction requirements for individual rules is in general an interesting feature, e.g.,
when rules and facts originate from different knowledge bases that are not all equally
trusted. Note that this can be easily incorporated in our approach by choosing a
suitable aggregator A, which gives more weight to rules coming from sources that are
more trusted.

In a similar way, [29] can be seen as a special case of the FASP framework
presented in this paper as [29] commits itself, with limited motivation, to very specific
choices for the user-selectable operators on the lattice [0, 1]. Some of these choices
are at least questionable. E.g., using the Gödel negator Ng for interpreting naf yields
that a rule a ← not b will not be applied in any way although b is only true to a small
degree, e.g. 0.1. Using the standard negator Ns, as we do in our examples, this would
yield a rule that is applicable to a degree 0.9, and, if a rule satisfaction of at least 0.8 is
wanted with e.g. ISM , we have max(0.1, y) = 0.8, which implies that a will be derived
at degree 0.8 in a fuzzy answer set.

A possibilistic definite logic program [18, 19] consists of rules annotated with
certainty degrees. These degrees are used to establish a possibility distribution on
the universe of atom sets, from which a possibilistic model is derived. The authors
choose implicitly for the Gödel negator, as they first compute the classical answer
sets, and afterwards compute, for an answer set S, the possibility to which each literal
l is contained in S.
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8 Conclusions and future research

There are many ways to increase the expressive power of answer set programming
(ASP) by enriching it with mechanisms to deal with imprecision and uncertainty.
In this paper we presented a general and elegant fuzzification of ASP, called fuzzy
answer set programming (FASP). The generality is reflected in a high configurability
by the user, which allows the system to be tailored to the application at hand. Among
other things, the ability to choose an aggregator allows for future extensions of the
semantics, e.g. incorporating rule preferences on fuzzy programs. The elegance is
due to a close adherence to both the fuzzy logic and the answer set programming
paradigm: as opposed to other approaches, FASP does not revert soon to the
two-valued case but instead allows to compute the actual degree to which a fuzzy
interpretation is an answer set. Furthermore we have shown that FASP extends the
traditional answer set semantics and we have discussed choices of the fuzzy logical
operators that behave more answer set like than others.

Clearly, there are a lot of topics that still need to be investigated, e.g. a fixpoint
characterization, the complexity of the semantics, the use of disjunction etc., all
parameterized by the choice of the (lattice) operations. In addition, we intend to
explore natural FASP applications areas such as “web of trust”, diagnosis, and
decision support.
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