
Fuzzy Answer Set Programming

Davy Van Nieuwenborgh1,⋆, Martine De Cock2, and Dirk Vermeir1

1 Vrije Universiteit Brussel, VUB
Dept. of Computer Science

Pleinlaan 2, B-1050 Brussels, Belgium
{dvnieuwe,dvermeir}@vub.ac.be

2 Universiteit Gent, UGent
Dept. of Applied Mathematics and Computer Science

Krijgslaan 281 (S9), B-9000 Ghent, Belgium
martine.decock@ugent.be

Abstract. In this paper we show how the concepts of answer set programming
and fuzzy logic can be succesfully combined into the single framework of fuzzy
answer set programming (FASP). The framework offers the best of both worlds:
from the answer set semantics, it inherits the truly declarative non-monotonic
reasoning capabilities while, on the other hand, the notions from fuzzy logic in
the framework allow it to step away from the sharp principlesused in classical
logic, e.g., that something is either completely true or completely false. As fuzzy
logic gives the user great flexibility regarding the choice for the interpretation
of the notions of negation, conjunction, disjunction and implication, the FASP
framework is highly configurable and can, e.g., be tailored to any specific area of
application. Finally, the presented framework turns out tobe a proper extension
of classical answer set programming, as we show, in contrastto other proposals
in the literature, that there are only minor restrictions one has to demand on the
fuzzy operations used, in order to be able to retrieve the classical semantics using
FASP.

1 Introduction

The answer set programming (ASP) paradigm [15] has gained a lot of popularity in the
last years, due to its truly declarative non-monotonic semantics, which has been proven
useful in a number of interesting applications, e.g. [21, 12, 19, 16]. The idea behind
the answer set semantics, a generalisation of the stable model semantics [14], is both
intuitive and elegant. Given a programP and a candidate answer setM , one computes
a reduct programPM of a simpler type for which a semantics(PM)

⋆
is known. The

reductPM is obtained fromP by taking into account the consequences of accepting
the proposed truth values of the literals inM . The candidate setM is then an answer
set just when(PM)

⋆
= M , i.e.M is “self-producible”.

Although ASP provides a powerful solution for knowledge representation and non-
monotonic reasoning, it has some drawbacks regarding the configureability of the se-
mantics w.r.t. the type of application under consideration, as witnessed by the large

⋆ Supported by the Flemish Fund for Scientific Research (FWO-Vlaanderen).

number of extensions, both syntactically and semantically, that have been proposed in
the literature [7, 10, 5, 2]. E.g., most3 ASP semantics demand that a solution to a pro-
gram satisfies all the rules. Further, the literals available in the program, i.e. the building
blocks of rules, can only be true or false (or unknown when oneconsiders the well-
founded semantics [23]), and classical consistency is mandatory, i.e.a and¬a cannot
be true at the same time (or not even “a bit” true at the same time). Also the interpre-
tation of negation as failure, the construct that gives ASP its non-monotonicity, is very
sharp:nota is true iff a is not true.

Sometimes however, it is impossible to find a solution that fully satisfies all rules of
the program. In this case, one might still wish to look for a solution satisfying the pro-
gram at least to a reasonably high degree. At other times, it may not even be required to
obtain a solution that satisfies a program fully. That is, onemight be more interested in
a solution satisfying the program to a satisfactory high degree, especially if this solution
comes at a lower cost. Consider the following problem based on an example from [2].

Example 1.There are four different kinds of sports that we like to practice to some de-
gree. However, only certain combinations of sports lead to afull-body exercise. Further-
more, some of the sports complement each other, i.e. less practice of one automatically
leads to more practice of the other (rulesr1 . . . r4 in the program below).

r1 : lift weights ← not swim

r2 : swim ← not lift weights

r3 : run ← notplay ball

r4 : play ball ← not run

r5 : full body exercise ← lift weights , run

r6 : full body exercise ← swim, play ball

r7 : ← not full body exercise

The two classical answer sets of this program are{full body exercise, lift weights ,
run} and{play ball , full body exercise, swim}. Hence, to achieve a full body exer-
cise, one needs to practice either weight lifting and running, or ball playing and swim-
ming to the highest degree. However, in addition, we might beinterested to know which
combinations of the four sports we should practice, and to what degree, such that an ac-
ceptable degree, e.g.0.7, of full-body exercise is obtained.

Fuzzy logic is a suitable framework for dealing with degreesof truth and satisfac-
tion [26]. In its most general form, fuzzy logic considers a complete latticeL of truth
values on which it redefines the classical operations of negation, conjunction, disjunc-
tion and implication; in such a way that they correspond to the classical ones in the top
and bottom elements of the lattice. One of the strengths of fuzzy logic regarding these
operations is that a user can freely choose, depending on thetype of application under
consideration, which specific definition she uses for the operations.

A combination with fuzzy logic increases the flexibility andhence the application
potential of ASP. Such flexibility can be introduced at several levels. In the fuzzy answer
set programming (FASP) framework introduced in this paper,we consider fuzzy answer
sets, which means that literals can belong to an answer set toa certain extent, as opposed

3 Some semantics that deal with preferences among rules [13, 6, 24] are more flexible.

2

to either belonging to the answer set or not. In accordance, the literals in a program
can be true to a certain degree. We relax the definition of consistency to allow that,
if desired, botha and¬a can be true to a certain degree at the same time without
necessarily loosing consistency. Similarly, we allow for amore flexible interpretation
of negation as failure. Crucial to our approach is the notionof a satisfaction function,
as it enables us to compute the extent to which a rule is satisfied under a given fuzzy
interpretation. The satisfaction function is then used to develop the concept of a fuzzy
model. As in traditional ASP, in FASP the fuzzy answer sets ofsimple programs, i.e.
programs without negation as failure, coincide with the fuzzy minimal models. For
programs containing negation as failure, the idea underlying GL-reduct is extended to
a technique that allows to bring to surface whether a fuzzy model is indeed supported
by a program, in other words whether it deserves the name of fuzzy answer set.

The rest of the paper is organized as follows. In Section 2 we give some preliminar-
ies on fuzzy logic and answer set programming, while we introduce the combination
of both, i.e. fuzzy answer set programming (FASP), in Section 3. Before giving some
comparison with related work in Section 5, we show in Section4 how the classical
answer set semantics can be retrieved from FASP. Finally, weconclude and give some
directions for future research in Section 6.

2 Preliminaries
2.1 Truth Lattices

In this paper, we consider a complete truth lattice, i.e. a partially ordered set(L,≤L)
such that every subset ofL has an infimum (greatest lower bound) and a supremum
(least upper bound), which we denote byinf andsup respectively [4]. Such a lattice is
often denoted byL, tacitly assuming the ordering≤L. Furthermore, we use0L and1L
to denote respectively the smallest and the greatest element4 of L.

The traditional logical operations of negation, conjunction, disjunction, and impli-
cation can be generalized to logical operators acting on truth values ofL (see e.g. [20]).
A negatoron L is any decreasingL → L mappingN satisfyingN (0L) = 1L and
N (1L) = 0L. It is called involutive ifN (N (x)) = x for all x in L. A triangular
norm T on L is any commutative and associativeL2 → L mappingT satisfying
T (1L, x) = x, for all x in L. Moreover we requireT to be increasing in both of
its components. A triangular norm, or t-norm for short, corresponds to conjunction. A
triangular conormS on L is any increasing, commutative and associativeL2 → L
mapping satisfyingS(0L, x) = x, for all x in L. Moreover we requireS to be increas-
ing in both of its components. A triangular conorm, t-conormfor short, corresponds to
disjunction. AnimplicatorI onL is anyL2 → L–mapping satisfyingI(0L, 0L) = 1L,
andI(1L, x) = x, for all x in L. Moreover we requireI to be decreasing in its first,
and increasing in its second component.

The dual of a t-normT w.r.t. a negatorN is a t-conormS defined asS(x, y) =
N (T (N (x),N (y))) for all x andy in L. The mappingIS,N defined byIS,N (x, y) =
S(N (x), y) is an implicator, usually called S-implicator (induced byS andN). On the
other hand, the mappingIT defined byIT (x, y) = sup{λ|λ ∈ L and T (x, λ) ≤L y}
is an implicator, usually called the residual implicator orR-implicator (ofT).

4 In the literature one will also find the notation⊥ and⊤ to denote0L and1L respectively.

3

While the framework we will introduce to perform fuzzy answer set programming
in Section 3 can be used in combination with any complete lattice, we will restrict
ourselves for the examples in the current paper to the complete lattice([0, 1],≤). The
following example presents some fuzzy logical operators onthis lattice.

Example 2.The mappingNs defined asNs(x) = 1 − x for all x in [0, 1] is called the
standard negator. The t-normsTM, TP, andTW and their dual t-conormsSM, SP, and
SW w.r.t. the standard negator, are defined as

TM(x, y) = min(x, y) SM(x, y) = max(x, y)
TP(x, y) = x · y SP(x, y) = x + y − x · y
TW(x, y) = max(x + y − 1, 0) SW(x, y) = min(x + y, 1)

for all x andy in [0, 1]. They induce the following implicators (the mappings on the
right are R-implicators while those on the left are S-implicators; for ease of notation the
inducing negatorNs has been omitted):

ISM(x, y) = max(1− x, y) ITM(x, y) =

{

1, if x ≤ y

y, else

ISP(x, y) = 1− x + x · y ITP(x, y) =

{

1, if x ≤ y
y
x
, else

ISW(x, y) = min(1 − x + y, 1) ITW(x, y) = min(1 − x + y, 1)

Every implicator induces a negator by definingN (x) = I(x, 0L). The above mentioned
S-implicators induce the standard negatorNs, while ITM andITP induce the Gödel
negator5Ng defined byNg(x) = 1 if x = 0 andNg(x) = 0 otherwise.

A fuzzy set inU is aU 7→ L mapping. For fuzzy setsA andB in U , A is said to
be included inB, denoted byA �L B, iff A(u) ≤L B(u) for all u in U . As usual, we
haveA ≺L B iff A �L B and notB �L A.

2.2 Answer Set Programming

We give some preliminaries concerning the answer set semantics for logic programs [3].
A literal is an atoma or a negated atom¬a. For a set of literalsX , we use¬X to denote
{¬l | l ∈ X } where¬¬a = a. WhenX ∩ ¬X = ∅ we say thatX is consistent. An
extended literalis a literal or anaf-literal of the formnot l wherel is a literal. The latter
form denotes negation as failure. For a set of extended literalsY , we useY − to denote
the set of ordinary literals underlying the naf-literals inY , i.e.Y − = {l | not l ∈ Y }.
Further, we usenot X to denote the set{not l | l ∈ X }. An extended literall is true
w.r.t. X , denotedX |= l if l ∈ X in casel is ordinary, ora 6∈ X if l = nota for some
ordinary literala. As usual,X |= Y iff ∀l ∈ Y ·X |= l.

A rule is of the formα ← β where6 α ∪ β is a finite set of extended literals and
|α| ≤ 1. Thus theheadof a rule is either an extended literal or empty. A finite set of
rules is called a(logic) program. TheHerbrand baseBP of a programP contains all
atoms appearing inP . The set of all literals that can be formed with the atoms inP ,
denoted byLitP , is defined byLitP = BP ∪ ¬BP . Similarly, we define the set of all
extended literals that can be formed with the atoms inP asElitP = LitP ∪ notLitP .
Any consistent subsetI ⊆ LitP is called aninterpretationof P .

5 This negator is also known in the literature as the Heyting negator.
6 For simplicity, we assume that programs have already been grounded.

4

A rule r = α ← β is satisfiedby an interpretationI, denotedI |= r, if I |= α

andα 6= ∅, wheneverI |= β, i.e. if r is applicable(I |= β), then it must beapplied
(I |= α ∪ β andα 6= ∅). Note that this implies that aconstraint, i.e. a rule with empty
head(α = ∅), can only be satisfied if it is not applicable(I 6|= β). For a programP , an
interpretationI is called amodelof P if ∀r ∈ P · I |= r, i.e.I satisfies all rules inP .
It is a minimal model ofP if there is no modelJ of P such thatJ ⊂ I.

A simple programis a program without negation as failure. For simple programs
P , we define ananswer setof P as a minimal model ofP . On the other hand, for a
programP , i.e. a program containing negation as failure, we define theGL-reduct[14]
for P w.r.t. I, denotedP I , as the program consisting of those rules7 (α\notα−) ←
(β\notβ−) whereα ← β is in P , I |= not β− andI |= α−. Note that all rules in
P I are free from negation as failure, i.e.P I is a simple program. An interpretationI is
then ananswer setof P iff I is a minimal model of the GL-reductP I .

Example 3.Consider the program
r1 : a ← notb r2 : b ← nota

Clearly, both{a} and{b} are answer sets of this program as the GL-reductsP {a} =
{a ← } andP {b} = {b ← } have{a} and{b} respectively as their minimal model.
On the other hand,∅ and{a, b} are not answer sets. For the former interpretation, the
reductP ∅ = {a ← ; b ← } has{a, b} as its minimal model which differs from∅,
while the latter has an empty reduct, thus an empty minimal model, which differs from
{a, b}.

3 Fuzzy Answer Set Programming

Classical ASP, as defined in the previous subsection, is in some ways a very strict frame-
work in its semantics. In particular, an answer set is required to satisfy all rules of the
program fully. In a more flexible setting, we wish to be able todeal with interpretations
that satisfy rules possibly only to a certain extent. To thisend, we allow literals to be
true to a degree, as opposed to either being true or not true. As such, interpretations,
and hence also answer sets, become fuzzy sets inLitP .

As the high configurability of fuzzy logic can be seen as one ofits main strengths,
we will adopt this behavior to the FASP framework presented in this section. Therefore,
we allow a user to choose, in function of the application at hand, how the different
classical operations need to be interpreted. More specifically, a user has to fix a complete
latticeL first. Then, she has to choose two negatorsNc andNn, which will be used to
define consistency and the semantics of negation as failure respectively. Further, two
t-normsTc and Ta need to be fixed, respectively used for defining consistency and
applicability of rules. Also an implicatorI is needed to obtain the degree of satisfaction
of a rule. Finally, an aggregatorA is needed that combines all the degrees of satisfaction
of rules into a single truth value denoting the degree in which a fuzzy interpretation is
a fuzzy model. For the rest of this paper, we assume, without loss of generality, that the
above choices have been made, and we will not repeat them everytime in the definitions,
but just use them.

7 As usual,\ denotes set difference.

5

The first classical notions that need to be tackled are containment and consistency.
In ASP a literall is either true or false; and thus it is either contained in an interpretation
or not. When bothl and¬l are contained in an interpretation, it is said to be inconsistent.
In a fuzzy context, a literall can be a bit true, and bothl and¬l can be a bit true in a
consistent way, making a modified notion of consistency necessary.

Definition 1. LetP be a program. Afuzzy interpretation I for P is a fuzzy set inLitP ,
i.e. aI : LitP 7→ Lmapping.I is calledx-consistent, x ∈ L, iff

Nc(sup
a∈BP

Tc(I(a), I(¬a))) ≥L x .

Intuitively, the definition ofx-consistency allows a user to choose the point where
the degree of containment of bothl and¬l in a fuzzy interpretationI, makes that inter-
pretation inconsistent. The classical notion of an interpretation emerges from the above
definition for the latticeL = {0L, 1L}. In this particular case, an interpretationI is
called1L-consistent iff there does not exist ana in BP such that bothI(a) = 1L and
I(¬a) = 1L.

As fuzzy interpretations only assign truth values to ordinary literals explicitly, we
need a mechanism to retrieve truth values for naf-literals.While complementary literals
l and¬l are only weakly related to each other usingNc, Tc, and a certainx-consistency
boundary, naf-literalsl andnot l need a tighter connection since, intuitively, a naf-literal
not l can only be true to the degree that the underlying ordinary literal l is false, and
vice versa. Hence, we useNn to extend a fuzzy interpretationI to cover naf-literals by
definingI(not l) = Nn(I(l)) for eachl ∈ LitP .

Having fuzzy interpretations andx-consistency, we need to redefine the satisfaction
of rules. While a rule in ASP is either satisfied or not, in a more flexible setting we
should allow a rule to be partially (to a certain degree) satisfied. Further, each rule does
not have to be satisfied to the same degree, which is, e.g., useful in applications having
preferences among rules. To obtain these degrees, we useTa andI to induce, for a
fuzzy interpretationI, a satisfaction functionI|= that assigns a truth value to the bodies
of rules and to the rules themselves. Later on, this satisfaction function will be used, in
combination with the aggregatorA, to obtain the degree in which a fuzzy interpretation
is a model of a program.

Definition 2. Let P be a program and letI be a fuzzy interpretation. The induced
satisfaction functionI|= : 2ElitP ∪ P 7→ L is defined by

I|=(∅) = 1L

I|=({l} ∪ β) = Ta(I(l), I|=(β))

I|=(← β) = I(I|=(β), 0L)

I|=(l ← β) = I(I|=(β), I(l))

Note thatI|=({l}) = I(l) andI|=(not l) = Nn(I(l)). Intuitively, I|=(s), with s ∈
P , defines to which degree a rules is satisfied taking into account the truth assignments
of the head and body ofs in I. To define a fuzzy model, the differentI|=(s), with s ∈ P ,
need to be accumulated in some way. The user defined aggregator A, which takes as

6

input a program and a satisfaction function, will accomplish this job and result in a truth
value denoting the degree in which the fuzzy interpretationI is a model ofP . However,
we demand that an aggregator is increasing whenever the degrees of satisfaction of the
rules increase.

Definition 3. Let P be a program and letI be anx-consistent fuzzy interpretation.
Then,I is anx-consistentfuzzy y-model of P , y ∈ L, iff A(P, I|=) ≥ y.

Example 4.Consider the latticeL = [0, 1] and the program

r1 : a ← notb r2 : b ← nota r3 : c ← a

and consider the fuzzy interpretations8 K = {(a, 0.9), (b, 0.3), (c, 0.2)} and L =
{(a, 0.4), (b, 0.7), (c, 0.8)}. Both of these fuzzy interpretations are1-consistent, inde-
pendently of the choices forNc andTc. For negation as failure, we use the negatorNs.
To compute the satisfaction of the rules, we use the implicator ISM

. Finally, as an ag-
gregator we useA(P, I|=) = inf{I|=(s) | s ∈ P}, i.e. the weakest rule dominates the
solution.

We haveK|=(r1) = max (1−K(notb), K(a)) = max(1 −Ns(K(b)), K(a)) =
max (1− (1− 0.3), 0.9) = 0.9. Similarly, K|=(r2) = max (1− (1 − 0.9), 0.3) = 0.9
andK|=(r3) = max (1 − 0.9, 0.2) = 0.2. As a result,K is a1-consistent0.2-model of
P . On the other hand, one can verify thatL|=(r1) = L|=(r2) = 0.7 andL|=(r3) = 0.8,
yielding thatL is a1-consistent0.7-model ofP .

The above definitions are conservative extensions of classical principles, i.e. the
classical definitions are special cases of the ones presented here. Hence it is not surpris-
ing that the extensions suffer the same difficulties when used to define a fuzzy answer
set semantics. For instance, bothI = {(a, 0L), (b, 0L)} andJ = {(a, 1L), (b, 1L)} are
“perfect” fuzzy interpretations of the program{a ← b ; b ← a} as they both satisfy all
rules to a maximal degree1L. In traditional ASP, the set{a, b} is called “unfounded”[23]
and answer sets should be free of such sets. This is achieved by imposing a minimality
requirement.

Definition 4. LetP be a program. Anx-consistenty-modelM is anx-consistentmin-
imal fuzzy y-model iff M is≺L minimal among allx-consistent fuzzyy-models ofP .

Applied to the examplesI andJ above, this results inI ≺L J , yielding thatI is the
single1L-consistent minimal fuzzy1L-model of the two rules.

Example 5.Reconsider the program and the choices for logical operators from Exam-
ple 4. One can check that the fuzzy interpretationsM = {(a, 0.9), (b, 0.8), (c, 1)}
andN = {(a, 0.9), (b, 0.2), (c, 1)} are both1-consistent0.9-models ofP . However,
one can verify thatN ≺L M , which fits our intuition as the degree in whichb is
assumed true is overestimated inM . Still, N is not minimal, as one can verify that
S = {(a, 0.9), (c, 0.9)} is ≺L-minimal9, i.e. a1-consistent minimal fuzzy0.9-model
of P .

8 As usual, a fuzzy setI in LitP is denoted as{(l , x) | I (l) = x ∧ l ∈ LitP}, omitting the
literals(l, 0L).

9 Note that when another implicator is chosen,S not necessarily remains a minimal fuzzy0.9-
model ofP . E.g., usingITM

would makeS only a fuzzy0-model.

7

While the above minimization process is necessary, it does not yet suffice to prevent
unwanted models, as witnessed by the following example.

Example 6.Consider the program

r1 : a ← r2 : b ← a, notc

and the fuzzy interpretationsK = {(a, 0.9), (b, 0.9)} andL = {(a, 0.9), (c, 0.9)}. We
make the same choice for the logical operators as in Example 4. To evaluate the body of
r2 we useTa = TM. One can verify thatK andL are both minimal fuzzy0.9-models.
However, intuitivelyL is not acceptable as a good solution as there is no support for
acceptingc at degree0.9, i.e. there is no applicable rule withc in the head.

In traditional ASP, the above problem is solved by taking theGL-reduct which will
remove, forI = {a, c}, the ruler2 from the reductP I , becauser2 is not applicable
due to thenotc literal in its body. Now, the minimal model of this reduct does not equal
I, hence, it is rejected as an answer set. Note that the removalof a rule does not mean
that this rule does not have to be satisfied anymore. On the contrary, in the example
above, ruler2 is removed because it is not applicable under interpretation I, hence it is
satisfied by default, independently of the truth value ofb.

Note that in traditional ASP, there are two possible scenarios for a modelI to satisfy
a rule of the forml ← β. Either it is applicable (I |= β), hencel must assume the truth
value1L to satisfy the rule, or it is unapplicable (I 6|= β), hence the rule is satisfied by
default andl can assume any truth value from the latticeL = {0L, 1L}. In the first case,
the truth value ofl is fully determined by the rule, while in the latter case, therule does
not impose any restrictions on the truth value ofl, hence taking it into account does not
influence the result and we can remove the rule.

In FASP, such a removal strategy for naf-literals is not feasible as such literals may
be true only to a certain degree, making the bodies of some rules applicable to a certain
degree, which requires that they also need to be applied to a certain degree. Hence, as
opposed to either fully determining the truth value of the head of a rule (full informa-
tion), or leaving it completely arbitrary (no information), in FASP a rule may also carry
someinformation that delimits the set of possible truth values that can be assumed by
the head.

Thus, we define for each rule in the program a subsetY ⊆ L such that none of the
values inY lowers the degree of satisfaction of the rule. Next, for a literal l ∈ LitP ,
we consider these setsY for each rule of the forml ← β. By taking the intersection
of these sets, we obtain a range of truth values. Choosing an alternative truth value for
l within this range does not lower the degrees of satisfactionof the rules withl in the
head. However, interpretations that choose the lower values in the range are called better
supported.

Definition 5. LetP be a program and letI be a fuzzy interpretation. Thesupportedness
function Is associated withI is defined by

Is(l) =
⋂

{l}←β∈P

{y ∈ L | I(I|=(β), y) ≥L I|=({l} ← β)} ,

8

for eachl ∈ LitP , where, by definition,
⋂

∅ = {0L}. A minimalx-consistent fuzzy
y-model ofP is called anx-consistentfuzzy y-answer set iff we have for eachl ∈ LitP

thatI(l) = inf(Is(l)).

Example 7.Reconsider Example 6. Clearly,Ls(c) = {0}, yielding thatL is not a fuzzy
0.9-answer set ofP . On the other hand, one can verify thatKs(a) = Ks(b) = [0.9, 1]
andKs(c) = {0}, implying thatK is a fuzzy0.9-answer set ofP .

Proposition 1. For a simple programP , I is a minimalx-consistent fuzzyy-model of
P iff I is anx-consistent fuzzyy-answer set ofP .

Example 8.Reconsider Example 1 from the introduction. We are interested to know
to what degrees we have to practice the various sports such that an acceptable degree,
e.g. 0.7, of full-body exercise is obtained. Since our main concern is a satisfactory
degree of full-body exercise, we will use an aggregator thatgives more importance to
the constraint ruler7. An appropriate choice could be an aggregator that only takes r7

into account. In this case a fuzzy interpretation is a model to the degree to which it
satisfiesr7. Of course we also require the model to be minimal and supported, which is
where other rules come into play.

Further, we will also useTa = TM to evaluate the body of rules, and the implicator
I = ITW

to evaluate the satisfaction of the rules. A fuzzy0.7-answer setK for the
above program must at least satisfyK|=(r7) = 0.7. This yields that

min(1−K(not full body exercise) + 0, 1) = 0.7 ,

which implies thatK (not full body exercise) = 0.3, and thus, usingNs for nega-
tion as failure, thatK (full body exercise) = 0.7. To have support for the literal, i.e.
inf(Ks(full body exercise)) = 0.7, one of the two rulesr5 or r6 have to be made ap-
plicable to a certain degree, in turn implying that some of the four sports will have to be
exercised in a higher degree than others to achieve that sufficient degree of applicability
of r5 or r6

10. One can verify that

K = {(lift weights , 0.8), (swim, 0.2), (run, 0.7), (play ball , 0.3),
(full body exercise, 0.7)} ,

is a fuzzy0.7-answer set of the above program.
Intuitively, this solution is acceptable as it describes a configuration where two

sports, which are together in ruler5, are assigned a higher degree than there comple-
mentary variants, and due to this choice we have support for full-body exercise up to a
degree of0.7.

On the other hand, one can check that for the fuzzy interpretation

L = {(lift weights , 0.8), (swim, 0.2), (run, 0.3), (play ball , 0.7),
(full body exercise, 0.7)} ,

it turns out thatLs(full body exercise) = [0.3, 1] ∩ [0.2, 1] = [0.3, 1]. Hence,L is not
a fuzzy0.7-answer set of the program, fitting our intuition.

10 Note that this example also illustrates how the proposed framework can be used to do fuzzy
diagnostic reasoning. The constraintr7 can be seen as an encoding of the observations,r5 and
r6 represent the system description, whiler1, r2, r3 andr4 provide the explanations.

9

4 Retrieving Classical Answer Sets

The FASP framework presented in the previous section turns out to be a proper gener-
alisation of the classical answer set programming paradigmwith the notions of fuzzy
logic. First of all, ASP can be retrieved as a special case of FASP by choosing the truth
latticeL = {0L, 1L}.

Proposition 2. Consider a programP and letL be the lattice{0L, 1L}. Furthermore
let the aggregatorA be such thatA(P, I|=) = 1L iff I|=(s) = 1L for every rules ∈ P .
An interpretationM is an answer set ofP iff the fuzzy interpretationfM , with fM (l) =
1L if l ∈M andfM (l) = 0L otherwise, is a1L-consistent fuzzy1L-answer set ofP .

Note that1L-consistency is needed to forbid (classical) contradictions, and the re-
striction to fuzzy1L-answer sets is mandated by the need to classically satisfy all rules
and have the foundedness property of answer sets.

Example 9.Reconsider the program from Example 3. The empty set is not a1L-model
of this program as it satisfies neither of the rules to degree1L. K = {(a, 1L)}, L =
{(b, 1L)}, andM = {(a, 1L), (b, 1L)} are1L-models, but the latter is obviously not
minimal. One can verify thatKs(a) = {1L} andKs(b) = {0L, 1L}, and similarly that
Ls(a) = {0L, 1L} andLs(b) = {1L}, in other words bothK andL are 1-consistent
fuzzy 1-answer sets.

In the proposition above, no choice forNc, Nn, Tc, Ta, andI is specified as all
negators, t-norms and implicators on{0L, 1L} coincide. However, when we allow for
intermediate truth values, a choice for logical operators opens up. Below we argue that
certain choices are more “answer set behaved” than others.

Classical answer sets cannot contain botha and¬a. If one wants to preserve this
behaviour for fuzzy answer sets, i.e. such that a1L-consistent fuzzy answer set can
not containa and¬a simultaneously, not even to some degree,Tc should be chosen
with care. E.g., onL = [0, 1], takeTc = TW and consider the fuzzy interpretation
I = {(a, 0.4), (¬a, 0.4)}. Then,Tc(I(a), I(¬a)) = max (0.4 + 0.4− 1, 0) = 0. For
this t-norm it holds, in general, thatTc(I(a), I(¬a)) = 0 iff I(a) + I(¬a) ≤ 1, which
certainly does not correspond to a classical answer set semantics. However, there ex-
ist some stronger versions forTc that do not suffer from this problem, i.e. for which
Tc(I(a), I(¬a)) = 0 iff I(a) = 0 or I(¬a) = 0. Both TM andTP are such t-norms,
and can be used to retrieve fuzzy answer sets with a classicalASP consistency notion.

Next, we consider the possible choices for the implicator. By definition, an impli-
cator satisfiesI(0L, 0L) = I(0L, 1L) = I(1L, 1L) = 1L andI(1L, 0L) = 0L, which
implies that any choice forI is sufficient to retrieve classical answer sets from the
1L-consistent fuzzy1L-answer sets. However, when intermediate truth values are con-
sidered, certain choices forI are more answer set alike, as witnessed by the following
example.

Example 10.Reconsider the program from Example 3 and letJ = {(a, 0.6), (b, 0.4)}
be a fuzzy interpretation. When usingISM

, we getJ|=(r1) = max (1− 0.6, 0.6) = 0.6
andJ|=(r2) = max (1 − 0.4, 0.4) = 0.6, yielding thatJ will be at most a0.6-answer

10

set. However, in a classical answer set context this looks a bit unintuitive as the heads
of both rules are satisfied to exactly the same degrees as to which their bodies are
applicable, and thus intuitively the rules should be totally satisfied. ApplyingITM

on
the program yieldsJ|=(r1) = J|=(r2) = 1, which fits that intuition.

The implicatorITM
belongs to the class of R-implicators, for which, in general, it

holds thatI(x, y) = 1L wheneverx ≤L y. All R-implicators in Example 2 satisfy
the residuation principle or adjoint condition, i.e.T (x, y) ≤L z iff x ≤ IT (y, z) for
all x, y, andz in L. Note that for such implicators the degree of satisfaction of a rule
l ← β does not go down as long as the truth value of the head is greater than or equal to
T (I|=(l ← β), I|=(β)). In other words, in this case we obtain a more direct expression
for y to be used in Definition 5.

Finally, to preserve classical answer set semantics, an interpretation should be said
to satisfy a program to degree1L iff it satisfies all rules of the program to degree1L.
The aggregatorA(P, I|=) = inf{I|=(s) | s ∈ P} we introduced before satisfies this
condition and can be used to retrieve classical answer sets.

5 Related work

Logic programming in the presence of uncertainty or imprecision has received a con-
siderable amount of attention (see e.g. [1, 9] for overviews). It is however interesting to
observe that the well known existing frameworks, includingthose that consider fuzzy
interpretations, hold on to two valued concepts of rule satisfaction, model, etc. in the
sense that a fuzzy interpretation satisfies a rule or not, it is a model or not, etc. This
clearly sets them apart from the approach introduced in thispaper.

The enrichment of ASP with concepts from fuzzy logic as well as from the closely
related possibilistic logic [11] has been studied from various angles already. In an-
notated answer set programming [22], a rule is of the forml{f (z1 , z2 , . . . , zn)} ←
l1{z1}, l2{z2}, . . . , ln{zn} wherel, l1, l2, . . . , ln denote literals andz1, z2, . . . , zn are
annotation terms that can be understood as truth degrees. Such a rule asserts thatl is
true at least to degreef(z1, z2, . . . , zn) wheneverli is true at least to degreezi (for
i = 1 . . . n). Because of this early revertment to the two valued case, nofuzzy logical
operators are needed in this approach.

The approach in [17] adheres closer to ours. A rule of the formα
z
← β is said to be

satisfied by the interpretation iff (in our notation)I|=(α) ≥L T (I|=(β), z). The resid-
uation principle reveals a clear connection with our approach when committing to an
R-implicatorIT : namely thatI satisfies the ruleα

z
← β according to [17] iffI satisfies

this rule at least to degreez in our approach. This is also in accordance with [8] where
the use of adjoint pairs(T , IT) is strongly advocated to preserve important theoretical
results. Being able to impose specific satisfaction requirements for individual rules is in
general an interesting feature, e.g., when rules and facts originate from different knowl-
edge bases that are not all equally trusted. Note that this can be easily incorporated in
our approach by choosing a suitable aggregatorA.

In a similar way, [25] can be seen as a special case of the FASP framework presented
in this paper as [25] commits itself, with limited motivation, to very specific choices for

11

the user-selectable operators on the lattice[0, 1]. Some of these choices are at least
questionable. E.g., using the Gödel negatorNg for interpreting naf yields that a rule
a ← notb will not be applied in any way althoughb is only true to a small degree, e.g.
0.1. Using the standard negatorNs, as we do in our examples, this would yield a rule
that is applicable to a degree0.9, and, if a rule satisfaction of at least0.8 is wanted with
e.g.ISM

, we havemax (0.1, y) = 0.8, which implies thata will be derived at degree
0.8 in a fuzzy answer set.

A possibilistic definite logic program [18] consists of rules annotated with certainty
degrees. These degrees are used to establish a possibility distribution on the universe of
atom sets, from which a possibilistic model is derived. The authors choose implicitly
for the Gödel negator, as they first compute the classical answer sets, and afterwards
compute, for an answer setS, the possibility to which each literall is contained inS.

6 Conclusions and future research

There are many ways to increase the expressive power of answer set programming
(ASP) by enriching it with mechanisms to deal with imprecision and uncertainty. In
this paper we presented a general and elegant fuzzification of ASP, called fuzzy answer
set programming (FASP). The generality is reflected in a highconfigurability by the
user, which allows the system to be tailored to the application at hand. Among other
things, the ability to choose an aggregator allows for future extensions of the seman-
tics, e.g. incorporating rule preferences on fuzzy programs. The elegance is due to a
close adherence to both the fuzzy logic and the answer set programming paradigm: as
opposed to other approaches, FASP does not revert soon to thetwo valued case but in-
stead allows to compute the actual degree to which a fuzzy interpretation is an answer
set. Furthermore we have shown that FASP extends the traditional answer set semantics.

Clearly, there are a lot of topics that still need to be investigated, e.g. a fixpoint char-
acterization, the complexity of the semantics, the use of disjunction etc., all parametrized
by the choice of the (lattice) operations. In addition, we intend to explore natural FASP
applications areas such as “web of trust”, diagnosis, and decisision support.

References

[1] T. Alsinet, L. Godo, and S. Sandri. Two formalisms of extended possibilistic logic pro-
gramming with context-dependent fuzzy unification: a comparative description.Electronic
Notes in Theoretical Computer Science, 66(5), 2002.

[2] M. Balduccini and M. Gelfond. Logic programs with consistency-restoring rules. InPro-
ceedings of the International Symposium on Logical Formalization of Commonsense Rea-
soning, AAAI 2003 Spring Symposium Series, 2003.

[3] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge Press, 2003.

[4] G. Birkhoff. Lattice theory. American Mathematical Society Colloquium Publications,
25(3), 1967.

[5] G. Brewka. Logic programming with ordered disjunction.In Proceedings of the 18th
National Conference on Artificial Intelligence and Fourteenth Conference on Innovative
Applications of Artificial Intelligence, pages 100–105. AAAI Press, July 2002.

12

[6] G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. Artificial
Intelligence, 109(1-2):297–356, April 1999.

[7] F. Buccafurri, N. Leone, and P. Rullo. Strong and weak constraints in disjunctive datalog.
In Proc. of the 4th Intl. Conf. on Logic Programming (LPNMR ’97), pages 2–17, 1997.

[8] C. Damasio, J. Medina, and M. Ojeda-Aciego. Sorted multi-adjoint logic programs: termi-
nation results and applications.Journal of Applied Logic, page To appear, 2006.

[9] C. V. Damasio and L. M. Pereira. Sorted monotonic logic programs and their embedding.
In Proc. of the 10th Intl. Conf. on Information Processing and Management of Uncertainty
in Knowledge-Based Systems (IPMU-04), pages 807–814, 2004.

[10] M. De Vos and D. Vermeir. On the Role of Negation in ChoiceLogic Programs. InLogic
Programming and Non-Monotonic Reasoning Conference (LPNMR’99), volume 1730 of
LNAI, pages 236–246. Springer, 1999.

[11] D. Dubois and H. Prade. Possibilistic logic: a retrospective and prospective view.Fuzzy
Sets and Systems, 144(1):3–23, 2004.

[12] T. Eiter, W. Faber, N. Leone, and G. Pfeifer. The diagnosis frontend of the dlv system.AI
Communications, 12(1-2):99–111, 1999.

[13] D. Gabbay, E. Laenens, and D. Vermeir. Credulous vs. Sceptical Semantics for Ordered
Logic Programs. InProceedings of the 2nd International Conference on Principles of
Knowledge Representation and Reasoning, pages 208–217. Morgan Kaufmann, 1991.

[14] M. Gelfond and V. Lifschitz. The stable model semanticsfor logic programming. InLogic
Programming, Proceedings of the Fifth International Conference and Symposium, pages
1070–1080, Seattle, Washington, August 1988. The MIT Press.

[15] M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases.New Generation Computing, 9(3-4):365–386, 1991.

[16] D. N. Juergen Dix, Ugur Kuter. Planning in answer set programming using ordered task
decomposition. InProc. of the 27th German Annual Conf. on Artificial Intelligence (KI
’03), volume 2821 ofLNAI, pages 490–504. Springer, 2003.

[17] C. Mateis. Extending disjunctive logic programming byt-norms. InProc. of the 5th Intl.
Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR99), volume 1730 of
LNAI, pages 290–304. Springer, 1999.

[18] P. Nicolas, L. Garcia, and I. Stéphan. Possibilistic stable models. InProc. of the 19th Intl.
Joint Conf. on Artificial Intelligence, pages 248–253, 2005.

[19] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An a-prolog deci-
sion support system for the space shuttle. InThird International Symposium on Practical
Aspects of Declarative Languages, volume 1990 ofLNCS, pages 169–183. Springer, 2001.

[20] V. Novák, I. Perfilieva, and J. Moc̆kor̆.Mathematical Principles of Fuzzy Logic. Kluwer
Academic Publishers, 1999.

[21] T. Soininen and I. Niemelä. Developing a declarative rule language for applications in
product configuration. InProc. of the 1st Intl. Workshop on Practical Aspects of Declarative
Languages (PADL ’99), volume 1551 ofLNCS, pages 305–319. Springer, 1999.

[22] U. Straccia. Annotated answer set programming. InProc. of the 11th Intl. Conf. on Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU-06),
2006.

[23] A. van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for general logic
programs.Journal of the Association for Computing Machinery, 38(3):620–650, 1991.

[24] D. Van Nieuwenborgh and D. Vermeir. Preferred answer sets for ordered logic programs.
Theory and Practice of Logic Programming, 6(1-2):107–167, 2006.

[25] G. Wagner. A logical reconstruction of fuzzy inferencein databases and logic programs. In
Proceedings of the International Fuzzy Set Association World Congress (IFSA’97), 1997.

[26] L. Zadeh. Fuzzy logic and approximate reasoning.Synthese 30, pages 407–428, 1975.

13

