
Efficient Approximate Reasoning with
Positive and Negative Information

Chris Cornelis, Martine De Cock, and Etienne Kerre

Fuzziness and Uncertainty Modelling Research Unit,
Department of Applied Mathematics and Computer Science,

Ghent University,
Krijgslaan 281 (S9), B–9000 Gent, Belgium

{chris.cornelis,martine.decock,etienne.kerre}@UGent.be
http://fuzzy.UGent.be

Abstract. Starting from the generic pattern of the Generalized Modus
Ponens, we develop an efficient yet expressive quantitative model of ap-
proximate reasoning that tries to combine “the best of different worlds”;
following a recent trend, we make a distinction between positive or ob-
served (“guaranteed”) fuzzy rules on one hand, and negative or restrict-
ing ones on the other hand, which allows to mend some persistent mis-
understandings about classical inference methods. To reduce algorithm
complexity, we propose inclusion–based reasoning, which at the same
time offers an efficient way to approximate “exact” reasoning methods,
as well as an attractive implementation to the concept of reasoning by
analogy.
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1 Introduction and Motivation

Reasoning with imprecise information expressed as fuzzy sets (possibility distri-
butions) has received much attention over the past 30 years. More specifically,
researchers have undertaken various attempts to model the following reasoning
scheme (an extension of the modus ponens logical deduction rule), known as
Generalized Modus Ponens (GMP):

IF X is A THEN Y is B
X is A′

Y is B′

where X and Y are assumed to be variables taking values in the respective uni-
verses U and V ; furthermore A, A′ ∈ F(U) and B,B′ ∈ F(V )1.

1 By F(U) we denote all fuzzy sets in a universe U , i.e. mappings from U to [0, 1].
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Traditionally, the if–then rule is represented by a fuzzy relation R (a fuzzy
set in U × V ), and to obtain an inference B′ about Y , the direct image R′ ↑T A
of A′ under R by means of a t–norm2 T is computed3, i.e. for v in V ,

B′(v) = R ↑T A′(v) = sup
u∈U

T (A′(u), R(u, v)) (1)

R is typically modelled by either a t–norm T or an implicator4 I, such that
for all u in U and v in V

R(u, v) = T (A(u), B(v)) (2)
or, R(u, v) = I(A(u), B(v)) (3)

This choice gives rise to the conjunction–based, resp. implication–based model
of approximate reasoning (see e.g. [1]). Also (1) can be easily generalized to a
batch of parallel fuzzy rules (as in a fuzzy expert system); in this paper we do
not consider this extended setting.

Two important points should be made w.r.t. this “de facto” procedure:

1. Regarding semantics, Dubois et al. [4] recently pointed out that when R is
modelled by a t–norm as in (2), the application of (1) invokes undesirable
behaviour of the reasoning mechanism.

2. Regarding complexity, the calculation of the supremum in (1) is a time–
consuming process. When |U | = m and |V | = n, the complexity of a single
inference amounts to O(mn).

We are convinced that these arguments can be identified as the main causes
why the application of approximate reasoning has been restricted so far to sim-
ple control tasks, and why only crisp numbers are used as input values to the
GMP (as in Mamdani controllers). In this paper, starting from the distinction
between positive and negative information in the light of possibility theory (Sec-
tion 2), in Section 3 we present a unified reasoning mechanism that takes into
account a rule’s intrinsic nature. Section 4 tackles the efficiency issue: we show
that inclusion–based approximate reasoning, as a natural tool for reasoning by
analogy, may reduce complexity to O(m + n) without harming the underlying
rule semantics.

2 Positive and Negative Information in Possibility Theory

Possibility theory is a formalism that tries to capture in mathematical terms im-
precise (typically, linguistic) information about the more or less plausible values

2 A t–norm T is an increasing, commutative, associative [0, 1]2 → [0, 1] mapping that
satisfies T (x, 1) = x for all x in [0, 1].

3 This procedure is also known as Compositional Rule of Inference (CRI).
4 An implicator I is a [0, 1]2 → [0, 1] mapping with decreasing first and increasing

second partial mappings that satisfies I(0, 0) = 1 and I(1, x) = x for all x in [0, 1].
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that a variable may assume. For instance, a statement like “decent houses in
Gent do not come cheap” flexibly restricts plausible buying prices by pointing
out that a low budget will not get you very far in this town. Compare this to
“I found a nice place in Gent for about 100.000 EUR”, which gives a guarantee
(by explicit example) that properties in a given price range can be found. The
examples we quoted are instances of what is called negative or constraint–based
and positive or observation–based information respectively in the literature [4]:
the first kind rules out certain values for the buying price X, while the second
kind only designates certain observed values as “definitely possible” while saying
nothing about the rest.

To mathematically represent both types of information, possibility distri-
butions and guaranteed possibility distributions were introduced. Formally, a
possibility distribution πX on a variable X (e.g. buying price) in a universe U is
a U → [0, 1] mapping such that πX(u) = p means that it is (at most) possible
to degree p that X can take the value u. Possibility degrees typically emerge by
evaluating a fuzzy set like “expensive” and subsequently imposing

πX(u) ≤ expensive(u) (4)

The inequality allows for the existence of other information items restricting
X (specifically, new constraints can make the possibility degrees decrease). On
the other hand, a guaranteed possibility distribution δX on U is another U →
[0, 1] mapping such that δX(u) = d means that it is (at least, or guaranteed)
possible to degree d that X can take the value u. In our example, δX would be
obtained by setting

δX(u) ≥ about-100.000-EUR(u) (5)

Analogously to (4), the inequality is meant to imply that later on new obser-
vations can make the guaranteed possibility degrees increase. Clearly, constraint–
based and observation–based information induce dual types of inequalities; it is
generally assumed that δX(u) ≤ πX(u) for u ∈ U , an integrity constraint ex-
pressing that impossible values cannot be guaranteed.

3 A Unified Framework for Approximate Reasoning with
Positive and Negative Information

Intuitively, a rule reflects some pattern or regularity from real life. It gains
strength when a lot of instances in which the regularity holds are observed,
and when only few counterexamples occur. Formally, in a crisp setting, given A
in P(U), B in P(V ), the couple (u, v) in U × V is called

– a positive example if u ∈ A and v ∈ B
– a negative example if u ∈ A and v �∈ B

w.r.t. the crisp rule“IF X is A THEN Y is B”. It is clear that all positive
examples are given by A × B and all negative ones by A × coB. Remark also
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that the couples (u, v) in coA × V are neither positive nor negative; in e.g. [4]
they are called irrelevant examples. To represent a rule as a crisp relation R
between U and V there are two ways to proceed:

– Negative Approach. R = co(A × coB). This means that negative examples
are explicitly excluded (do not belong to R) while other couples in U ×V are
considered possible by default for X and Y . In other words: “if X takes a
value in A, then Y must certainly be in B (and can impossibly be in co(B))”.
The rule is thus treated as a constraint, i.e. as a piece of negative information
in the light of possibility theory.

– Positive Approach. R = A × B. The rule’s representation coincides with
its positive examples. Positive examples are explicitly supported, while for
other couples in U ×V , due to lack of evidence, we put R(u, v) = 0. In other
words: “If X is in A, it’s perfectly possible (but not necessary) that Y is in
B”. This means that R carries positive information5.

The above can be straightforwardly extended to fuzzy sets, leading to
these formulas for the representation of a fuzzy rule in the implication– and
conjunction–based model; for an implicator I and a t–norm T , (u, v) in U × V ,
we distinguish between

RI(u, v) = I(A(u), B(v)) (6)
RT (u, v) = T (A(u), B(v)) (7)

The above analysis of the anatomy of a fuzzy rule makes it possible to imag-
ine the rule base of a fuzzy expert system (e.g. to determine a suitable price
for a house) being built up of both negative rules expressing restrictions (typi-
cally obtained from experts) and positive rules expressing observed relationships
(emerging e.g. from a suitable data mining process). It also reveals that both
kinds of rules should be processed in a different way, as was noted in [4]. To see
this, we revert to the crisp case. Assume that X’s values are restricted to the
crisp subset A′ of U . If R = co(A × coB), then v in V cannot be excluded as a
possible value for Y provided there exists a u from A′ such that (u, v) ∈ R, i.e.

B′ = {v | v ∈ V and (∃u ∈ U)(u ∈ A′ and (u, v) ∈ R)} (8)

So B′ = R ↑ A′, the direct image of A′ under R. On the other hand, if
R = A×B, then v in V can be guaranteed as a possible value for Y only insofar
as each of the (u, v), with u ∈ A′, can be guaranteed, hence

B′ = {v | v ∈ V and (∀u ∈ U)(u ∈ A′ ⇒ (u, v) ∈ R)} (9)

B′ is also known as the subdirect image R � A′ of A′ under R. Straightfor-
ward fuzzification of these formulas using a t–norm T and an implicator I gives
rise to, for v in V ,

5 Remark that R cannot be seen as a constraint, since it would mean that also irrele-
vant examples are excluded (do not belong to R), something the rule definitely does
not imply.
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B′
1(v) = RI ↑T A′(v) = sup

u∈U
T (A′(u), I(A(u), B(v))) (10)

B′
2(v) = RT �I A′(v) = inf

u∈U
I(A′(u), T (A(u), B(v))) (11)

Notice in particular the nice dual symmetry of the inference results in the
implication– and conjunction–based model; also remark that if A′ is a crisp
singleton of U , then (11) coincides with the application of CRI using formula
(1) where R = RT . Incidentally, this explains why in Mamdani controllers the
processing of positive information by means of the direct image does not cause
problems6.

4 Inclusion–Based Approximate Reasoning

Parallel to the mainstream approach to approximate reasoning based on the
CRI, an extensive body of literature (see e.g. [1]) is concerned with so–called
reasoning by analogy, the rationale of which can be summed up as: “Similar
inputs A′ should lead to similar outputs B′”. This paradigm has inspired several
authors to propose various kinds of similarity–based reasoning. Generically, given
an if–then rule “IF X is A THEN Y is B”, and an observation A′ about X, this
procedure can be summarized as

1. Comparison. A′ is compared to A by means of a similarity measure SIM,
i.e. α = SIM(A′, A) is determined, with α ∈ [0, 1]. The higher α, the more
A′ and A are considered similar.

2. Modification. The consequent B is modified into the conclusion B′ by
means of B′(v) = f(α, B)(v), where f is called a modification mapping.
Normally, f(1, B) = B, and f(α, B) �= B when α < 1.

The above procedure is attractive from an efficiency point of view: the cal-
culation of the similarity of A′ and A usually takes O(m) time and needs to be
performed only once, so overall complexity is O(m + n). Its semantics however
fail to meet intuition. Indeed, the predominant characteristics that most people
look for in a similarity measure are reflexivity and symmetry. Reflexivity assures
that when A′ = A, then SIM(A′, A) = 1, so B′ = B as well, a very natu-
ral integrity condition. Symmetry, on the other hand, may be harmful to our
purposes, as the following example shows.

Example 1. Consider a crisp rule “IF X is in [0,100], THEN Y is in [10,20]”.
Now suppose that A′ = {50}. Regardless of whether we take the negative or the
positive view (cfr. Section 3) of this rule, we expect the conclusion to be [10, 20].
Similarity–based reasoning cannot obtain this: if SIM({50}, [0, 100]) were to be
equal to 1, then by symmetry, for the rule “IF X is 50, THEN Y is in [10,20]”

6 One of those problems being e.g., if A′ = U and R = RT in (1), then B′ = V ,
i.e. while one is fully uncertain about the value of X, all values for Y would be
explicitly guaranteed.
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and the observation A′ = [0, 100], the conclusion would be [10, 20] as well, which
is meaningless.

As we argued in [3], this problem can be mended by replacing the degree of
similarity of A′ and A by a degree of fulfilment or satisfaction of A by A′. In the
example, being equal to 50 satisfies the constraint of being between 0 and 100,
so the rule should apply. Vice versa, knowing only that X is between 0 and 100
certainly does not meet the criterion of being exactly 50, so the converse rule
should not apply. A handy tool to evaluate fulfilment is an inclusion measure
INC, i.e. a F(U)2 → [0, 1] mapping that determines to what extent a fuzzy set
is a subset of another one. In particular, we can use INCI , defined by, for an
implicator I,

INCI(A′, A) = inf
u∈U

I(A′(u), A(u)) (12)

This measure is not symmetrical, and one may check that INCI(A, B) =
1 ⇐⇒ A′ ⊆ A when I is equal to the residual implicator IT of a t–norm T ,
i.e. IT (x, y) = sup{γ | γ ∈ [0, 1] and T (x, γ) ≤ y} for x, y in [0, 1].

The issue that remains to be settled is how to choose the modification map-
ping f . The following two theorems show that, for a particular choice of the
connectives, a nice relationship with the inference results for fuzzy rules treated
as negative, resp. positive information, can be established when we put f = IT ,
resp. f = T .

Theorem 1. Let T be a left–continuous t–norm, then for v in V

sup
u∈U

T (A′(u), IT (A(u), B(v))) ≤ IT (INCI(A′, A), B(v)) (13)

Theorem 2. Let T be a left–continuous t–norm, then for v in V

inf
u∈U

IT (A′(u), T (A(u), B(v))) ≥ T (INCI(A′, A), B(v)) (14)

In other words, the “exact” results (10) and (11) can be approximated by their
inclusion–based counterparts. Since the infimum over U needs to be
calculated only once, savings are made w.r.t. complexity (O(m + n) instead
of O(mn)). Moreover, the approximation is conservative in a sense that
e.g. IT (INCI(A′, A), B(v)) does not impose more restrictions than the result
obtained with CRI, which warrants soundness of the method. Initial experimen-
tal results in [2] indicate the strength of the approach.

5 Conclusion

The distinction between rules expressing positive and negative information opens
up new directions that allow a deeper insight into the nature of approximate
reasoning. As a trade–off between expressivity and efficiency, in this paper we
have developed a method based on an inclusion measure, motivated in terms of
fulfilment, for processing both kinds of information.
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