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Abstract

Fuzzy sets and rough sets address two important, and mutually orthogonal, char-
acteristics of imperfect data and knowledge: while the former allow that objects
belong to a set or relation to a given degree, the latter provide approximations of
concepts in the presence of incomplete information. In this chapter, we demonstrate
how these notions can be combined into a hybrid theory that is able to capture
the best of different worlds. In particular, we review various alternatives for defin-
ing lower and upper approximations of a fuzzy set under a fuzzy relation, and also
explore their application in query refinement.

1 Introduction

Fuzzy sets (Zadeh [35], 1965), as well as the slightly younger rough sets (Pawlak [23],
1982), have left an important mark on the way we represent and compute with imperfect
information nowadays. Each of them has fostered a broad research community, and their
impact has also been clearly felt at the application level. Although it was recognized early
on that the associated theories are complementary rather than competitive, perceived
similarities between both concepts and efforts to prove that one of them subsumes the
other, have somewhat stalled progress towards shaping a hybrid theory that combines
their mutual strengths.

Still, seminal research on fuzzy rough set theory flourished during the 1990’s and early
2000’s (e.g. [10, 15, 16, 18, 20, 21, 27, 30, 34]), and recently, cross-disciplinary research has
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also profited from the popularization and widespread adoption of two important computing
paradigms: granular computing, with its focus on clustering information entities into gran-
ules in terms of similarity, indistinguishability, . . . has helped the theoretical underpinnings
of the hybrid theory to come of age, while soft computing—a collection of techniques that
are tolerant of typical characteristics of imperfect data and knowledge, and hence adhere
closer to the human mind than conventional hard computing techniques—has stressed the
role of fuzzy sets and rough sets as partners, rather than adversaries, within a panoply of
practical applications.

Within the hybrid theory, Pawlak’s well-known framework for the construction of lower
and upper approximations of a concept C given incomplete information (a subset A of a
given universe X, containing examples of C), and an equivalence relation R in X that
models “indiscernibility” or “indistinguishability”, has been extended in two ways:

1. The set A may be generalized to a fuzzy set in X, allowing that objects can belong
to a concept (i.e., meet its characteristics) to varying degrees.

2. Rather than modeling elements’ indistinguishability, we may assess their similarity
(objects are similar to a certain degree), represented by a fuzzy relation R. As a
result, objects are categorized into classes, or granules, with “soft” boundaries based
on their similarity to one another.

In this paper, we consider the general problem of defining lower and upper approxima-
tions of a fuzzy set A by means of a fuzzy relation R. A key ingredient to our exposition
will be the fact that elements of X can belong, to varying degrees, to several “soft granules”
simultaneously. Not only does this property lie right at the heart of fuzzy set theory, a
similar phenomenon can already be observed in crisp, or traditional, rough set theory as
soon as the assumption that R is an equivalence relation (and hence induces a partition of
X) is abandoned. Within fuzzy rough set theory, the impact of this property—which plays
a crucial role towards defining the approximations—is felt still more strongly, since even
fuzzy T -equivalence relations, the natural candidates for generalizing equivalence relations,
are subject to it.

The paper is structured as follows. In Section 2, we first recall the necessary background
on rough sets and fuzzy sets. Section 3 reviews various proposals for the definition of a
fuzzy rough set and examines their respective properties. Furthermore, Section 4 reveals
that the various alternative definitions are not just of theoretical interest but become useful
in a topical application such as query refinement for searching on the WWW, especially in
the presence of ambiguous query terms.

2 Preliminaries

2.1 Rough Sets

Rough set analysis makes statements about the membership of some element y of X to the
concept of which A is a set of examples, based on the indistinguishability between y and
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the elements of A. Usually, indistinguishability is described by means of an equivalence
relation R on X; for example, if the elements of X are represented by a set of attributes,
two elements of X are indistinguishable if they have the same value for all attributes. In
this case, (X, R) is called a standard, or Pawlak, approximation space. More generally,
it is possible to replace R by any binary relation in X, not necessarily an equivalence
relation; we then call (X, R) a generalized approximation space. In particular, the case
of a reflexive R, and of a tolerance, i.e. reflexive and symmetric, relation R have received
ample attention in the literature.

In all cases, A is approximated in two ways, resulting in the lower and upper approx-
imation of the concept. In the next paragraphs, we will review the definitions of these
approximations.

For completeness we mention that a second stream concerning rough sets in the liter-
ature was initiated by Iwinski [14] who did not use an equivalence relation or tolerance
relation as an initial building block to define the rough set concept. Although this for-
mulation provides an elegant mathematical model, the absence of the equivalence relation
makes his model hard to interpret. We therefore do not deal with it in this chapter; a more
detailed comparison of the different views on rough set theory can be found in e.g. [33].

2.1.1 Rough Sets in Pawlak Approximation Spaces

In a Pawlak approximation space (X, R), an element y of X belongs to the lower approx-
imation R ↓ A of A if the equivalence class to which y belongs is included in A. On the
other hand y belongs to the upper approximation R ↑ A of A if its equivalence class has a
non-empty intersection with A. Formally, the sets R↓A and R↑A are defined by, for y in
X,

y ∈ R↓A iff [y]R ⊆ A (1)

y ∈ R↑A iff [y]R ∩ A 6= ∅ (2)

In other words

y ∈ R↓A iff (∀x ∈ X)((x, y) ∈ R ⇒ x ∈ A) (3)

y ∈ R↑A iff (∃x ∈ X)((x, y) ∈ R ∧ x ∈ A) (4)

The underlying meaning is that R↓A is the set of elements necessarily satisfying the
concept (strong membership), while R↑A is the set of elements possibly belonging to the
concept (weak membership).

Some basic and easily verified properties of lower and upper approximation are sum-
marized in Table 1. From 2., it holds that R↓A ⊆ R↑A. If y belongs to the boundary
region R↑A\R↓A, then there is some doubt, because in this case y is at the same time
indistinguishable from at least one element of A and at least one element of X that is not
in A. Following [27], we call (A1, A2) a rough set (in (X, R)) as soon as there is a set A in
X such that R↓A = A1 and R↑A = A2.
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Table 1: Properties of lower and upper approximation in a Pawlak approximation space
(X, R); A and B are subsets of X, and co denotes set-theoretic complement.

1. R↑A = co(R↓(coA))
R↓A = co(R↑(coA))

2. R↓A ⊆ A ⊆ R↑A
3. A ⊆ B ⇒ (R↓A ⊆ R↓B and R↑A ⊆ R↑B)
4. R↓(A ∩ B) = R↓A ∩ R↓B

R↑(A ∩ B) ⊆ R↑A ∩ R↑B
5. R↓(A ∪ B) ⊇ R↓A ∪ R↓B

R↑(A ∪ B) = R↑A ∪ R↑B
6. R↓(R↓A) = R↓A

R↑(R↑A) = R↑A

2.1.2 Rough Sets in Generalized Approximation Spaces

For an arbitrary binary relation R in X, the role of equivalence classes in Pawlak approx-
imation spaces (cfr. formulas (1) and (2)) can be subsumed by the more general concept
of R-foresets; recall that, for y in X, the R-foreset Ry is defined by

Ry = {x | x ∈ X and (x, y) ∈ R} (5)

It is well known that for an equivalence relation R, then R induces a partition of X,
so if we consider two equivalence classes then they either coincide or are disjoint. It is
therefore not possible for y to belong to two different equivalence classes at the same time.
If R is a non-equivalence relation in X, however, then it is quite normal that different
foresets may partially overlap.

By the definition used so far, y belongs to the lower approximation of A if Ry is in-
cluded in A. In view of the discussion above however it makes sense to consider also other
R-foresets that contain y, and to assess their inclusion into A as well for the lower approx-
imation, and their overlap with A for the upper approximation. This idea, first explored
by Pomykala [25], results in the following (inexhaustive!) list of candidate definitions for
the lower and the upper approximation of A:

1. y belongs to the lower approximation of A iff

(a) all R-foresets containing y are included in A

(b) at least one R-foreset containing y is included in A

(c) Ry is included in A

2. y belongs to the upper approximation of A iff
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(a) all R-foresets containing y have a non-empty intersection with A

(b) at least one R-foreset containing y has a non-empty intersection with A

(c) Ry has a non-empty intersection with A

Paraphrasing these expressions, we obtain the following definitions:

1. The tight, loose and (usual) lower approximation of A are defined as

(a) y ∈ R↓↓A iff (∀z ∈ X)(y ∈ Rz ⇒ Rz ⊆ A)

(b) y ∈ R↑↓A iff (∃z ∈ X)(y ∈ Rz ∧ Rz ⊆ A)

(c) y ∈ R↓A iff Ry ⊆ A

for all y in X.

2. The tight, loose and (usual) upper approximation of A are defined as

(a) y ∈ R↓↑A iff (∀z ∈ X)(y ∈ Rz ⇒ Rz ∩ A 6= ∅)

(b) y ∈ R↑↑A iff (∃z ∈ X)(y ∈ Rz ∧ Rz ∩ A 6= ∅)

(c) y ∈ R↑A iff Ry ∩ A 6= ∅

for all y in X.

Note 1 The terminology “tight” refers to the fact that we take all R-foresets classes into
account, giving rise to a strict or tight requirement. For the “loose” approximations, we
only look at “the best one” which is clearly a more flexible demand. For an equivalence
relation R, all of the above definitions coincide, but in general they can be different as the
following example shows.

Example 2 Consider X = {x1, x2, x3, x4}, A = {x1, x3} and the relation R in X defined
by

R x1 x2 x3 x4

x1 1 0 1 0
x2 1 1 0 1
x3 0 1 1 0
x4 1 1 0 1

Then
R ↓ A = {x3} R ↑ A = {x1, x2, x3}
R ↑↓ A = {x1, x3} R ↑↑ A = X
R ↓↓ A = ∅ R ↓↑ A = {x1, x3}
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In the remainder of this section, we assume that R is reflexive and symmetric, which
are basic requirements if R is supposed to model similarity. The symmetry of R allows to
verify following relationships between the approximations:

R↓↓A = R↓(R↓A) (6)

R↑↓A = R↑(R↓A) (7)

R↓↑A = R↓(R↑A) (8)

R↑↑A = R↑(R↑A) (9)

Table 2 lists the properties of the different approximations. Interesting observations to
make from this table include:

1. By 1., there are three pairs of dual approximation operators w.r.t. complementation.

2. Property 2. shows the relationship between the approximations in terms of inclusion,
and how A itself fits into this picture. Note how these relationships nicely justify the
terminology.

3. Loose lower, resp. tight upper, approximation satisfies only a weak interaction prop-
erty w.r.t. set intersection, resp. union (Property 4. and 5.).

4. By Property 6. of Table 1, when R is an equivalence relation, lower and upper approx-
imation are idempotent. This means that in Pawlak approximation spaces, maximal
reduction and expansion are achieved within one approximation step. The same
holds true for loose lower and tight upper approximation in a symmetric approxima-
tion space, but not for the other operators; for these, a gradual reduction/expansion
process is obtained by successively taking approximations.

2.2 Fuzzy Sets

In the context of fuzzy rough set theory, A is a fuzzy set in X, i.e. an X → [0, 1] mapping,
while R is a fuzzy relation in X, i.e. a fuzzy set in X × X. Recall that for all y in X, the
R-foreset of y is the fuzzy set Ry defined by

Ry(x) = R(x, y) (10)

for all x in X. The fuzzy logical counterparts of the connectives in (3) and (4) play an
important role in the generalization of lower and upper approximations; we therefore recall
some important definitions.

First, a negator N is a decreasing [0, 1] → [0, 1] mapping satisfying N (0) = 1 and
N (1) = 0. N is called involutive if N (N (x)) = x for all x in [0, 1]. The standard negator
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Table 2: Properties of lower and upper approximation in a symmetric approximation space
(X, R).

1. R↑A = co(R↓(coA))
R↓A = co(R↑(coA))
R↓↑A = co(R↑↓(coA))
R↑↓A = co(R↓↑(coA))
R↑↑A = co(R↓↓(coA))
R↓↓A = co(R↑↑(coA))

2. R↓↓A ⊆ R↓A ⊆ R↑↓A ⊆ A
A ⊆ R↓↑A ⊆ R↑A ⊆ R↑↑A

3. A ⊆ B ⇒































R↓A ⊆ R↓B
R↑A ⊆ R↑B
R↓↑A ⊆ R↓↑B
R↑↓A ⊆ R↑↓B
R↑↑A ⊆ R↑↑B
R↓↓A ⊆ R↓↓B

4. R↓(A ∩ B) = R↓A ∩ R↓B
R↑(A ∩ B) ⊆ R↑A ∩ R↑B
R↓↑(A ∩ B) ⊆ R↓↑A ∩ R↓↑B
R↑↓(A ∩ B) ⊆ R↑↓A ∩ R↑↓B
R↑↑(A ∩ B) ⊆ R↑↑A ∩ R↑↑B
R↓↓(A ∩ B) = R↓↓A ∩ R↓↓B

5. R↓(A ∪ B) ⊇ R↓A ∪ R↓B
R↑(A ∪ B) = R↑A ∪ R↑B
R↓↑(A ∪ B) ⊇ R↓↑A ∪ R↓↑B
R↑↓(A ∪ B) ⊇ R↑↓A ∪ R↑↓B
R↑↑(A ∪ B) = R↑↑A ∪ R↑↑B
R↓↓(A ∪ B) ⊇ R↓↓A ∪ R↓↓B

6. R↓↑(R↓↑A) = R↓↑A
R↑↓(R↑↓A) = R↑↓A

Ns is defined by Ns(x) = 1−x. A negator N induces a corresponding fuzzy set complement
coN : for any fuzzy set A in X and every element x in X,

coN (A) = N (A(x)) (11)

A triangular norm (t-norm for short) T is any increasing, commutative and associative
[0, 1]2 → [0, 1] mapping satisfying T (1, x) = x, for all x in [0, 1]. Analogously, a triangular
conorm (t-conorm for short) S is any increasing, commutative and associative [0, 1]2 →
[0, 1] mapping satisfying S(0, x) = x, for all x in [0, 1]. Table 3 mentions some important
t-norms and t-conorms. The T -intersection and S-union of fuzzy sets A and B in X are
defined by

(A ∩T B)(x) = T (A(x), B(x)) (12)

(A ∩S B)(x) = S(A(x), B(x)) (13)

for all x in X. Throughout this paper, A ∩TM
B and A ∪SM

B are abbreviated to A ∩ B
and A ∪ B and called standard complement and union, respectively.

Finally, an implicator is any [0, 1]2 → [0, 1]-mapping I satisfying I(0, 0) = 1, I(1, x) =
x, for all x in [0, 1]. Moreover we require I to be decreasing in its first, and increasing in
its second component. If T is a t-norm, the mapping IT defined by, for all x and y in [0,1],

IT (x, y) = sup{λ|λ ∈ [0, 1] and T (x, λ) ≤ y} (14)
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is an implicator, usually called the residual implicator of T . If T is a t-norm and N is an
involutive negator, then the mapping IT ,N defined by, for all x and y in [0,1],

IT ,N (x, y) = N (T (x,N (y))) (15)

is an implicator, usually called the S-implicator induced by T and N . In Table 4, we
mention some important S- and residual implicators; the S-implicators are induced by
means of the standard negator Ns.

Table 3: Well-known t-norms and t-conorms; x and y in [0, 1].

t-norm t-conorm
TM(x, y) = min(x, y)
TP(x, y) = xy
TW(x, y) = max(x + y − 1, 0)

SM(x, y) = max(x, y)
SP(x, y) = x + y − xy
SW(x, y) = min(x + y, 1)

Table 4: Well-known implicators; x and y in [0, 1].
S-implicator Residual implicator

ISM
(x, y) = max(1 − x, y)

ISP
(x, y) = 1 − x + xy

ISW
(x, y) = min(1 − x + y, 1)

ITM
(x, y) =

{

1, if x ≤ y
y, otherwise

ITP
(x, y) =

{

1, if x ≤ y
y

x
, otherwise

ISW
(x, y) = min(1 − x + y, 1)

In fuzzy rough set theory, we require a way to express that objects are similar to each
other to some extent. In the context of this paper, similarity is modelled by a fuzzy
tolerance relation R, that is

R(x, x) = 1 (reflexivity)
R(x, y) = R(y, x) (symmetry)

hold for all x and y in X. Additionally, T -transitivity (for a particular t-norm T ) is
sometimes imposed: for all x, y and z in X,

T (R(x, y), R(y, z)) ≤ R(x, z) (T -transitivity)

R is then called a fuzzy T -equivalence relation; because equivalence relations are used
to model equality, fuzzy T -equivalence relations are commonly considered to represent
approximate equality. In general, for a fuzzy tolerance relation R, we will call Ry the
“fuzzy similarity class” of y.
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3 Fuzzy Rough Sets

3.1 Definitions

Research on fuzzifying lower and upper approximations in the spirit of Pawlak emerged
in the late 1980’s. Chronologically, the first proposals are due to Nakamura [20], and to
Dubois and Prade [10] who drew inspiration from an earlier publication by Fariñas del
Cerro and Prade [11].

In developing the generalizations, the central focus moved from elements’ indistin-
guishability (for instance, w.r.t. their attribute values in an information system) to their
similarity: objects are categorized into classes with “soft” boundaries based on their sim-
ilarity to one another. A concrete advantage of such a scheme is that abrupt transitions
between classes are replaced by gradual ones, allowing that an element can belong (to
varying degrees) to more than one class. An example at hand is an attribute “age” in an
information table: in order to restrict the number of equivalence classes, classical rough set
theory advises to discretize age values by a crisp partition of the universe, e.g. using inter-
vals [0, 10], [10, 20], . . .. This does not always reflect our intuition, however: by imposing
such harsh boundaries, a person who has just turned eleven will not be taken into account
in the [0, 10] class, even when she is only at a minimal remove from full membership in
that class.

Guided by that observation, many people have suggested alternatives for defining gener-
alized approximation operators, e.g. using axiomatic approaches [18], based on Iwinski-type
rough sets [21], in terms of α-cuts [34], level fuzzy sets [17] or fuzzy inclusion measures [15],
etc. Some authors (e.g. [30, 34]) explicitly distinguish between rough fuzzy sets (approxi-
mations of a fuzzy set in a crisp approximation space) and fuzzy rough sets (approximations
of a crisp set in a fuzzy approximation space, i.e., defined by a fuzzy relation R).

A fairly general definition of a fuzzy rough set, absorbing earlier suggestions in the same
direction, was given by Radzikowska and Kerre [27]. They paraphrased formulas (3) and
(4), which hold in the crisp case, to define the lower and upper approximation of a fuzzy
set A in X as the fuzzy sets R ↓ A and R ↑ A in X, constructed by means of an implicator
I, a t-norm T and a fuzzy T -equivalence relation R in X,

R ↓ A(y) = inf
x∈X

I(R(x, y), A(x)) (16)

R ↑ A(y) = sup
x∈X

T (R(x, y), A(x)) (17)

for all y in X. (A1, A2) is called a fuzzy rough set (in (X, R)) as soon as there is a fuzzy
set A in X such that R↓A = A1 and R↑A = A2. Formulas (16) and (17) for R↓A and R↑A
can also be interpreted as the degree of inclusion of Ry in A and the degree of overlap of
Ry and A respectively, which indicates the semantical link with (1) and (2).

What this definition does not take into account, however, is the fact that if R is a fuzzy
T -equivalence relation then it is quite normal that, because of the intermediate degrees of
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Figure 1: Fuzzy similarity classes

membership, different foresets are not necessarily disjoint. The following example, taken
from [9], illustrates this.

Example 3 In applications TW is often used as a t-norm because the notion of fuzzy TW-
equivalence relation is dual to that of a pseudo-metric [3]. Let the fuzzy TW-equivalence
relation R in R be defined by

R(x, y) = max(1 − |x − y|, 0)

for all x and y in R. Figure 1 depicts the R-foresets of 1.3, 2.2, 3.1 and 4.
The R-foresets of 3.1 and 4 are clearly different. Still one can easily see that

R(3.1, 3.5) = 0.6

R(4.0, 3.5) = 0.5

Since TW(0.6, 0.5) = 0.1, 3.5 belongs to degree 0.1 to the TW-intersection of the R-foresets
of 3.1 and 4, i.e., these R-foresets are not disjoint.

In other words, the traditional distinction between equivalence and non-equivalence
relations is lost when moving on to a fuzzy T -equivalence relation, so it makes sense to
exploit the fact that an element can belong to some degree to several R-foresets of any

fuzzy relation R at the same time. Natural generalizations to the definitions from Section
2.1.2 were therefore proposed in [7, 9].

Definition 4 Let R be a fuzzy relation in X and A a fuzzy set in X.

1. The tight, loose and (usual) lower approximation of A are defined as

(a) R↓↓A(y) = inf
z∈X

I(Rz(y), inf
x∈X

I(Rz(x), A(x)))
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(b) R↑↓A(y) = sup
z∈X

T (Rz(y), inf
x∈X

I(Rz(x), A(x)))

(c) R↓A(y) = inf
x∈X

I(Ry(x), A(x))

for all y in X.

2. The tight, loose and (usual) upper approximation of A are defined as

(a) R↓↑A(y) = inf
z∈X

I(Rz(y), sup
x∈X

T (Rz(x), A(x)))

(b) R↑↑A(y) = sup
z∈X

T (Rz(y), sup
x∈X

T (Rz(x), A(x)))

(c) R↑A(y) = sup
x∈X

T (Ry(x), A(x))

for all y in X.

In the next subsection, we investigate the main properties of these alternative approx-
imation operators.

3.2 Properties of Fuzzy Rough Sets

In this section, we will assume that R is a fuzzy tolerance relation in X. Some properties
require additional T -transitivity of R; whenever this is the case we mention it explicitly.
An overview of the properties discussed in this section is given in Table 5.

3.2.1 Links between the Approximations

Just like in the crisp case, tight and loose approximation operators can be expressed in
terms of the usual ones, due to the symmetry of R.

Proposition 5 For every fuzzy set A in X

R↓↓A = R↓(R↓A) (18)

R↑↓A = R↑(R↓A) (19)

R↓↑A = R↓(R↑A) (20)

R↑↑A = R↑(R↑A) (21)

The monotonicity of the approximations follows easily due to the monotonicity of the fuzzy
logical operators involved. This is reflected in the next proposition.
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Proposition 6 For every fuzzy set A and B in X

A ⊆ B ⇒































R↓A ⊆ R↓B
R↑A ⊆ R↑B
R↑↑A ⊆ R↑↑B
R↓↑A ⊆ R↓↑B
R↑↓A ⊆ R↑↓B
R↓↓A ⊆ R↓↓B

(22)

The following proposition supports the idea of approximating a concept from the lower
and the upper side.

Proposition 7 [27] For every fuzzy set A in X

R↓A ⊆ A ⊆ R↑A (23)

For the tight and loose approximations, due to Propositions 5, 6 and 7, we can make
the following general observations.

Proposition 8 For every fuzzy set A in X

R↓↓A ⊆ R↓A ⊆ A ⊆ R↑A ⊆ R↑↑A (24)

R↓A ⊆ R↑↓A ⊆ R↑A (25)

R↓A ⊆ R↓↑A ⊆ R↑A (26)

However, the proposition does not give any immediate information about a direct rela-
tionship between the loose lower and the tight upper approximation in terms of inclusion,
and about how A itself fits in this picture. The following proposition sheds some light on
this matter.

Proposition 9 If T and I satisfy T (x, I(x, y)) ≤ y and y ≤ I(x, T (x, y)) for all x and y
in [0, 1] then for every fuzzy set A in X

R↑↓A ⊆ A ⊆ R↓↑A (27)

In particular, if T is a left-continuous t-norm and I is its residual implicator the
property holds [1]. Proposition 9 does not hold in general for other choices of t-norms and
implicators as the next example illustrates.

Example 10 Consider the fuzzy T -equivalence relation R on X = {a, b} given by

R a b
a 1.0 0.2
b 0.2 1.0
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and the fuzzy set A in X defined by A(a) = 1 and A(b) = 0.8. Furthermore let T = TM

and I = ISM,Ns
. Then R↑A(a) = 1 and R↑A(b) = 0.8, hence

(R↓↑A)(a) = min(max(0, 1), max(0.8, 0.8)) = 0.8 (28)

which makes it clear that A 6⊆ R↓↑A.

From all of the above we obtain, for any fuzzy relation R in X,

R↓↓A ⊆ R↓A ⊆ R↑↓A ⊆ A ⊆ R↓↑A ⊆ R↑A ⊆ R↑↑A (29)

provided that T satisfies the conditions of Proposition 9.

3.2.2 Interaction with Set-Theoretic Operations

The following proposition shows that, given some elementary conditions on the involved
connectives, the usual lower and upper approximation are dual w.r.t. fuzzy set comple-
mentation.

Proposition 11 [4] If T is a t-norm, N an involutive negator and I the corresponding
S-implicator; or, if T is a left-continuous t-norm, I its residual implicator and N defined
by N (x) = I(x, 0) for x in [0, 1] is an involutive negator, then

R↑A = coN (R↓(coNA)) (30)

R↓A = coN (R↑(coNA)) (31)

Combining this result with Proposition 5, it is easy to see that under the same conditions,
tight upper and loose lower approximation are dual w.r.t. complementation, as are loose
upper and tight lower approximation.

Proposition 12 [27] For any fuzzy sets A and B in X

R↓(A ∩ B) = R↓A ∩ R↓B (32)

R↑(A ∩ B) ⊆ R↑A ∩ R↑B (33)

R↓(A ∪ B) ⊆ R↓A ∪ R↓B (34)

R↑(A ∪ B) = R↑A ∪ R↑B (35)

Again by Proposition 5, one can also verify the following equalities

R↓↓(A ∩ B) = R↓↓A ∩ R↓↓B (36)

R↑↑(A ∪ B) = R↑↑A ∪ R↑↑B (37)

whereas for the remaining interactions, the same inclusions hold as in the crisp case (see
Table 2).
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3.2.3 Maximal Expansion and Reduction

Taking an upper approximation of A in practice corresponds to expanding A, while a lower
approximation is meant to reduce A. However this refining process does not go on forever.
The following property says that with the loose lower and the tight upper approximation
maximal reduction and expansion are achieved within one approximation.

Proposition 13 [1] If T is a left-continuous t-norm and I its residual implicator then for
every fuzzy set A in X

R↑↓(R↑↓A) = R↑↓A and R↓↑(R↓↑A) = R↓↑A (38)

To investigate the behaviour of the loose upper and tight lower approximation w.r.t. expan-
sion and reduction, we first establish links with the composition of R with itself. Recall
that the composition of fuzzy relations R and S in X is the fuzzy relation R ◦ S in X
defined by

(R ◦ S)(x, z) = sup
y∈X

T (R(x, y), S(y, z)) (39)

for all x and z in X.

Proposition 14 [9] If T is a left-continuous t-norm then for every fuzzy set A in X

R↑↑A = (R ◦ R)↑A (40)

Proposition 15 [9] If I is left-continuous in its first component and right-continuous in
its second component, and if T and I satisfy the shunting principle

I(T (x, y), z) = I(x, I(y, z)) (41)

then for every fuzzy set A in X

R↓↓A = (R ◦ R)↓A (42)

Note 16 Regarding the restrictions placed on the fuzzy logical operators involved, recall
that the shunting principle is satisfied both by a left continuous t-norm and its residual
implicator [22] as well as by a t-norm and an S-implicator induced by it [27].

Let us use the following notation, for n > 1,

R1 = R and Rn = R ◦ Rn−1 (43)

From Proposition 14 it follows that taking the upper approximation of a fuzzy set under R n
times successively corresponds to taking the upper approximation once under the composed
fuzzy relation Rn. Proposition 15 states a similar result for the lower approximation. For
the particular case of a fuzzy T -equivalence relation, we have the following important
result.
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Proposition 17 [27] If R is a fuzzy T -equivalence relation in X then

R ◦ R = R (44)

In other words, using a T -transitive fuzzy relation R, options (1a) and (1c) of Definition
4 coincide, as well as options (2b) and (2c). The following proposition states that under
these conditions, they also coincide with (1b), respectively (2a).

Proposition 18 [1, 27] If R is a fuzzy T -equivalence relation in X, T is a left-continuous
t-norm and I its residual implicator then for every fuzzy set A in X

R↑↓A = R↓A and R↓↑A = R↑A (45)

This means that, using a fuzzy T -equivalence relation to model approximate equality,
we will obtain maximal reduction or expansion in one phase, regardless of which of the
approximations from Definition 4 is used. As Example 2 already illustrated for the crisp
case, when we abandon (T -)transitivity, this behaviour is not always exhibited. In general,
when R is not T -transitive and the universe X is finite, it is known that the T -transitive
closure of R is given by R|X−1| (assuming |X| ≥ 2) [19], hence

R ◦ R|X−1| = R|X−1| (46)

In other words with the lower and upper approximation, maximal reduction and expansion
will be reached in at most |X − 1| steps, while with the tight lower and the loose upper
approximation it can take at most ⌈|X − 1|/2⌉ steps.

Note 19 The special situation regarding fuzzy T -equivalence relations deserves some fur-
ther attention. While they are known as the counterpart of equivalence relations, we
illustrated in Section 3.1 that their fuzzy similarity classes are not always equal or disjoint;
in fact y can belong at the same time to different fuzzy similarity classes to a certain degree.
Hence it is not possible, at first sight, to rule out the usefulness of the tight and loose lower
and upper approximations introduced in Definition 4. However, careful investigation of
the properties of the approximations shows that interplay between suitably chosen fuzzy
logical operators and the T -transitivity of the fuzzy relation forces the various approxima-
tions to coincide. In the next section we will illustrate that this is not always a desirable
property in applications, because it does not allow for gradual expansion or reduction of a
fuzzy set by iteratively taking approximations. Omitting the requirement of T -transitivity
is precisely the key that allows for a gradual expansion process.

Other undesirable effects of T -transitivity w.r.t. approximate equality were pointed out
in [5], [6]. More in particular it is observed there that fuzzy T -equivalence relations can
never satisfy the so-called Poincaré paradox. A fuzzy relation R in X is compatible with
the Poincaré paradox iff

(∃(x, y, z) ∈ X3)(R(x, y) = 1 ∧ R(y, z) = 1 ∧ R(x, z) < 1) (47)
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This is inspired by Poincaré’s [24] experimental observation that a bag of sugar of 10
grammes and a bag of 11 grammes can be perceived as indistinguishable by a human
being. The same applies for a bag of 11 grammes w.r.t. a bag of 12 grammes, while the
subject is perfectly capable of noting a difference between the bags of 10 and 12 grammes.
Now if R is a fuzzy T -equivalence relation, then R(x, y) = 1 implies Rx = Ry [10]. Since
Ry(z) = R(y, z) = 1, also Rx(z) = R(x, z) = 1 which is in conflict with R(x, z) < 1. The
fact that they are not compatible with the Poincaré paradox makes fuzzy T -equivalence
relations less suited to model approximate equality. The main underlying cause for this
conflict is T -transitivity.

4 Application to query refinement

One of the most common ways to retrieve information from the WWW is keyword based
search: the user inputs a query consisting of one or more keywords and the search system
returns a list of web documents ranked according to their relevance to the query. The same
procedure is often used in e-commerce applications that attempt to relate the user’s query
to products from the catalogue of some company.

In the basic approach, documents are not returned as search results if they do not
contain (one of) the exact keywords of the query. There are various reasons why such an
approach might fall short. On one hand there are word mismatch problems: the user knows
what he is looking for and he is able to describe it, but the query terms he uses do not
exactly correspond to those in the document containing the desired information because
of differences in terminology. This problem is even more significant in the context of the
WWW than in other, more focussed information retrieval applications, because of the
very heterogeneous sources of information expressed in different jargon or even in different
natural languages. Note that, on a more general level, a great deal of the Semantic Web
efforts are concerned with this problem too, which is reflected by all the attention paid to
the construction and the representation of ontologies, allowing agents to communicate with
each other by providing a shared and common understanding that reaches across people
and application systems (see e.g. [12]). In this paper we rely on a basic kind of ontology,
called a thesaurus, which is a term-term relation.

Besides differences in terminology, it is also not uncommon for a user not to be able to
describe accurately what he is looking for: the well known “I will know it when I see it”
phenomenon. Furthermore, many terms in natural language are ambiguous. For example,
a user querying for java might be looking for information about either the programming
language, the coffee, or the island of Indonesia. To satisfy users who expect search en-
gines to come up with “what they mean and not what they say”, it is clear that more
sophisticated techniques are needed than a straightforward returning of the documents
that contain (one of) the query terms given by the user. One option is query refinement.
Since web queries tend to be short—according to [32] they consist of one or two terms
on average—we focus on query expansion, i.e. the process of adding related terms to the
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Table 5: Properties of lower and upper approximation in a fuzzy approximation space
(X, R) (R is a fuzzy tolerance relation).

Property Conditions
1. R↑A = coN (R↓(coNA))

R↓A = coN (R↑(coNA)) N involutive, I = IT ,N ;
R↓↑A = coN (R↑↓(coNA)) or, T left-continuous, I = IT

R↑↓A = coN (R↓↑(coNA)) and N (x) = I(x, 0), N involutive
R↑↑A = coN (R↓↓(coNA)) (Proposition 11)
R↓↓A = coN (R↑↑(coNA))

2. R↓↓A ⊆ R↓A ⊆ R↑↓A ⊆ A T (x, I(x, y)) ≤ y and y ≤ I(x, T (x, y))
A ⊆ R↓↑A ⊆ R↑A ⊆ R↑↑A (Proposition 8 and 9)

3. A ⊆ B ⇒































R↓A ⊆ R↓B
R↑A ⊆ R↑B
R↓↑A ⊆ R↓↑B
R↑↓A ⊆ R↑↓B
R↑↑A ⊆ R↑↑B
R↓↓A ⊆ R↓↓B

Always (Proposition 6)

4. R↓(A ∩ B) = R↓A ∩ R↓B
R↑(A ∩ B) ⊆ R↑A ∩ R↑B
R↓↑(A ∩ B) ⊆ R↓↑A ∩ R↓↑B Always (Proposition 12)
R↑↓(A ∩ B) ⊆ R↑↓A ∩ R↑↓B
R↑↑(A ∩ B) ⊆ R↑↑A ∩ R↑↑B
R↓↓(A ∩ B) = R↓↓A ∩ R↓↓B

5. R↓(A ∪ B) ⊇ R↓A ∪ R↓B
R↑(A ∪ B) = R↑A ∪ R↑B
R↓↑(A ∪ B) ⊇ R↓↑A ∪ R↓↑B Always (Proposition 12)
R↑↓(A ∪ B) ⊇ R↑↓A ∪ R↑↓B
R↑↑(A ∪ B) = R↑↑A ∪ R↑↑B
R↓↓(A ∪ B) ⊇ R↓↓A ∪ R↓↓B

6. R↓↑(R↓↑A) = R↓↑A T left-continuous, I = IT

R↑↓(R↑↓A) = R↑↓A (Proposition 13)

R↑↓A = R↓↓A = R↓A R a fuzzy T -equivalence relation in X,
R↓↑A = R↑↑A = R↑A T left-continuous, I = IT (Proposition 17 and 18)
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query, and demonstrate how the approximation operators from the previous section may
assist us in this task.

4.1 Related Work

Query refinement has found its way to popular web search engines, and is even becoming
one of those features in which search engines aim to differentiate in their attempts to create
their own identity. Simultaneously with search results, Yahoo!1 shows a list of clickable
expanded queries in an “Also Try” option under the search box. These queries are derived
from logs containing queries performed earlier by others. Google Suggest2 also uses data
about the overall popularity of various searches to help rank the refinements it offers, but
unlike the other search engines, the suggestions pop up in the search box while you type,
i.e., before you search. Ask.com3 provides a zoom feature, allowing users to narrow or
broaden the field of search results, as well as view results for related concepts.

Query expansion goes back a long way before the existence of the WWW though.
Over the last decades several important techniques have been established. The main idea
underlying all of them, is to extend the query with words related to the query terms. One
option is to use an available thesaurus such as WordNet4, expanding the query by adding
synonyms [31]. Related terms can also be automatically discovered from the searchable
documents though, taking into account statistical information such as co-occurrences of
words in documents or in fragments of documents. The more terms co-occur, the more they
are assumed to be related. In [32] several of these approaches are discussed and compared.
In global document analysis, the whole corpus of searchable documents is preprocessed
and transformed into an automatically generated thesaurus. Local document analysis on
the other hand only considers the top ranked documents for the initial query. In its most
naive form, terms that appear most frequently in these top ranked documents are added to
the query. Local document analysis is referred to as a pseudo-relevance feedback approach,
because it tacitly assumes that the highest ranked documents are indeed relevant to the
query. A true relevance feedback approach takes into account the documents marked as
relevant by the user. Finally, in [2], correlations between terms are computed based on
their co-occurrences in query logs instead of in documents.

Once the relationship between terms is known, either through a lexical aid such as
WordNet, or automatically generated from statistical information, the original query can
be expanded in various ways. The straightforward way is to extend the query with all
the words that are related to at least one of the query terms. Intuitively, this corresponds
to taking the upper approximation of the query. Indeed, a thesaurus characterizes an
approximation space in which the query, which is a set of terms, can be approximated
from the upper (and the lower) side. By definition, the upper approximation will add a
term to the query as soon as it is related to one of the words already in the query. This link

1http://search.yahoo.com/
2http://labs.google.com/suggest/
3http://www.ask.com/
4http://wordnet.princeton.edu/
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between query expansion and rough set theory has been established in [28], even involving
fuzzy logical representations of the term-term relations and the queries.

In [31], it is pointed out, however, that such an approach requires sense resolution
of ambiguous words. Indeed, the precision of retrieved documents is likely to decrease
when expanding a query such as java, travel with the term applet. Even though this term
is highly related to java as a programming language, it has little or nothing to do with
the intended meaning of java in this particular query, namely the island. An option to
automate sense disambiguation is to only add a term when it is related to at least two
words of the original query; experimental results are however unsatisfactory [31].

In [2], the most popular sense gets preference. For example, if the majority of users
use windows to search for information about the Microsoft product, the term windows has
much stronger correlations with terms such as Microsoft, OS and software, rather than with
terms such as decorate, door and house. The approaches currently taken by Yahoo! and
Google Suggest seem to be in line with this principle. Note, however, that these search
engines do not apply query expansion automatically but leave the final decision up to the
user.

In [26], a virtual term is created to represent the general concept of the query. Terms
are selected for expansion based on their similarity to this virtual term. In [32], candidate
expansion terms are ranked based on their co-occurrence with all query terms in the top
ranked documents.

4.2 Finding the Right Balance: Query Expansion using the Tight

Upper Approximation

The approach discussed here, first introduced in [8] and taken up also in [29], differs from
all techniques mentioned above, and takes into account the lower approximation as well.
The lower approximation will only retain a term in the query if all the words that it is
related too are also in the query. It is obvious that the lower approximation will easily
result in the empty query, hence in practice it is often too strict for query refinement.
On the other hand, it is not hard to imagine cases where the upper approximation is too
flexible as a query expansion technique, resulting not only in an explosion of the query, but
possibly even worse, in the addition of non relevant terms due to the ambiguous nature
of one or more of the query words. This is due to the fact that the upper approximation
expands each of the query words individually but disregards the query as a whole.

As will become clear in the next sections, we go further than the expansion of individual
query terms, but we do not go as far as restricting ourselves to words that are related to at
least two or preferably all terms of the initial query. Instead, we follow an approach where
terms can be added as long as they are not strongly related to words that have nothing to
do with the query at all. As such, this approach contributes to the problem of automatic
query disambiguation in search engines [13].

We suggest to combine the flexibility of the upper approximation with the strictness
of the lower approximation by applying them successively. As such, first we expand the
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Table 6: Millions of web pages found by Google.

# documents mac computer apple fruit pie recipe store emulator hardware

mac 114 18.3 14.9 1.03 0.869 0.899 15.8 0.672 15.1
computer 375 15.6 3.76 2.22 3.72 29.5 1.17 26.9

apple 93.4 5.42 3.81 4.59 14.3 0.401 17.8
fruit 35.4 2.32 4.08 7.63 0.047 1.63
pie 20.4 4.21 3.74 0.030 1.2

recipe 31.5 6.22 0.035 1.69
store 312 0.472 24.9

emulator 4.95 1.05
hardware 178

query by adding all the terms that are known to be related to at least one of the query
words. Next we reduce the expanded query by taking its lower approximation, thereby
pruning away all previously added terms that are suspected to be irrelevant for the query.
The pruning strategy targets those terms that are strongly related to words that do not
belong to the expanded query.

Our technique can be used both with a crisp thesaurus in which terms are related or
not, as with a graded thesaurus in which terms are related to some degree. Furthermore
it can be applied for weighted as well as for non-weighted queries. Whenever the user
does not want to go through the effort of assigning individual weights to query terms, they
are all given the highest weight by default. When a graded thesaurus is used, our query
expansion approach turns the original query automatically into a weighted query. The
original user-chosen terms maintain their highest weight, and new terms are added with
weights that do not only reflect the strength of the relationship with the original individual
query terms as can be read from the thesaurus, but also take into account their relevance
to the query as a whole. To be able to deal with graded thesauri and weighted queries and
apply the machinery of fuzzy rough sets, we represent the thesaurus as a fuzzy relation
and the query as a fuzzy set.

4.2.1 Thesaurus Construction

Table 7 shows a small sample fuzzy thesaurus R. In constructing it, we did not use any
direct human expert knowledge regarding the semantics of the terms involved, but we relied
on the number of web pages found by a search engine for each pair of terms, as shown in
Table 6.

On the WWW there is a strong bias towards computer science related terms, hence the
absolute number of web pages containing both term t1 and t2 cannot be used directly to
express the strength of the relationship between t1 and t2. To level out the difference, we
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Table 7: Graded thesaurus.

R mac computer apple fruit pie recipe store emulator hardware

mac 1.00 0.89 0.89 0.00 0.01 0.00 0.75 0.83 0.66
computer 1.00 0.94 0.44 0.44 0.56 0.25 1.00 0.83

apple 1.00 0.83 0.99 0.83 0.83 0.25 0.99
fruit 1.00 0.44 0.66 1.00 0.00 0.03
pie 1.00 1.00 0.97 0.00 0.06

recipe 1.00 1.00 0.00 0.03
store 1.00 0.34 0.75

emulator 1.00 1.00
hardware 1.00

used the following measure
|Dt1 ∩ Dt2 |

min(|Dt1 |, |Dt2 |)
(48)

where Dt1 and Dt2 denote the sets of web pages that contain term t1, respectively term t2.
Finally, we normalized the result using the S-function S(.; 0.03, 0.20) (cfr. Figure 2), giving
rise to the fuzzy thesaurus R of Figure 7.

The fuzzy relation R characterizing the approximation space is a fuzzy tolerance relation
that is not T -transitive for any choice of T . To see, this note that

T (R(pie,recipe), R(recipe,fruit)) = T (1, 0.66) = 0.66 > 0.44 = T (pie,fruit) (49)

For comparison purposes, we also constructed a TW -transitive fuzzy thesaurus by taking
the TW -transitive closure R|X−1| of R, i.e., the smallest TW -transitive fuzzy relation in which
R is included. This thesaurus is shown in Table 8. In our running example, to compute
upper and lower approximations, we will keep on using the t-norm TW as well as its residual
implicator ITW

. Finally we constructed a crisp (i.e., non-graded) thesaurus by taking the
0.5-level of R, defined as

(x, y) ∈ R.5 iff R(x, y) ≥ 0.5 (50)

for all x and y in X. In other words, in the crisp thesaurus, depicted in Table 9, two terms
are related if and only if the strength of their relationship in the graded thesaurus R of
Table 7 is at least 0.5.

It can be easily verified that R.5 is not transitive. For example, fruit is related to store

and store is related to hardware, but fruit is not related to hardware. For comparison
purposes, in the remainder, we also include the transitive closure (R.5)

8.

4.2.2 Query Refinement

We consider the query
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Figure 2: S-function; x, α, and γ in R, α < γ

Table 8: Transitive closure of graded thesaurus.

R8 mac computer apple fruit pie recipe store emulator hardware

mac 1.00 0.89 0.89 0.88 0.88 0.88 0.88 0.89 0.89
computer 1.00 0.99 0.99 0.99 0.99 0.99 1.00 1.00

apple 1.00 0.99 0.99 0.99 0.99 0.99 0.99
fruit 1.00 1.00 1.00 1.00 0.99 0.99
pie 1.00 1.00 1.00 0.99 0.99

recipe 1.00 1.00 0.99 0.99
store 1.00 0.99 0.99

emulator 1.00 1.00
hardware 1.00
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Table 9: Crisp thesaurus.

R.5 mac computer apple fruit pie recipe store emulator hardware

mac 1 1 1 0 0 0 1 1 1
computer 1 1 0 0 1 0 1 1

apple 1 1 1 1 1 0 1
fruit 1 0 1 1 0 0
pie 1 1 1 0 0

recipe 1 1 0 0
store 1 0 1

emulator 1 1
hardware 1

Table 10: Upper approximation based query expansion with graded thesaurus.

A R↑A R↑(R↑A) R8↑A
mac 0.00 0.89 0.89 0.89

computer 0.00 0.94 0.94 0.99
apple 1.00 1.00 1.00 1.00
fruit 0.00 0.83 1.00 1.00
pie 1.00 1.00 1.00 1.00

recipe 1.00 1.00 1.00 1.00
store 0.00 1.00 1.00 1.00

emulator 0.00 0.25 0.99 0.99
hardware 0.00 0.99 0.99 0.99

apple, pie, recipe

as shown in the second column in Table 10. The intended meaning of the ambiguous word
apple, which can refer both to a piece of fruit and to a computer company, is clear in this
query.

The disadvantage of using a T -transitive fuzzy thesaurus becomes apparent when we
compute the upper approximation R8↑A, shown in the last column. All the terms are added
with high degrees, even though terms like mac and computer have nothing to do with the
semantics of the original query. This process can be slowed down a little bit by using
the non T -transitive fuzzy thesaurus and computing R↑A which allows for some gradual
refinement. However an irrelevant term such as emulator shows up to a high degree in
the second iteration, i.e. when computing R↑(R↑A). The problem is even more prominent
when using a crisp thesaurus as shown in Table 11.

It is important to point out that under our assumptions

A ⊆ R↓↑A ⊆ R↑A (51)
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Table 11: Upper approximation based query expansion with crisp thesaurus.

A R.5↑A R.5↑(R.5↑A) (R.5)
8↑A

mac 0 1 1 1
computer 0 1 1 1

apple 1 1 1 1
fruit 0 1 1 1
pie 1 1 1 1

recipe 1 1 1 1
store 0 1 1 1

emulator 0 0 1 1
hardware 0 1 1 1

always holds, guaranteeing that the tight upper approximation indeed leads to an expansion
of the query—none of the original terms are lost—and at the same time is a pruned
version of the upper approximation. When R is a fuzzy T -equivalence relation, the upper
approximation and the tight upper approximation coincide (see Table 5). However, as we
show below, this is not necessarily the case when R is not T -transitive.

The main problem with the query expansion process described in the previous section,
even if it is gradual, is a fast growth of the number of less relevant or irrelevant keywords
that are automatically added. This effect is caused by the use of a flexible definition of the
upper approximation in which a term is added to a query as soon as it is related to one of
its keywords. However, using the tight upper approximation a term y will only be added
to a query A if all the terms that are related to y are also related to at least one keyword
of the query. First the usual upper approximation of the query is computed, but then it is
stripped down by omitting all terms that are also related to other terms not belonging to
this upper approximation. In this way terms that are sufficiently relevant, hence related to
most keywords in A, will form a more or less closed context with few or no links outside,
while a term related to only one of the keywords in A in general also has many links to
other terms outside R↑A and hence is omitted by taking the lower approximation.

The last column of Table 12 shows that the tight upper approximation is different from
and performs clearly better than the traditional upper approximation for our purpose
of web query expansion: irrelevant words such as mac, computer and hardware are still
added to the query, but to a significantly lower degree. The difference becomes even more
noticable when using a crisp thesaurus as illustrated in Table 13.
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Table 12: Comparison of upper and tight upper approximation based query expansion with
graded thesaurus.

A R↑A R8↑A R↓↑A
mac 0.00 0.89 0.89 0.42

computer 0.00 0.94 0.99 0.25
apple 1.00 1.00 1.00 1.00
fruit 0.00 0.83 1.00 0.83
pie 1.00 1.00 1.00 1.00

recipe 1.00 1.00 1.00 1.00
store 0.00 1.00 1.00 0.83

emulator 0.00 0.25 0.99 0.25
hardware 0.00 0.99 0.99 0.25

Table 13: Comparison of upper and tight upper approximation based query expansion with
crisp thesaurus.

A R.5↑A (R.5)
8↑A R.5↓↑A

mac 0 1 1 0
computer 0 1 1 0

apple 1 1 1 1
fruit 0 1 1 1
pie 1 1 1 1

recipe 1 1 1 1
store 0 1 1 1

emulator 0 0 1 0
hardware 0 1 1 0
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5 Conclusion
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