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Abstract. In this paper, we compare the performance of several machine
learning based approaches for the tasks of detecting algorithmically
generated malicious domains and the categorization of domains according
to their malware family. The datasets used for model comparison were
provided by the shared task on Detecting Malicious Domain names
(DMD 2018). Our models ranked first for two out of the four test datasets
provided in the competition.
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1 Introduction

Domain Generation Algorithms (DGAs) are widely used by malware as a way to
create a communication channel between infected machines and command-and-
control servers. The development of techniques for automatic detection of DGA
domains has been extensively studied in the past few years, leading, among other
things, to machine learning models that are effective at detecting such domains
in traffic.

There are two main machine learning approaches for automatic detection
of malicious domains: 1) Combining feature engineering of network and lexi-
cal/linguistic characteristics of known DGA domains and benign domains with
supervised machine learning techniques [3, 9, 16]; 2) Leveraging modern feature-
less deep learning techniques for text classification [6, 15, 17].

In this paper, we apply and compare both approaches to solve two distinct
tasks. The first task is regarding binary domain classification, i.e. classify domains
as either DGA generated or legitimate domains. The second task is a multiclass
classification problem of detecting and categorizing the DGA generated domains
according to their malware family.
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Our trained classifiers outperformed the ones proposed by other teams in the
DMD2018 challenge for two of the four competition scenarios, based on several
metrics, including accuracy, F1-score, recall and precision. Rankings of the models
are presented in Section 5. In particular, we obtained first place (1) for one of
the binary classification tasks with a deep neural network that was trained to
discover important features automatically, and classify domain names as benign
or malicious accordingly, and (2) for one of the multiclass classification tasks
with a Random Forest that was trained on human defined features extracted
from the domain name strings. Specific details about the shared tasks can be
found on the DMD2018 website4.

Table 1: Overview of recent deep learning model architectures for character
based text classification [18]

Model Name Architecture Reference

Endgame single LSTM layer [15]
Invincea parallel CNN layers [8]
CMU forward LSTM layer + backward LSTM layer [5]
MIT stacked CNN layers + single LSTM layer [14]
NYU stacked CNN layers [19]

Background and related work Many DGA algorithms start from random
seeds, producing domains that are distinctly different from usual benign domains
[7]. They appear more “random looking”, such as, for example, the domain
sgxyfixkhuark.co.uk generated by the malware Cryptolocker. DGA domains are
typically detected by techniques that leverage the distribution of characters in
the domain, either through human engineered lexical features [3, 9] or through
training deep neural networks [6, 8, 10, 15, 17, 18]. In deep learning, useful
features are discovered automatically, thereby offering the potential to bypass
the human effort of feature engineering and allowing easier adaptation of the
models to new and emerging malware families.

A variety of deep neural network architectures were proposed recently for
tasks related to text classification. They are relevant for DGA domain name
detection, which can be thought of as a short text classification task. In [18], five
state-of-the-art architectures as presented in Table 1 are applied to the binary
task of detecting whether a domain name is benign or malicious. Out of these
five deep neural network architectures for character based text classification, the
first two were originally proposed for the detection of malicious domain names
[15] and URLs [8], while the remaining ones [5, 14, 19] were proposed for text
classification in general, and adapted in [18] for the specific task of DGA detection.
The studied neural networks contain Long Short Term Memory (LSTM) layers
[15], bidirectional LSTM layers which process the input string in a forward and
a backward layer and then combine the output from these layers to pass on to
further layers [5], Convolutional Neural Network (CNN) layers, either stacked
4 http://nlp.amrita.edu/DMD2018/, Accessed: 2018-07-18

http://nlp.amrita.edu/DMD2018/
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[19] or in parallel [8], or a combination of both LSTM and CNN layers [14]. For
a comprehensive overview of all architecture details, we refer to Yu et al. [18].

In our experiments, we reproduce previously proposed methodologies for DGA
domain detection and compare all methodologies by testing them on the same
benchmark datasets, for DGA detection (binary classification) as well as for
malware family detection (multiclass classification).

2 Datasets

We received two training datasets and four testing datasets from DMD2018,
namely one training dataset and two testing datasets for each of the binary and
multiclass classification tasks. All the datasets are highly unbalanced, meaning
the number of samples in our class of interest (malicious class) is much smaller or
rarer than the other (benign class), or vice versa. All the datasets contain domain
name strings that consist of at least a second-level-domain (SLD) followed by a
top-level-domain (TLD), separated by a dot, as in e.g. google.com. Many domains
have a third-level-domain (3LD) as well, as in e.g. ns-738.awsdns-28.net where
ns-738 is the 3LD.

To compose the datasets, malicious domain names were collected by the
DMD2018 organizers using publicly available DGA algorithms5, the OSINT
feeds from Bambenek Consulting [2], and netlab-3606, while benign domain
names were collected from Alexa [1] and openDNS7. Additional data was collected
privately by the DMD organizers within a lab using a port mirroring approach.
Passive sensors were deployed in an internal network to collect the Domain Name
System (DNS) traffic from different DNS servers. The experimental set-up and
data collection process is reported in detail in [11, 12, 13].

2.1 DMD Shared Task Datasets

The description of the shared task datasets received from DMD is as follows:

Subtask 1 - Binary Classification. Subtask 1 has two classes namely benign
and DGA (malicious). The original subtask 1 training dataset contains 790,739
domains out of which 655,683 domains are benign and 135,056 domains are
DGA. All the benign domains are labeled as 0 and all the DGAs are labeled as 1.
There are two testing datasets Test 1 and Test 2, the distributions of which are
shown together with that of the training data in Table 2. The correct labels of
the domain names in the test sets are not given, i.e. it is not known in advance
to DMD competition participants which of the domains in Test 1 and Test 2 are
benign and which ones are malicious.
5 https://github.com/baderj/domain_generation_algorithms, Accessed: 2018-07-

24
6 https://data.netlab.360.com/dga/, Accessed: 2018-07-24
7 https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/, Ac-

cessed: 2018-07-24

https://github.com/baderj/domain_generation_algorithms
https://data.netlab.360.com/dga/
https://umbrella.cisco.com/blog/2016/12/14/cisco-umbrella-1-million/
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Subtask 2 - Multiclass Classification. The dataset used for multiclass
classification has a collection of domains belonging to the “benign family” and
20 distinct DGA families, thereby summing to a total of 21 families. The original
subtask 2 training dataset contains 397,777 domains out of which 100,000
domains are benign and 297,777 domains are DGAs. In this task too, there are
two testing datasets, namely Test 1 and Test 2, each having a varied proportion
of samples belonging to the 21 classes (see Table 3).

Table 2: Data Statistics, Subtask 1 - Binary Classification
Type Benign DGA Total

Training 655,693 135,056 790,739
Test 1 2,349,331 108,076 2,457,407
Test 2 182 2,740 2,922

Table 3: Dataset Description, Subtask 2 - Multiclass Classification
Family Label Train Test 1 Test 2 Family Label Train Test 1 Test 2

benign 0 100k 120k 40k pyskpa 11 15k 25k 2k
banjori 1 15k 25k 10k qadars 12 15k 25k 2,300
corebot 2 15k 25k 10k qakbot 13 15k 25k 1k

dircrypt 3 15k 25k 300 ramdo 14 15k 25k 800
dnschanger 4 15k 25k 10k ranbyus 15 15k 25k 500

fobber 5 15k 25k 800 simda 16 15k 25k 3k
murofet 6 15k 16,667 5k suppobox 17 15k 20k 1k

necurs 7 12,777 20,445 6.2k symmi 18 15k 25k 500
newgoz 8 15k 20k 3k tempedreve 19 15k 25k 100

padcrypt 9 15k 20k 3k tinba 20 15k 25k 700
proslikefan 10 15k 20k 3k Total 21 397,777 587,112 103,200

2.2 Data Cleaning of DMD Training Datasets

We performed exploratory data analysis for both the DMD training datasets,
and removed duplicates as well as domains not having a valid SLD or TLD.
For example, we found 20,434 domains which occurred more than once in the
subtask 1 training dataset and 28,740 domains in which either the SLD or TLD
was missing.

2.3 Additional Datasets

In addition to the datasets provided by DMD, we used the following datasets to
train our classifiers:
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– Alexa-Bambenek. The AlexaBambenek dataset consists of the top 1M
domains from Alexa [1] (considered benign) and 1M DGA domains from the
OSINT feeds [2]. For more details about this dataset, we refer to [18].

– DGArchive. The DGArchive dataset8 is a repository of known DGA do-
mains.

– Real-Traffic. The real-traffic dataset originates from a real-time stream of
passive DNS data obtained from Farsight Security9, weakly labeled using
heuristic rules as described in [17].

Table 4 contains statistics for the additional datasets used to train various
models as explained in Section 4. All the domains in the datasets listed above
have at least an SLD and a TLD, and some of the domains have a 3LD too.

Table 4: Data Statistics, Additional Datasets
Dataset Benign DGA Total

Alexa-Bambenek 1M 1M 2M
DGArchive NA 15,772,535 15,772,535
Real-Traffic 15,534,803 18,247,899 33,782,702

3 Method

In our experiments, we evaluated two main approaches of machine learning based
automatic detection of malicious domains: the first approach is based on human-
engineered features combined with supervised machine learning algorithms, such
as Random Forests; and an alternative approach based on featureless Deep Neural
Network (DNN) architectures for text classification and categorization. We give
a detailed description of the features extracted from domain names, as well as all
the machine learning techniques used in our experiments.

3.1 Featureful Approach

In the featureful approach we convert the benign and malicious domains into
feature vectors, using 28 lexical/linguistic features, many of which are well known
in the literature on DGA detection. These 28-dimensional feature vectors consist
of the features mentioned in [17], as well as the following features:

– Indication Malicious (flag_dga): Boolean flag (0 or 1) that indicates
if the domain contains any of the following TLDs that are known to be
frequently associated with malicious activity10: “study”, “party”, “click”,
“top”, “gdn”, “gq”, “asia”, “cricket”, “biz”, “cf”. For example, if the domain
is “fff.cf”, the value of this feature would be 1.

8 https://dgarchive.caad.fkie.fraunhofer.de/site/, Accessed: 2018-07-24
9 https://www.farsightsecurity.com/, Accessed: 2018-07-24

10 https://www.spamhaus.org/statistics/tlds/, Accessed: 2018-07-18

https://dgarchive.caad.fkie.fraunhofer.de/site/
https://www.farsightsecurity.com/
https://www.spamhaus.org/statistics/tlds/
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– Number of Tokens in SLD (tokens_sld): The number of tokens in the
SLD. A token is a sequence of characters separated by “-”.

– Number of Tokens in 3LD (tokens_3ld): The number of tokens in the
3LD.

– Length of SLD (sld_len): The length of the SLD, measured as the number
of characters [3].

– Length of 3LD (3ld_len): The length of the 3LD.
– Length of TLD (tld_len): The length of the TLD.
– Number of Unique Char (uni_domain): The number of unique charac-

ters in 3LD and SLD combined (excluding ‘.’, ‘-’).
– Number of Unique Characters in SLD (uni_sld): The number of

unique characters in SLD (excluding ‘.’ and ‘-’).
– Number of Unique Characters in 3LD (uni_3ld): The number of

unique characters in 3LD (excluding ‘.’ and ‘-’).
– Longest Consonant Sequence in SLD (lng_con_seq): The length of

the longest consonant sequence in the SLD, e.g. for the domain “google.com”,
“gl” is the longest consonant sequence and its value is 2 [4].

– Consonant Ratio (con): The number of consonants in 3LD and SLD
divided by their combined length. E.g. the domain “dfg.ca.gov” contains 4
consonants in the 3LD and SLD, namely ‘d’,‘f’,‘g’ and ‘c’, hence, the extracted
feature value is 4/5.

– Number Ratio (dig): The number of digits in 3LD and SLD divided by
their combined length.

– Number of Numerical Char in SLD (digits_sld): The number of
numerical characters in SLD.

– Number of Numerical Char in 3LD (digits_3ld): The number of
numerical characters in 3LD.

– Number of Dots (dots): The number of dots in the domain (not including
the dot that separates the SLD from the TLD).

– 2-gram Circular Median (2gram_cmed): The domain string (excluding
the TLD) is duplicated and concatenated tail to head (e.g. “apple.com”
becomes “appleapple”) and subsequently the 2-gram median (i.e. the nl2
feature mentioned in [17]) for the resulting string is computed.

– 3-gram Circular Median (3gram_cmed): The domain string (excluding
the TLD) is duplicated and concatenated tail to head (e.g. “dfg.ca.gov”
becomes “dfgcadfgca”) and subsequently the 3-gram median (i.e. the nl3
feature mentioned in [17]) for the resulting string is computed.

Tree ensemble methods are among the most common algorithms of choice for
supervised learning because of their general applicability and their state-of-the-art
performance. A Random Forest (RF) is an ensemble of decision trees that are
each separately trained on a different bootstrap sub-sample of the training data.
During deployment, a majority vote among the prediction of all trees in the
ensemble is taken to arrive at the target classification label for a new instance.
This mechanism makes the ensemble less likely to overfit the training data. For
both subtask 1 and subtask 2, we built RF classifiers using the 28 features
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extracted from the domain names.

Random Forest Classifier for the Binary Classification Task. For subtask
1, we build a RF classifier for each of three different training datasets, leading
to the first three models in Table 6. Each RF consists of 100 decision trees.
Information gain is used as the selection criterion to select the best splitting
attribute for each node in the trees, and all the features are considered during
bootstrap sub-sampling to build the decision trees. A standard random seed is
used for reproducibility of data and to compare the results. Each of these binary
RF classifiers are trained to categorize the domains as benign or malicious.

In addition, for the fourth model in Table 6, we trained a RF classifier to
categorize the domains as either human readable (HR, label 0) or pseudo-random
(PR, label 1). Domain names in the PR category are immediately considered
malicious, while domain names that are classified as HR are further passed to
a separate binary RF classifier that is trained to distinguish between benign or
suppobox. The latter is a DGA family containing human readable domains, hence
domain names that are classified as suppobox are relabeled as 1 (malicious) and
benign domains are labeled as 0.

Random Forest Classifier for the Multiclass Classification Task. For
subtask 2, we build one binary RF classifier per DGA family. To do this, we
begin by preparing the training dataset which is specific for each classifier. The
training dataset is designed to be balanced with 50% domains that belong to the
target family and 50% domains that belong to other families. For example, to
build an RF classifier that classifies a domain as banjori (family label 1) or not,
we create a training dataset that comprises of 50% domains belonging to family 1
(banjori) and 50% domains belonging to family 2 through 20, ensuring that the
remaining 50% of non-target data has a stratified mix of the rest of the families.
Once the individual training datasets are prepared, the corresponding binary RF
classifiers are trained to identify if the domain belongs to the respective DGA
family or not. We use two approaches to deploy these classifiers.

To deploy these one vs. rest RF classifiers, we directly pass the domains to
each of the 20 DGA classifiers and compare the predicted probabilities. If the
highest probability is greater than a threshold c, we simply assign the family
label of the classifier that predicted it. However, if it is less than c, we make the
final prediction as benign. The choice of the threshold c can be tuned (based on
AUC score) to impact the predictions. In Table 7 and 10 we report results for
c = 0.5 and c = 0.9.

In addition to the above, we also performed experiments with traditional mul-
ticlass RF classifiers trained on various datasets. The results of these experiments
are consolidated in Table 7.

3.2 Featureless Approach

Deep learning techniques for detecting DGAs learn features automatically, thereby
bypassing the human effort of feature engineering, and proved to be successful in
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the task of DGA detection [6, 8, 10, 15, 18]. We trained a variety of deep neural
networks that take as input the domain name string, which is preprocessed in
the following way. Each domain name string is converted to lowercase and then
represented as a sequence of ASCII values corresponding to its characters. We
set the maximum length of a domain name as 75 characters [18]. If the original
domain name is too short, we pad with zeroes on the left. If the original domain
name is too long, then we truncate the domain name by removing characters
from the right side of the SLD until the desired length is reached. All deep neural
network architectures start with an embedding layer that learns to represent
each character that can occur in a domain name by a 128-dimensional numerical
vector, which is different from the original ASCII encoding. The embedding maps
semantically similar characters to similar vectors, where the notion of similarity
is automatically learned based on the classification task at hand.

Deep Learning for the Binary Classification Task. For this task, we trained
five kinds of deep neural network models, referred to as Endgame (LSTM), In-
vincea (CNN), CMU (LSTM), MIT (CNN+LSTM), and NYU (CNN). These
neural networks are based on previous work on the use of deep learning for
character based text classification, as documented in Table 1. To optimize these
neural networks for the task of classifying as a domain name as benign or mali-
cious, we followed the same adaptations as in [18]. We refer to the latter for a
detailed description of the architecture of all adapted models. When deploying
these trained neural networks on a test dataset, we label a domain as benign
if the probability is less than 0.5, and malicious if the probability is more than 0.5.

Deep Learning for the Multiclass Classification Task. In this task, we used
a similar model architecture as used for the binary classification task. However,
instead of two prediction classes, the models predict 1 out of 21 classes (one
class corresponds to one family). Hence the output layer of the models from
[18] is changed to use “softmax” as the activation function. This is to ensure
that the output values are in the range of 0 and 1 and can be used as predicted
probabilities. We performed one-hot encoding so that the output layer will create
21 output values, one for each class. The output value with the largest probability
is taken as the final class predicted by the model.

4 Experimental Results

We performed various experiments using both featureful and featureless ap-
proaches. We set aside 10% from both cleaned training datasets provided by
DMD to use as validation data. We refer to these test datasets as “DMD master
test 1” and “DMD master test 2” (see Table 5). The remaining 90% of the
DMD training datasets are referred to as “DMD master train 1” and “DMD
master train 2”. In addition, we use the datasets listed in Section 2.3 for training
purposes as well, as indicated in Table 6 and 7.
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Table 5: Data Statistics, DMD Master train and test datasets
Dataset Benign DGA Total

DMD master train 1 546,211 121,440 667,651
DMD master test 1 60,691 13,493 74,184

DMD master train 2 89,039 267,727 356,766
DMD master test 2 9,893 29,748 39,641

4.1 Binary Classification

Table 6 contains the results of all models trained for the binary classification task
of labeling domain names as benign or malicious, evaluated in terms of accuracy,
F1-score, recall, and precision on the DMD master test 1 dataset. The models
vary in terms of architecture (RF vs. DNN) as well as in terms of the data that
was used for training.

Table 6: Experiments performed for binary classification (subtask 1). All models
are evaluated on DMD master test 1.

Model name Architecture Train data Accuracy F1-score Recall Precision

RF_binary_1 RF DMD master train 1 96.98% 0.9155 0.9006 0.9308

RF_binary_2 RF Alexa-Bambenek 84.43% 0.6469 0.7847 0.5503
RF_binary_3 RF DMD master train 1 94.85% 0.8689 0.9384 0.8090

+ DMD master train 2
RF_binary_4 RF DMD master train 1 + 95.11% 0.8707 0.9062 0.8379

(HR vs PR) master train 2

Endgame_DMD DNN DMD master train 1 98.65% 0.9632 0.9689 0.9577

Invincea_1 95.72% 0.8853 0.9083 0.8635
Endgame_1 96.05% 0.8904 0.8824 0.8986

NYU_1 DNN Alexa-Bambenek 93.97% 0.8425 0.8880 0.8015
CMU_1 95.77% 0.8837 0.8840 0.8835
MIT_1 94.08% 0.8468 0.8997 0.7998

Invincea_2 Pre-trained on 98.74% 0.9659 0.9828 0.9497

Endgame_2 Alexa-Bambenek 98.70% 0.9650 0.9778 0.9525

NYU_2 DNN and trained on 98.70% 0.9647 0.9785 0.9512

CMU_2 DMD master train 1 98.67% 0.9637 0.9710 0.9564

MIT_2 98.70% 0.9649 0.9751 0.9548

Endgame_Real DNN Real traffic data 81.92% 0.5994 0.7434 0.5021
Invincea_3 Pre-trained on 96.25% 0.8979 0.9073 0.8888
Endgame_3 Real traffic data 96.47% 0.9017 0.8916 0.9120

NYU_3 DNN and trained on 95.32% 0.8732 0.8853 0.8615
CMU_3 Alexa-Bambenek 97.17% 0.9217 0.9143 0.9292
MIT_3 96.55% 0.9049 0.9022 0.9076
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The first four models correspond to featureful RF classifiers, trained using
the features extracted from domains as mentioned in Section 3.1. Out of these,
the highest accuracy and F1-score is obtained by an RF trained on DMD master
train 1, i.e. the training data provided specifically for subtask 1. Augmenting the
training data with DMD master train 2 (training data provided for subtask 2)
or swapping it out for Alexa-Bambenek (an alternative ground truth dataset)
did not improve the results.

The remaining models in Table 6 correspond to featureless deep neural
networks, all trained on a workstation with an NVIDIA Titan Xp GPU and
12 GB RAM. The best results in terms of accuracy and F1-score are obtained
through pre-training on Alexa-Bambenek data and post-training on DMD master
train 1 data. This means that learning the weights of the neural network takes
place in two stages: during the first stage, or pre-training, only examples of the
Alexa-Bambenek training dataset are presented, while during the second stage, or
post-training, only examples from the DMD master train 1 dataset are used. The
results for the DNN classifiers confirm the observation already made for the RF
classifiers that use of the DMD master train 1 dataset leads to the best results.
This is not very surprising as the models in Table 6 are evaluated on DMD
master test 1, which was drawn from the same distribution as DMD master train
1. Another interesting observation is that the five kinds of DNNs achieve a very
similar best performance, despite of the vast differences in their architectures.
These results are in line with what was reported in [18].

4.2 Multiclass Classification

Table 7 presents the results for the classifiers trained for malware family detection,
evaluated on the DMD master test 2 dataset, using both featureful and featureless
approaches. The reported F1-score, precision and recall are macro-averages, i.e. for
each model, the F1-score, precision and recall are calculated for each of the 21
labels and an unweighted mean is taken (without considering label imbalance).

For testing the featureful approach, two types of RF models were built. One is
the multilabel RF model where the classifier predicts the family (ranging between
0 and 20), given the features extracted from domain names. RF_multi_1 and
RF_multi_2 from Table 7 are both such RF classifiers, different only in the
data that was used for training. In the other technique, one binary “one vs. rest”
RF classifier is developed to detect each family. Each classifier predicts the
probability of the domain belonging to a particular family and the one with the
highest likelihood is chosen as the final prediction, provided that this predicted
probability reaches a predefined threshold c. Otherwise the domain is labeled as
benign. The resulting model is called RF_multi_3 in Table 7, which we deployed
with a threshold value c = 0.9.

As can be seen from Table 7, the best results in terms of accuracy and F1-score
are achieved with a multilabel RF model trained on DMD master train 2 data.
Table 8 shows a ranking of the importance of the features in the RF_multi_1
model, as compared to the RF_binary_1 model. An interesting observation from
this table is that, while the relative ordering for RF_binary_1 and RF_multi_1
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Table 7: Experiments performed for multiclass classification (subtask 2). All
models are evaluated on DMD master test 2. F1-score, recall and precision are
macro-averaged across all 21 labels.

Model name Architecture Train data Accuracy F1-score Recall Precision

RF_multi_1 RF DMD master train 2 89.04% 0.8676 0.8707 0.8665
RF_multi_2 RF DMD master train 2 73.45% 0.6568 0.6911 0.7875

+ Alexa-Bambenek
+ DGArchive

RF_multi_3 RF DMD master train 2 85.64% 0.8295 0.8361 0.8270
c = 0.9 (one vs rest) + Alexa-Bambenek

+ DGArchive

Endgame_multi DNN DMD master train 2 77.22% 0.6734 0.7192 0.7240
+ Alexa-Bambenek

+ DGArchive
CMU_multi DNN DMD master train 2 78.05% 0.6922 0.7299 0.7286

+ Alexa-Bambenek
+ DGArchive

is somewhat different, there is clear agreement among which features belong in
the top half and which features belong in the bottom half. In particular, features
extracted from the 3LD are considered less relevant for both binary classifcation
and malware family detection.

Table 8: Ranking of features according to importance in the RF_binary_1
model from Table 6 and the RF_multi_1 model from Table 7.

Feature RF_binary_1 RF_multi_1 Feature RF_binary_1 RF_multi_1
sym 1 8 cer 15 13

lng_con_seq 2 5 uni_domain 16 14
tld_hash 3 2 digits_sld 17 18
sld_len 4 1 3ld_len 18 21

hex 5 7 flag_dig 19 17
domain_len 6 3 uni_3ld 20 22

uni_sld 7 15 2gram_med 21 23
tld_len 8 6 2gram_cmed 22 25

dig 9 4 digits_3ld 23 27
vow 10 9 3gram_cmed 24 24
con 11 10 3gram_med 25 26
ent 12 11 tokens_3ld 26 28
gni 13 12 dots 27 20

flag_dga 14 16 tokens_sld 28 19

For testing the featureless approach, we trained two deep neural network
models, namely the Endgame (single LSTM layer) and the CMU (bidirectional
LSTM layer) adapted with a softmax layer for multiclass classification. As is
clear from Table 7, neither of these outperformed the RF approach.
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5 Final Results

Based on the results from Section 4, we submitted a variety of trained classifiers
to the DMD2018 competition. These models were evaluated by the DMD2018
organizers on the Test 1 and Test 2 datasets for both subtasks (see Section 2)
in terms of accuracy, recall, precision, and F1-score. Table 9 and 10 show the
results for all models and predictions that we submitted to DMD for the binary
and multiclass classification tasks. The best results are highlighted in bold.

For the binary classification task, the results obtained with DNNs are better
than those with RFs in Table 9, which is in line with our observation in Section 4.1.
For Test 1, we obtain the best results with an ensemble (Invincea_2, Endgame_2,
NYU_2) of deep neural network models, achieving an accuracy of 99% on Test
1. When deploying this ensemble, we use majority voting, i.e. we let each of the
DNNs individually label the domain name, and subsequently select the most
frequently predicted label as the final classification. Note in Table 9 that this
ensemble also achieves a good result on Test 2, with an almost perfect recall
of 0.999, meaning that it catches 99.9% of DGA domain names. It is still
outperformed by the stand-alone Invincea_2 model, which achieves a higher
precision for the same level of recall, leading to the best F1-score and accuracy
of all our classifiers for Test 2.

Table 9: Final competition results for binary classification (subtask 1).
Model name Architecture Test data Accuracy F1-score Recall Precision

RF_binary_1 RF Test 1 97.3% 0.708 0.683 0.736
Test 2 59.4% 0.724 0.997 0.568

RF_binary_3 RF Test 1 94.1% 0.584 0.424 0.941
Test 2 65.8% 0.778 0.995 0.639

Endgame_DMD DNN Test 1 45.6% 0.081 0.044 0.548
Test 2 63.9% 0.775 0.934 0.662

Invincea_2 DNN Test 1 98.8% 0.876 0.808 0.956
Test 2 76.6% 0.858 0.999 0.751

MIT_2 DNN Test 1 98.9% 0.879 0.823 0.943
Test 2 73.9% 0.838 0.999 0.722

Invincea_2 Ensemble Test 1 99.0% 0.892 0.828 0.966

+ Endgame_2 Test 2 73.9% 0.839 0.999 0.723
+ NYU_2

Regarding the malware family classification task, the results in Table 10 are
in line with our observation from Section 4, in the sense that the DNNs that we
trained for this task are outperformed by RFs. It is interesting to note that, while
the best results for the multiclass classification task in Table 7 were achieved
with the most straightforward multiclass random forest model (RF_multi_1),
the best results in Table 10 stem from a one vs. rest RF model (RF_multi_3).
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Table 10: Final competition results for multiclass classification (subtask 2).
Model name Architecture Test data Accuracy F1-score Recall Precision

RF_multi_1 RF Test 1 63.1% 0.598 0.631 0.605
Test 2 65.1% 0.616 0.651 0.652

RF_multi_2 RF Test 1 57.5% 0.528 0.575 0.613
Test 2 82.3% 0.827 0.823 0.885

RF_multi_3 RF Test 1 63.3% 0.602 0.633 0.618

c = 0.9 (one vs rest) Test 2 88.7% 0.901 0.887 0.924

RF_multi_3 RF Test 1 61.9% 0.593 0.619 0.614
c = 0.5 (one vs rest) Test 2 87.4% 0.890 0.874 0.919

Endgame_multi DNN Test 1 59.7% 0.559 0.597 0.654
Test 2 80.2% 0.788 0.802 0.797

CMU_multi DNN Test 1 60.2% 0.566 0.602 0.696
Test 2 79.7% 0.783 0.797 0.887

While both RF_multi_1 and RF_multi_3 have a comparable performance on
Test 1, achieving an accuracy of 63%, it is especially on Test 2 that RF_multi_3
shines, with an accuracy of almost 89%. As indicated in Table 7, RF_multi_1
was trained using only training data provided explicitly for the competition,
i.e. DMD master train 2, while for RF_multi_3 we used external training data.
A plausible explanation for the good performance of RF_multi_3 on Test 2 is
therefore that Test 2 contains domain names from a distribution/source that is
quite different from the training data provided by DMD for subtask 2.

Table 11 shows the final ranking that we obtained in the competition for
each of the four test datasets. We obtained first place for subtask 1 (binary
classification), Test 1, with the ensemble model from Table 9, and first place for
subtask 2 (multiclass classification), Test 2, with the RF_multi_3 model with
deployment threshold c = 0.9 from Table 10.

Table 11: Final rankings for binary and multiclass classification tasks.
Task DatasetAccuracyF1-scoreRecallPrecisionRanking

Binary Classification Test 1 99.0% 0.892 0.966 0.828 1

Test 2 76.6% 0.858 0.999 0.751 3
Multiclass Classification Test 1 63.3% 0.602 0.633 0.618 5

Test 2 88.7% 0.901 0.887 0.924 1
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6 Conclusion

In this paper, we have investigated the performance of featureful (Random Forest)
and featureless (Deep Neural Network) based classifiers for DGA detection, trained
with various sources of publicly available and DMD provided data. For the binary
classification task of determining whether a domain name is benign or malicious,
we obtained the best results with a deep learning approach where the features
are learned automatically from the data during the training process. For the
multiclass classification task of determining which malware family a DGA domain
name belongs to, we obtained the best results with a one vs. rest RF model
trained on 28 features extracted from the domain names. The fact that the deep
neural networks that we trained for malware family detection were outperformed
by a RF is possibly due to the relatively small size of the dataset, with a limited
number of training examples per malware family. An important take-away is thus
that both featureful and featureless approaches have a valuable role to play in
the defense against malware.
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