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Abstract—Machine learning (ML) is revolutionizing research
and industry. Many ML applications rely on the use of large
amounts of personal data for training and inference. Among
the most intimate exploited data sources is electroencephalogram
(EEG) data, a kind of data that is so rich with information
that application developers can easily gain knowledge beyond
the professed scope from unprotected EEG signals, including
passwords, ATM PINs, and other intimate data. The challenge
we address is how to engage in meaningful ML with EEG data
while protecting the privacy of users.

Hence, we propose cryptographic protocols based on Secure
Multiparty Computation (SMC) to perform linear regression over
EEG signals from many users in a fully privacy-preserving (PP)
fashion, i.e. such that each individual’s EEG signals are not
revealed to anyone else. To illustrate the potential of our secure
framework, we show how it allows estimating the drowsiness
of drivers from their EEG signals as would be possible in the
unencrypted case, and at a very reasonable computational cost.
Our solution is the first application of commodity-based SMC
to EEG data, as well as the largest documented experiment of
secret sharing based SMC in general, namely with 15 players
involved in all the computations.

Index Terms—secure multiparty computation, cryptography,
machine learning, linear regression, driver drowsiness estimation.

I. INTRODUCTION

The application potential of Brain-Computer Interfaces
(BCIs) is vast, going far beyond medicine and research into
areas such as education, gaming, entertainment, wellness,
and personalized marketing. The emergence of consumer-
grade, low-cost BCIs and corresponding software development
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kits1 is bringing the use of BCI within reach of application
developers. They can capture neural signals, extract features
from them, and subsequently use these extracted features to
train and use machine learning (ML) models for all kinds of
prediction and inference tasks. These include inferring emo-
tions, sexual preferences and religious beliefs of individuals,
detecting preferences of customers, measuring concentration,
or estimating levels of drowsiness in drivers of cars [1]–[6].

While many BCI-applications can be, and are, developed
with a benign intent of enriching and improving the quality
of human life, giving access to a user’s brain signals, or
features extracted from them, can seriously harm the user’s
privacy. Brain spyware has for instance been used to infer
users’ 4-digit PINs, bank information, month of birth, location
of residence, and whether they recognized a presented set of
faces [7]. The impact of brain malware that can infer very
intimate information about users, such as emotions, prejudices,
religious and political beliefs, etc. and subsequently use that
information to manipulate users, could be severe [8].

The awareness of the need for protecting the privacy of
individuals and their data in ML applications has increased
substantially over the last few years, as witnessed for instance
in the National Privacy Research Strategy put forward by
the National Science and Technology Council (Jun 2016)2,
the recommendations of the Commission on Evidence-Based
Policy Making (Sep 2017)3, and ACM’s statement on preserv-
ing personal privacy (Mar 2018) [9]. Sensitive data includes
user generated content on social media, patient healthcare
records, genetic information, and – without a doubt – neural
information such as recorded by EEG signals. There is plenty
of evidence that anonymizing data does not offer sufficient
protection [10]. In this paper we therefore focus on the use
of cryptography, in particular Secure Multiparty Computation
(SMC) [11], to ensure, in a mathematically provable way, that
the EEG data of individuals used in ML applications is not
revealed to anyone but themselves, while still being able to do
meaningful computations over that data.

To this end, we propose cryptographic protocols for fully
privacy-preserving linear regression (PPLR) with data from
EEG signals, and their implementation in Lynx [12], a frame-
work for SMC based on additive secret sharing. Our methods
are applicable in any application that requires training an LR
model from EEG data. In this paper, we demonstrate our

1E.g. https://www.emotiv.com/, http://neurosky.com/, https://myndplay.com/
2https://www.nitrd.gov/PUBS/NationalPrivacyResearchStrategy.pdf
3https://www.cep.gov/content/dam/cep/report/cep-final-report.pdf
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protocols for estimating the drowsiness of drivers, which is
the cause of 1000s of fatal crashes each year.4 We consider
two different scenarios. In the first scenario, a set of source
drivers work together to train an LR model in a distributed
fashion (many-party SMC). Throughout this process, none of
the drivers can see the data from the other drivers in an
unencrypted way at any point. At the end of the protocol,
all source drivers hold encrypted shares of the trained model,
and a target driver can obtain a prediction for his data by
engaging in a cryptographic protocol with all of the source
drivers (many-party SMC). In the second scenario, the target
driver has calibration data that can be leveraged to train
a personalized and more accurate model. The target driver
engages in a separate cryptographic protocol with each of
the source drivers (2-party SMC) to train LR models, namely
as many models as there are source drivers. Each model is
trained on data from one source driver, as well as on some
of the calibration data from the target driver. As before,
any individual’s EEG data is not disclosed to anyone else.
Furthermore, at the end of the training protocol, no single user
knows any of the trained models. Instead, knowledge about
the models is split into encrypted shares that are “owned” in a
distributed fashion by the drivers. Finally, the target driver can
obtain a prediction for his data, as an average of the predictions
by all trained models, through engaging in a cryptographic
protocol with all the source drivers.

Our secure framework allows to estimate the drowsiness
of drivers as would be possible in the unencrypted case, and
scales well with the number of drivers. It is the first applica-
tion of commodity-based SMC to EEG data, as well as the
largest documented experiment of secret sharing based SMC
in general, with 15 players involved in all the computations.

In this paper, we focus on privacy-preserving machine learn-
ing (PPML) techniques based on SMC. There are alternative
paradigms for obtaining such a goal. They differ – among other
things – in how much information is leaked during training
and deployment of the ML models. In this paper, we work in
the most restrictive of these scenarios – where no leakage is
allowed. We do not cover other approaches for PPML that leak
some information, such as: differential privacy [13]; trusted
enclaves [14]; federated learning [15], [16]. To the best of our
knowledge, none of these approaches have previously been
applied to training ML models based on EEG data either.

II. RELATED WORK

BCI technology is gradually becoming more ubiquitous. On
the academic side, great progress was made in the develop-
ment of technology for “mind reading” from fMRI activation
patterns. Among others, this includes recent works by Wang
et al. [17] who successfully trained a ridge regression model
to identify complex thoughts, such as, “The witness shouted
during the trial”, and by Du et al. [18] who presented a method
for identifying what a user is looking at, just by monitoring
their brain activity. At the same time, a variety of neural
engineering companies have already introduced inexpensive,
consumer-grade BCI devices for measuring brain activity in

4https://www.cdc.gov/features/dsdrowsydriving/index.html

the form of EEG signals, as well as so-called BCI App Stores
to facilitate adoption of the BCI headsets [8], and efforts are
underway to make the more informative magnetoencephalog-
raphy (MEG) brain scanners wearable in practice [19].

The access that BCI applications have to neural signals
rightly raises privacy concerns. A well known threat are
subliminal attacks in which users are exposed to visual stimuli
for a duration that is too short for cognitive perception yet long
enough to learn private information about the users based on
their neural reactions to the visual stimuli (e.g. brand logos)
[1]. The data obtained in this way is valuable for example
for phishing campaigns or ads. Neural signals have also been
used to elicit information about a person’s sexual orientation
[3] or religious beliefs [2]. It is understood in the data science
community that anonymization, i.e. removing personally iden-
tifiable information from data before release, is not sufficient
to protect the privacy of individuals, since it still leaves the
data vulnerable to linkage attacks [10]. True protection can
come from cryptographic techniques that allow computations
over encrypted data, such as Fully Homomorphic Encryption
(FHE) or Secure Multiparty Computation (SMC) [11].

Multiple approaches for secure LR have been proposed in
the literature. Some are not based on SMC [20]–[25], and some
use SMC like we do [26]–[30]. Several existing approaches
assume that the data is vertically partitioned [24], [25], [29],
hence it can not be used for the application that we study in
this paper, in which each user has the information about his
own EEG signals (i.e., horizontally partitioned data).

Homomorphic encryption (HE) based approaches. Hall et
al. [21] achieve security in a two-party LR scenario, using HE
on datasets over a finite field. The truncation protocol used
in [21] to scale down the finite field has a small problem
which is documented in [28]. The HE based method of Aono
et al. [22] outsources the computations to a server. The entire
LR model is present at the server, and the client evaluates its
data securely. Our approach differs from the above in various
ways. Our method enables training and inference in a fully
distributed fashion, i.e. such that the coefficients of the trained
LR model never have to be brought together in one place.
Furthermore, our method allows an arbitrary number of parties,
and computations are fast (less than 6 min for training an LR
model with over 16,000 training examples distributed over 14
parties, and seconds for inference). Nikolaenko proposed a hy-
brid model for secure LR using HE and garbled circuits [23].
While their approach does handle multiple parties, they upload
encrypted data to a third party responsible for evaluating the
model with the help of a semi-honest Crypto Service Provider.
We eliminate the need of a third party to actively participate
in the protocol while achieving better runtimes.

SMC based approaches. Du et al. [27] proposed an early
approach for SMC based simple LR, i.e. when there is only a
single scalar predictor variable. The method we propose in this
paper works for multivariable LR, which is far more common
in practice. Karr et al. [26] provided a sketch for secure LR on
horizontally partitioned data. They did not address important
challenges that would need to be solved when implementing
it in practice, such as how to perform matrix inversion in a
secure manner and how to handle datasets with real numbers.
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Finally, Du et al.’s secure two-party approach [30] is different
from ours in goal: they explore the trade-off between security
requirements and efficiency based on the assumption that a
dishonest party might be able to learn some information about
the other party’s private data. We are the first to implement
cryptographic protocols for performing secret sharing based
LR in which any number of parties can participate. To this end,
we extend the PPLR technique by De Cock et al. [28] to m
parties. While the general protocols for LR in [28] are similar
to ours, the version presented in [28] was not implemented for
several parties. The implementation in [28] was a simulation
where all the parties were running within the same machine
and did not include the delay due to the network connecting
all the parties. To the best of our knowledge, our work is the
largest documented experiment of privacy-preserving machine
learning in terms of the number of parties. Moreover, our
work includes private scoring, which was not present in [28].
This paper extends our prior work to a real application with
a realistic deployment, code that is re-usable and publicly
available. For other recent work on the use of SMC for PPML
(other than LR) we refer to [31]–[34] and references therein.

The implementation of new SMC protocols is facilitated
by libraries that provide a general framework with a built-in
implementation of cryptographic protocols for basic operations
– such as multiplication and comparison – that one can use
to implement more complex protocols in a modular fashion.
In this paper we use the SMC library Lynx [12], which is
based on additive secret sharing. Other existing frameworks
for SMC are Sharemind [35], FairPlay [36], and Chameleon
[37]. Both Sharemind and Chameleon are secret sharing based
frameworks (like Lynx) developed in C++ whereas Fairplay
uses both secret sharing and garbled circuits. Sharemind
uses a fixed modulus of 232 and, as it stands, is limited to
computations on integers for three parties. Chameleon, a two-
party framework with protocols similar to that of Sharemind,
supports computations on floating point numbers in addition
to integers. Like Lynx, Chameleon uses a trusted third party to
generate correlated randomness. Fairplay, relies on a custom
function definition language to define the boolean circuits. The
need to learn a custom language makes it less user friendly.
Chameleon and Sharemind are limited to 2 and 3 parties
respectively. Fairplay can handle more than 3 parties but doing
so comes at a substantial computational cost. The Lynx library
that we use in this paper (see Section V) allows participation of
an arbitrary number of parties. Lynx is designed to scale well
with an increasing number of parties, among other things due
to the use of a bulletin board functionality that enables efficient
communication among many parties who are simultaneously
involved in computations. To the best of our knowledge, ours is
the first documented application of secret sharing based SMC
for ML with computations done by more than 3 players.

We illustrate the power of our solution by applying it to
the problem of privately estimating driver’s drowsiness based
on EEG data. The U.S. Department of Transportation reports
that drowsy driving, i.e. driving while experiencing sleepiness
or fatigue, claimed 846 lives in 2014.5 According to the

5https://www.nhtsa.gov/risky-driving/drowsy-driving

Centers for Disease Control and Prevention, up to 6,000 fatal
crashes each year may be caused by drowsy drivers.6 The
company Panasonic has announced the release of an in-car
system for driver drowsiness detection, through a combination
of a camera and sensors which constantly measure blinking
features, facial expressions, heat loss from the body, and
illuminance [38]. Depending on the detected level of tiredness,
either the temperature in the car is changed (for moderate
drowsiness), or an alarm is sounded (for severe drowsiness).
Wu et al. [6] have successfully trained linear regression models
for inferring the level of drowsiness of drivers from their
EEG signals, both in a setting where a model trained with
data from m source drivers is used to infer the drowsiness
of a target driver, as well as in transfer learning settings
where calibration data from the target driver is leveraged to
personalize the predictive models, leading to more accurate
drowsiness estimates. In this paper we show how regression
models like those from Wu et al. [6] can be trained and used
in a fully privacy-preserving (PP) way, without any loss of
accuracy, and at a very reasonable computational cost. A high
level sketch of our work appeared previously [39].

III. PRELIMINARIES

In this section we introduce the notation for LR that we
will adhere to in the paper, and we recall preliminaries about
performing secure computations with additive secret sharings.

Throughout this paper we use capital letters such as X to
denote matrices, bold face letters such as y to denote vectors,
and regular letters such as y to denote scalar values. Let X
be an n× k matrix and y a vector of length n as follows:

X =


x1

x2

. . .
xn

 and y =


y1
y2
. . .
yn

 (1)

Performing LR with X and y means finding a coefficient
vector β = (β0 β1 . . . βk) that minimizes

1

n

n∑
i=1

((β1(xi)1 + β2(xi)2 + . . .+ βk(xi)k + β0)− yi)2 (2)

In a supervised ML application, X and y contain information
about training examples, where xi is the input feature vector
for the ith example and yi is the associated output. The goal
is to leverage these training examples to predict the unknown
outcome for a previously unseen input as accurately as pos-
sible by learning a linear function defined by the coefficient
vector β. The coefficients that minimize the mean squared
error over the training examples (2) can be computed as

β = (XTX)−1XTy (3)

In the scenarios that we are interested in, the data needed
to train the LR model is not owned by a single party but is
instead distributed across multiple parties who are not willing
to disclose it. In other words, each of the parties has some of
the entries of the matrix X and the vector y, and the parties

6https://www.cdc.gov/features/dsdrowsydriving/index.html
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are unwilling or unable to send their entries to each other or
to a trusted third party to perform LR over the combined data.

To efficiently train LR models over distributed data in a
PP way, we work in the commodity-based model [40]. In this
approach, there is a setup assumption about the existence of a
Trusted Initializer (TI) that pre-distributes correlated random
numbers during an initialization phase (which can happen far
before the ML models are trained, even before knowing the
training data) to the parties participating in the protocol. The
TI is not involved in any other part of the execution and does
not learn any input from the parties. The main advantage of
the commodity-based approach is that it enables very efficient
solutions with unconditional security. It has been used in the
context of PPML [28], [34], [41], [42], as well as in other
applications [43]–[49].

Throughout this paper, we perform secure computations
using additive secret sharings over a finite field Fq . A value
(number) x ∈ Fq is secret shared between parties p1, . . . , pm
by picking xp1 , . . . , xpm ∈ Fq uniformly at random subject to
the constraint that x =

∑m
i=1 xpi mod q, and then revealing

xi to pi. This secret sharing will be denoted by JxK
q
. Notice

that from the point of view of any proper subset of parties, no
information about x is revealed by the combination of their
shares. A secret shared value can be revealed to one of the
parties by sending him the shares of all the other parties.

Given secret sharings JxKq , JyKq and a constant c, it is
trivial for the parties to compute secret sharings corresponding
to z = x + y, z = x − y, z = cx, or z = x + c by
performing addition, subtraction, etc, locally on the shares;
the parties do not even need to communicate with each other
to this end. These operations are respectively denoted by
JzK

q
← JxK

q
+ JyK

q
, JzK

q
← JxK

q
− JyK

q
, JzK

q
← cJxK

q
,

and JzK
q
← JxK

q
+ c. In the commodity-based model there is

also a well-known protocol πDM to multiply the values of two
secret sharings [50], which has been generalized to a secure
distributed matrix multiplication protocol πDMM. At the start
of the protocol πDMM, the parties have element-wise secret
sharings JUK

q
and JV K

q
of the matrices U and V . At the end

of the protocol, the parties have a secret sharing JUV K
q

of the
product matrix UV . For a detailed description and a proof of
security of this protocol, we refer to [28], [51].

For computing the coefficient vector using (3), besides
matrix multiplication, we also need to compute the inverse of a
covariance matrix. To do this in a PP fashion, we use a secure
matrix inversion protocol that is based on a generalization of
the Newton-Raphson division method to matrices [28]. At the
start of the protocol, which we denote as ΠMatInv, the parties
have shares of a covariance matrix A, and at the end of the
protocol, they have shares of the inverted matrix A−1. For
details about the protocol ΠMatInv, we refer to [28].

The protocols described above, and their security proofs,
assume all computations are done with numbers from the finite
field Fq . In real-life applications, such as the BCI application
of estimating driver drowsiness that we consider later in this
paper, the inputs are real numbers. We therefore need a way to
approximate computations with real numbers by computations
with numbers from Fq . To this end, we adapt the method
of Catrina and Saxena [52] for fixed-point representation of

the numbers in the same way as was described in [28].
Similarly, when secure multiplications are performed, we use
the slightly modified version ΠTrunc of the truncation protocol
of Catrina and Saxena [52] that was presented in [28]. For
the computation of the results in Section VI, numbers are
represented with a f = 64 bit decimal precision and a e = 64
bit integer precision. For q, i.e. the dimension of the field,
we use the first prime value larger than 2e+2f+1 to allow
the truncation protocol to work correctly and not result in an
overflow during intermediate computations.

IV. CRYPTOGRAPHIC PROTOCOLS

We present a solution for PP training and inference with
LR models in two different scenarios that are very relevant in
practice, and both involve m source parties and a target party:

• Target-independent LR. In the target-independent LR sce-
nario, one LR model is trained with data from m source
parties, and used to make predictions about a target party.
No data from the target party is used during the training
phase. This scenario corresponds to “Baseline 1” in [6].

• Target-calibrated LR. In the target-calibrated LR scenario,
m LR models are trained, each with data from one of the m
source parties combined with some calibration data from the
target party. Inferences for the target party are subsequently
made by an ensemble of the trained LR models. This
scenario corresponds to “DAMF” in [6].

Both approaches are valuable in practice, and even more
sophisticated techniques to leverage calibration data exist [6].
Our goal in this paper is not to investigate which of these
techniques can lead to the most accurate predictions. Instead,
our aim is to show that the computations needed to train and
use such regression models can be performed in a fully PP
way, i.e. so that none of the parties involved has to disclose
its data to anyone else in an unencrypted way. From the
PP perspective, the two scenarios outlined above pose quite
different challenges and require different protocols, which we
describe in more detail below.

A. Training for target-independent LR

In the PP target-independent LR scenario, illustrated in
Fig. 1, each of the m source parties p1, p2, . . . , pm has its
own rows of the matrix X and corresponding entries of the
vector y from (1). Each party pi can construct its own npi×k
matrix Xpi and a vector ypi of length npi , with npi the
number of training examples held by party pi and k the number
of features. We take advantage of the fact that the data is
horizontally partitioned in this way, and propose a protocol
for PP training of a LR model with the data from all parties
that is more efficient in this situation than the more general
protocol from De Cock et al. [28]. Our technique consists of
the steps described below.

1) Offline phase: The TI distributes the necessary correlated
random numbers to the parties. These random numbers will
be needed for secure multiplications in the 4th and 5th step.

2) Local computation of JXTXKq : Each source party pi maps
its fixed-point inputs to elements of a finite field Fq using
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Fig. 1. Training phase of privacy-preserving target-independent LR.

Fig. 2. Inference phase of privacy-preserving target-independent LR.

the method described in Section III, and creates an npi×k
matrix Xpi and a vector ypi of length npi , with npi the
number of training examples owned by party pi and k
the number of features. Next, each source party locally
computes the k × k matrix (Xpi)

T (Xpi). It holds that
XTX = (Xp1)T (Xp1) + . . .+ (Xpm)T (Xpm) mod q. In
other words, each party pi now holds a secret share of the
matrix XTX from Equation (3).

3) Local computation of JXTyK
q
: each source party pi locally

computes the k × 1 matrix (Xpi)
T (ypi). It holds that

XTy = (Xp1)T (yp1) + . . . + (Xpm)T (ypm) mod q. In
other words, each party pi now holds a secret share of the
matrix XTy from Equation (3).

4) Joint computation of J(XTX)−1K
q
: the parties perform

joint computations over their shares JXTXK
q

from step
2 to compute shares J(XTX)−1K

q
of the inverse matrix

(XTX)−1, using the protocol for covariance matrix inver-
sion ΠMatInv mentioned in Section III, which in turn relies
on the protocols for secure matrix multiplication πDMM and
truncation ΠTrunc.

5) Joint computation of JβKq : the parties perform joint com-
putations over their shares J(XTX)−1K

q
from step 4 and

JXTyK
q

from step 3 to compute shares JβK
q

of the coef-
ficient vector β = (XTX)−1XTy. To this end, they per-
form distributed matrix multiplication between (XTX)−1

and XTy by performing secure matrix multiplication
πDMM and secure truncation protocol ΠTrunc operations. In
the end each party pi has a share βpi of the estimated
regression coefficient vector β = βp1 + βp2 + . . .βpm
mod q. Note that each βpi is a vector itself, containing a
share of each of the coefficients β0, β1, . . . , βk.

In step 4 and 5 above, all the m parties perform compu-
tations and exchange encrypted messages with each other. To
facilitate the communication among all parties, and to limit
the number of communication channels (sockets) that need to
be opened during execution, we use a Broadcast Agent (BA),
more details about which are provided in Section V.

The five steps outlined above allow m source parties to work
together to train an LR model on all of their data. None of the
source parties sees data from any of the other source parties
in an unencrypted way, and none of the source parties can
reconstruct the LR model by itself. Instead, at the end of the
training protocol, shares of the coefficient vector are held in
a distributed fashion by all m parties. This entails that, when
making new predictions with the trained model, all m parties
have to be involved, as we describe in Section IV-B.

B. Inference for target-independent LR

During the inference phase (Fig. 2), the target party obtains
a prediction for its input data by sending shares of its input
to all the m parties. The parties engage in an SMC protocol
among themselves. At the end of the evaluation protocol, each
of the m parties sends its share of the result back to the target
party, which adds the shares up to obtain the prediction.

Concretely, inference in the target-independent LR scenario
consists of the following four steps:

1) Offline phase: The TI distributes the necessary correlated
random numbers to the parties. These random numbers will
be needed for secure multiplications in the third step.

2) Distribution of JxK
q
: The target party maps the numbers in

its input vector x to elements of the finite field Fq using
the method described in Section III, and sends a share xpi
of the resulting vector x to each of the source parties, with
x = xp1 + xp2 + . . .+ xpm mod q.

3) Joint computation of Jβ · xT K
q
: the m source parties per-

form joint computations over their shares JβK
q

from step 5
in Section IV-A and their shares JxK

q
from step 2 above to

obtain shares of Jβ · xT K
q
. To this end, they use the secure

matrix multiplication πDMM and secure truncation ΠTrunc

protocols mentioned in Section III. Each source party sends
it computed share, which we refer to as ŷpi below, back to
the target party.

4) Local computation of ŷ: the target party adds the received
shares ŷpi (i = 1, . . . ,m) to learn the prediction ŷ = ŷp1 +
ŷp2 + . . .+ ŷpm mod q.
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C. Training for target-calibrated LR

PP target-calibrated LR requires m cases of secure two-
party computation during the training phase (Fig. 3), since
each of the m LR models is trained with data from only
two parties, namely a source party and the target party. That
means that instead of just one matrix X as in Section IV-A,
m such matrices are implicitly used, which we denote as
X(1), X(2), . . . , X(m). Each such matrix X(i) consists of rows
with training examples from source party pi and rows with
calibration data from the target party. In practice, none of
these matrices exist in one place. Instead, each matrix X(i)

exists in a distributed fashion across source party pi and the
target party, who each have a share of it. In addition, for each
matrix X(i) there is a corresponding response value vector
y(i) which is shared in a similar way between source party pi
and the target party.

At the end of the training protocol, the coefficients of the ith
regression model (i = 1, . . . ,m) are shared between the target
party and source party pi. These coefficients are computed
through the steps described below.

1) Offline phase: The TI distributes the necessary correlated
random numbers to the parties. These random numbers will
be needed for secure multiplications in step 4 and 5 below.

2) Local construction of JX(i)K
q

and Jy(i)K
q
, i = 1, . . . ,m:

the target party maps its calibration data to elements of a
finite field Fq using the method described in Section III,
and creates an nt×k matrix Xt and a vector yt of length nt,
with nt the number of training examples in the calibration
data. Likewise, each source party pi maps its fixed-point
inputs to elements of Fq , and creates an npi × k matrix
Xpi and a vector ypi of length npi , with npi the number
of training examples owned by party pi and k the number
of features. At this point, the source parties and the target
party are holding shares of the matrices X(i) and vectors
y(i) for i = 1, . . . ,m in a distributed fashion such that
X(i) = Xpi + Xt mod q and y(i) = ypi + yt mod q.
Note that these matrices are never constructed in their
entirety in practice.

3) Local computation of J(X(i))
T
X(i)Kq and J(X(i))

T
y(i)Kq ,

i = 1, . . . ,m: each source party locally computes the k×k
matrix (Xpi)

T (Xpi) and the k×1 matrix (Xpi)
T (ypi). The

target party locally computes the k× k matrix (Xt)
T (Xt)

and the k × 1 matrix XT
t yt.

4) Joint computation of J((X(i))
T
X(i))−1Kq , i = 1, . . . ,m:

the target party separately engages in joint computations
with each source party pi over their shares J(X(i))

T
X(i)K

q

from step 3 to compute shares J((X(i))
T
X(i))−1K

q
using

the protocol for covariance matrix inversion ΠMatInv men-
tioned in Section III.

5) Joint computation of Jβ(i)K
q
, i = 1, . . . ,m: the tar-

get party separately engages in joint computations with
each source party pi over their shares J((X(i))

T
X(i))−1K

q

from step 4 and shares J(X(i))
T
y(i)Kq from step 3 to

compute shares Jβ(i)K
q

of the coefficient vector β(i) =

((X(i))
T
X(i))−1(X(i))

T
y(i). To this end, they perform

distributed matrix multiplication between ((X(i))
T
X(i))−1

Fig. 3. Training phase of privacy-preserving target-calibrated LR.

Fig. 4. Inference phase of privacy-preserving target-calibrated LR.

and (X(i))
T
y(i) by performing secure matrix multiplica-

tion πDMM and secure truncation ΠTrunc operations.
When all computations are finished, m LR models have
been trained. The coefficient vector of the ith model (i =
1, . . . ,m) is secret shared between the ith source party
on one hand and the target party on the other hand, i.e.,
β(i) = β(i)

pi + β
(i)
t mod q, for i = 1, . . . ,m

D. Inference for target-calibrated LR

The inference phase (Fig. 4) for target-calibrated LR re-
quires the computation of the average of the outputs of the
m regression models, which again involves secure two-party
computations among the target party and each source party.
As in Section IV-B, the target party has an input x for
which it needs a prediction. To this end, the target party
engages in a secure computation with each source party pi
to construct a secret sharing Jŷ(i)K

q
= Jβ(i) · xT K

q
. The final

prediction is the average of all the ŷ(i) values, i = 1, . . . ,m.
Instead of having each source party pi send its share of ŷ(i)

to the target party, which would reveal information that is
not strictly necessary, each of the parties pi first mask their
prediction share by adding a random number ri and open
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the masked result to the target party. In addition, each party
pi sends its random mask ri to one of the source parties
(p1 in Fig. 4), which adds them up, and sends the result
r to the target party. Finally the target party locally adds
up the masked shares of the ŷ(i) values (received directly
from each of the source parties), subtracts the sum of the
masks r (received from the designated source party that is
responsible for constructing this sum), adds its own shares of
the ŷ(i) values, and divides by the number of source parties to
obtain the final prediction. Concretely, inference in the target-
calibrated LR scenario consists of the steps described below.
1) Offline phase: The TI distributes the necessary correlated

random numbers to the parties. These random numbers will
be needed for secure multiplications in step 3.

2) Distribution of JxKq : the target party maps the numbers
in its input vector to elements of the finite field Fq using
the method described in Section III. Next the target party
secret shares the input vector x with each of the source
parties, possibly in a different way, i.e. x(i) = x

(i)
pi + x

(i)
t

mod q for i = 1, . . . ,m.
3) Joint computation of Jŷ(i)Kq , i = 1, . . . ,m: the target party

performs joint computations with each source party pi over
their shares Jβ(i)K

q
from step 5 in Section IV-C and their

shares JxK
q

from step 2 above to compute shares Jŷ(i)K
q

=
Jβ(i) · xT K

q
. To this end, the parties use the secure matrix

multiplication πDMM and secure truncation ΠTrunc protocols
mentioned in Section III. At the end of this step, shares of
the predictions made by each of the m LR models have
been constructed and are held, in a distributed fashion, by
the target party and each of the source parties: ŷ(i) = ŷ

(i)
pi +

ŷ
(i)
t mod q for i = 1, . . . ,m.

4) Local masking of shares: all the source parties mask their
share ŷ(i)pi by adding a random value ri, and subsequently
send the masked prediction to the target party t.

5) Local computation of sum of masks: all the source parties
send their random masks ri, to one of the parties (chosen
based on the asymmetric bit as mentioned in Section V).
This designated party adds up all the random masks ri,
i = 1, . . . ,m, and sends the result to the target party.

6) Local computation of final prediction: the target party adds
up all the masked prediction shares received in step 4,
i.e. ŷ(i)pi + ri, i = 1, . . . ,m, subtracts the sum of the
random masks received in step 5, adds its own shares ŷ(i)t ,
i = 1, . . . ,m computed in step 3, and takes the average.

V. IMPLEMENTATION IN LYNX

In this section we describe design decisions made when
implementing the protocols from Section IV in Lynx [12], a
framework that we developed for SMC. As explained in Sec-
tion III, our protocols are developed for the commodity-based
model, where the players running the distributed computations
receive pre-distributed data from a trusted source (TI) during
a setup phase. This data consist of correlated random numbers
that help to mask information during the computations. The
algorithms for secure LR described in Section IV rely on the
cryptographic protocols for secure matrix multiplication, ma-
trix inversion, and truncation that were mentioned in Section

Fig. 5. Different roles in the SMC framework Lynx.

III. We implemented these protocols such that the performance
scales with an increasing number of players involved in the
computations. The ability to efficiently accomodate more than
three parties to jointly perform the computations, sets our
Lynx framework apart from existing SMC frameworks that
are limited to two or three parties [35], [37] or that become
computationally heavy with more than three parties [36].

There are four significant roles that run at various stages
for end-to-end model training and inference. They function as
illustrated in Fig. 5. A deployed system consists of two or more
Parties, one Broadcast Agent, one Trusted Initializer, and one
or more Clients. The Parties communicate via the Broadcast
Agent. The difference between a Party and a Client is that a
Party engages in SMC computations, while a Client does not.
The role of the latter is limited to distributing input data and
receiving corresponding outputs that were computed by the
Parties in a secure way. In the target-independent LR scenario
for driver drowsiness prediction (see Section VI) for instance,
the target driver is a Client, while in the target-calibrated LR
scenario, the target driver is a Party as well as a Client.

1) Party: The Party is the core module responsible for
model training and inference. The Parties take shares of the
input, compute the result of a function over this input, and
return the output shares. If Lynx is used for training, they
produce shares of the trained model as an output, such as the
shares of the coefficient vector of a LR model. When used for
prediction, they produce the shares of the predicted result. At
no point does any of the individual Parties know the data or
the result held by any other Party in an unencrypted way.

2) Trusted Initializer: The TI runs as an offline program
to generate the set of correlated random data required for the
computations. It passes shares of this data to all the parties
before the start of the computations and does not interfere
with the computation any further from that point onward.

3) Broadcast Agent: One of the cornerstones of SMC is
the pair-wise exchange of masked data between the Parties
involved in the computations. While this works well in a
2-party scenario, the performance can get worse with an
increase in the number of Parties, which is a plausible ex-
planation for why most existing SMC implementations only
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have few parties. In Lynx we have introduced a “bulletin
board” functionality referred to as the Broadcast Agent. It is
a dummy server which relays public messages to all Parties.
The principal benefit of using the Broadcast Agent is to reduce
the number of communication channels (sockets) that need
to be opened, thereby greatly enhancing the efficiency of
the communication. A traditional broadcast protocol would
establish O(m2) sockets among the m parties, while only
O(m) sockets are necessary when a Broadcast Agent is used.

4) Client: The Client is the user that holds the private data
and wants to get predictions from the model. The client secret
shares the input among m Parties, such that none of the Parties
knows the actual input, and receives back the shares of the
predicted value. This way neither Party gets to know anything
about the client’s input or prediction. In the case of a target-
calibrated LR, the target driver acts like a Party while training
the model, and acts like a Client during the inference.

The Broadcast Agent and Trusted Initializer may exist on
one or more servers. The Parties can run on a single or
distributed network. Lynx uses two main architecture patterns:
1) Client-server architecture for all communications of the
parties with the trusted initializer and the Broadcast Agent;
2) Microservices architecture to achieve modularity between
all the SMC protocols. This allows to reuse the protocols and
run them concurrently at different stages of computations. The
Parties jointly compute an ML model (LR in this paper) by
calling the different cryptographic protocols as microservices.
Lynx is designed such that independent computations can
happen in parallel, thus increasing throughput. Finally, we
have created a number of utility protocols in Lynx which help
in batch processing many cryptographic protocols to reduce
communication overhead among parties.

VI. EXPERIMENTAL RESULTS

A. Dataset and Hardware Specifications
We evaluated the implementation of our cryptographic

protocols using the same data and scenarios for detecting
driver drowsiness based on EEG signals as Wu et al. [6].
We used data from subjects who participated in a 60-90 min-
utes sustained-attention driving experiment in a real vehicle
mounted on a motion platform immersed in a 360-degree
virtual-reality scene. To induce drowsiness during driving, the
virtual-reality scenes simulated monotonous driving at a fixed
100 km/h speed on a straight and empty highway. During
the experiment, lane-departure events were randomly applied
every 5-10 seconds, and participants were instructed to steer
the vehicle to compensate for these perturbations as quickly as
possible. 16 voluntary participants of age 24.2 ± 3.7 (10 males
and 6 females) with normal or corrected-to-normal vision were
recruited in this study. Data from one subject was not correctly
recorded, so we used only 15 subjects.

We defined a function [53] to map the recorded response
time τ to a drowsiness index y ∈ [0, 1]:

y = max
{

0, (1− e−(τ−τ0))/(1 + e−(τ−τ0))
}

(4)

τ0 = 1 was used in this paper, as in [6], [53]. The drowsiness
indices were then smoothed using a 90-second square moving-
average window to reduce variations. This does not reduce the

sensitivity of the drowsiness index because the cycle lengths
of drowsiness fluctuations are longer than 4 minutes [54].

During the experiment, the participants’ scalp EEG signals
were recorded using a 32-channel (30-channel EEGs plus 2-
channel earlobes) 500 Hz Neuroscan NuAmps Express system
(Compumedics Ltd., VIC, Australia). Afterwards, the EEG
data was preprocessed and features were extracted, resulting
in a sequence of 1200 epochs for each driver, in which each
epoch is characterized by 30 numerical values extracted from
the EEG signal. For each of the 15 drivers we therefore have
a dataset consisting of 1200 rows, in chronological order, each
consisting of 30 numerical input values and a response value
(the level of drowsiness). For more details on the preprocessing
of the data, we refer to Wu et al. [6].

The experiments documented below were run on a AWS
c5.9xlarge machines with 36 vCPUs, 72.0 GiB Memory. Each
of the Trusted Initializer, Broadcast Agent, and all Parties ran
on separate machines. Each runtime experiment was repeated
3 times and average results are reported.

B. Results for Target-Independent LR

We train an LR model with data from m source drivers
(Fig. 1) and apply it to make inferences about a new target
subject (Fig. 2). Since each source driver has 1200 rows of
data, the full matrix X from Equation (2) is a (m ·1200)×30
matrix, while y is a (m·1200)×1 vector. At no point X and y
are constructed in full. Each source party naturally has a share
of X and y at the outset of the algorithm: a 1200×30 matrix
Xpi and a 1200× 1 vector ypi with the data from driver i.

The first columns of Table I contain runtime results for
training a target-independent LR model with data from m
source drivers, as the number of source drivers increases
from m = 2 up to m = 14. In the clear, i.e. without any
encryption, training is very fast and completes within a fraction
of a second. As expected, training in a PP fashion using
SMC is computationally heavier. The runtime grows with the
number of drivers, because there is more training data available
that needs to be processed, and more parties that need to
communicate and coordinate. Still, as is clear from Table I, an
increase in the number of parties has a moderate impact on
the runtime, demonstrating that the implementation in Lynx of
the PP protocol for training a LR regression model is scalable.

Next we evaluate the predictive accuracy of the trained
target-independent LR models. To this end, we treat driver 15,
which was not used for training the models in Table I as the
target driver. We use the trained models to predict the response
value for each of the 1200 rows in the data of the target
driver. In the target-independent scenario, the coefficient vector
β of the trained LR model is kept in a distributed fashion
with each of the m source parties involved in the training.
Making PP predictions with the trained model is therefore an
m-party SMC problem, the runtime of which grows with m,
as shown in the “Inference” columns in Table I. The RMSE
(Root Mean Square Error) for those predictions is reported in
the last column of Table I. We obtained the same RMSE in
the clear as when computing over encrypted data, highlighting
that there is no accuracy loss when computing in a PP way.
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TABLE I
RESULTS FOR TRAINING AND INFERENCE IN THE TARGET-INDEPENDENT
LR SCENARIO WITH AN INCREASING NUMBER OF PARTIES (DRIVERS).

Training Inference
Runtime (sec) Runtime (sec) RMSE

# of parties In the clear SMC In the clear SMC
2 0.10 48.51 0.004 2.82 0.051
3 0.15 77.55 0.004 3.25 0.050
4 0.22 106.91 0.004 3.81 0.043
5 0.28 132.24 0.004 4.43 0.087
6 0.35 153.90 0.004 4.98 0.129
7 0.42 171.87 0.004 5.73 0.106
8 0.46 201.26 0.004 6.46 0.090
9 0.49 225.58 0.004 7.03 0.082
10 0.51 245.74 0.004 7.91 0.074
11 0.52 280.96 0.004 8.42 0.071
12 0.53 299.11 0.004 9.12 0.071
13 0.45 328.67 0.004 10.03 0.055
14 0.43 350.39 0.004 10.08 0.048

TABLE II
RESULTS FOR THE TARGET-CALIBRATED LR SCENARIO. THE iTH ROW IN

THE TABLE CONTAINS THE RESULTS ABOUT THE LR MODEL TRAINED
WITH 1200 ROWS OF DATA FROM THE i-TH DRIVER (i = 1, . . . , 14)

COMBINED WITH 100 ROWS OF CALIBRATION DATA FROM DRIVER 15.

Training Inference
Runtime (sec) Runtime (sec) RMSE

Source party id In the clear SMC In the clear SMC
1 0.06 51.23 0.004 2.61 0.114
2 0.06 51.95 0.003 2.68 0.045
3 0.06 51.95 0.003 2.67 0.145
4 0.06 51.88 0.004 2.71 0.055
5 0.06 51.62 0.003 2.71 0.086
6 0.06 51.41 0.003 2.64 0.097
7 0.06 51.57 0.004 2.65 0.062
8 0.06 51.49 0.003 2.64 0.045
9 0.07 52.06 0.004 2.62 0.066
10 0.06 51.92 0.003 2.64 0.078
11 0.06 51.83 0.003 2.66 0.057
12 0.06 52.31 0.003 2.68 0.194
13 0.06 51.45 0.003 2.61 0.186
14 0.06 51.50 0.003 2.65 0.053
All 0.07 52.00 0.008 2.89 0.048

C. Results for Target-Calibrated LR

In the target-calibrated LR scenario, m LR models are
trained (Fig. 3). For each LR model, the matrix X(i) consists
of the 1200 rows from the ith source driver, followed by the
first 100 rows of the target driver, which we use as calibration
data. This means that each X(i) is a 1300 × 30 matrix, for
i = 1, . . . ,m. Similarly, each y(i) is a 1300× 1 vector.

Table II present the runtimes for training target-calibrated
regression models with calibration data from a target driver (in
this case, driver 15) combined with data from one of the source
drivers. Since training each regression model only involves
two parties (the target and one of the source drivers), this
is a 2-party computation. As shown in Table I, the average
runtime for training a regression model with two parties is
around 51.73 sec. As all 14 models can be trained in parallel,
the training time to learn the entire target-calibrated model is
approximately 52 sec. We evaluate the predictive accuracy of
the trained target-calibrated LR models when predicting the

response value for each of the remaining 1100 rows in the
data of the target driver, i.e. the rows that were not used as
calibration data. The RMSE for those predictions is reported
in the last column of Table II, along with the time needed to
make those predictions. The final prediction is computed as
the average of the predictions of all m = 14 LR models. In
the SMC based approach, an additional time of 0.24 sec is
required for all parties to mask their prediction shares, to send
the masked prediction shares to the target party, to send the
mask to one of the parties, and to allow the target party to
compute the final result (cfr. step 4 to 6 in Section IV-D). The
time on average to make a prediction for the 1100 rows of a
target driver is 0.008 sec when done in the clear, i.e. without
encryption, and 2.65+0.24 i.e 2.89 sec when done in a PP way
using SMC. The RMSE is the same whether the predictions
are made with full exposure of the EEG data or in private.

VII. CONCLUSION

This work presented the first application of commodity-
based SMC for privacy-preserving processing of EEG data, as
well as the largest documented experiment of secret sharing
based SMC in general, with 15 players involved in all the
computations. We proposed algorithms for PPLR in a target-
independent as well as a target-calibrated scenario. We have
implemented these algorithms in Lynx, a new SMC framework
that we created to enable efficient SMC among many parties.
The runtime results of our experiments for predicting driver
drowsiness show that our LR protocols and their implemen-
tation scale very nicely with an increasing number of drivers
involved in the computations, and that the privately trained LR
models are as accurate as those trained in the clear, i.e. without
any encryption. Our work shows that additive secret sharing
based SMC is a viable mechanism for protecting the privacy of
users in future brain-computer interface applications. However,
our running times were obtained using powerful machines
and much work is needed to make these protocols practical
in constrained computing devices. Interesting future research
directions include: (i) to design protocols that work for more
restrictive adversarial models (such as fully malicious or
covert) and (ii) to improve communication, computational and
round complexities for our protocols.
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