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I. INTRODUCTION

Many machine learning (ML) applications rely on large
amounts of personal data for training and inference. Among
the most intimate exploited data sources is electroencephalo-
gram (EEG) data. The emergence of consumer-grade, low-cost
brain-computer interfaces (BCIs) and corresponding software
development kits1 is bringing the use of BCI within reach of
application developers. The access that BCI applications have
to neural signals rightly raises privacy concerns. Application
developers can easily gain knowledge beyond the professed
scope from unprotected EEG signals, including passwords,
ATM PINs, and other personal data [1]. The challenge we
address is how to engage in meaningful ML with EEG data
while protecting the privacy of users.

To this end, we use Secure Multiparty Computation (SMC)
[2], a form of cryptology, to perform linear regression (LR)
over EEG signals from many users in a fully privacy-
preserving fashion, i.e. such that each individual’s EEG signals
are not revealed to anyone else. As a use case, we show
that our secure framework can estimate the drowsiness of
drivers from their EEG signals as would be possible in the
unencrypted case, at a very reasonable computational cost.
Our solution is the first application of commodity-based SMC
to EEG data, as well as the largest documented experiment of
secret-sharing based SMC in general, namely with 15 parties
involved in all the computations.

II. METHODS

The use of SMC for privacy-preserving training of ML
models is gaining popularity (see, e.g., [3], [4] and references
therein). Existing frameworks for SMC, including Sharemind
[5], FairPlay [6], and Chameleon [7], are all written for 2 or
3 parties to jointly perform the computations. We developed a
framework for SMC based LR in which any number of parties
can participate. To the best of our knowledge, ours is the first
documented application of secret-sharing based SMC for ML
with computations done by more than 3 parties.

1E.g. https://www.emotiv.com/, http://neurosky.com/, https://myndplay.com/

Fig. 1. Training phase of privacy-preserving target-independent LR.

We work in the commodity based model [8], and set
up a Trusted Initializer (TI) that pre-distributes correlated
random numbers during an initialization phase(offline) to the
parties participating in the protocol. To limit the number
of communication channels (sockets) among all parties, we
use a Broadcast Agent(BA). We perform secure computations
using additively secret sharings over a finite field Fq . A
value x ∈ Fq is secret shared between parties p1, . . . , pm by
picking xp1

, . . . , xpm
∈ Fq uniformly at random subject to the

constraint that x = xp1
+. . .+xpm

mod q, and then revealing
xi to pi.

We designed cyrptographic protocols for LR with data from
many parties in two scenarios. In the 1st scenario, called
target-independent LR (Figure 1), a set of m source parties
p1, . . . , pm work together to train a LR model in a distributed
fashion (many-party SMC). None of the parties can see the
data from the other parties in an unencrypted way at any point.
At the end of the protocol, all parties hold encrypted shares
of the coefficient vector β of the trained model, and a target
party obtains a prediction for its data by engaging in a protocol
with all of the source parties (many-party SMC).

We assume that the training data can be thought of as a n×k
matrix X and a vector y of length n, where each row of X
corresponds to the input feature values of a particular training
example, and the corresponding entry in y is the label of that
example. We assume that, instead of residing in one place, X



and y are horizontally distributed across m source parties that
each hold a non-overlapping subset of the training examples.
Taking advantage of the fact that the data is horizontally
partitioned in this way, allows us to propose a protocol that is
more efficient in this situation than the more general protocol
from De Cock et al. [4]. We use the protocol for covariance
matrix inversion ΠMatInv that is based on a generalization of
the Newton-Raphson division method to matrices [4], secure
matrix multiplication πDMM and a slightly modified version
ΠTrunc of the truncation protocol of Catrina and Saxena [9] to
compute the shares βpi

of the estimated regression coefficient
vector: β = βp1

+βp2
+ . . .βpm

mod q.
For a new prediction, the target party sends shares of its

input to all m source parties, who engage in a SMC protocol
among themselves, using the secure matrix multiplication
πDMM and secure truncation ΠTrunc protocols to compute
shares of the predicted result ŷpi

. Finally, the source parties
send the computed shares to the target, who combines them
to learn the prediction: ŷ = ŷp1 +ŷp2 + . . .+ ŷpm mod q.

In the 2nd scenario, called target-calibrated LR, the target
party has calibration data that can be leveraged to train a
personalized model. The target party engages in a separate
protocol with each of the source parties (2-party SMC) to train
LR models, namely as many models as there are source parties.
Each model is trained on data from one source party, as well
as on some of the calibration data from the target party. As
before, any individual’s data is not disclosed to anyone else.
Furthermore, at the end of the training protocol, no single party
knows any of the trained models. Instead, knowledge about
the models is split into encrypted shares that are “owned”
in a distributed fashion by the parties (including the target).
Finally, the target party obtains a prediction for its data, as
an average of the predictions by all trained models, through
engaging in a protocol with all the source parties (many-party
SMC). The participation of the target party in the prediction
process removes the need for the target party to disclose its
own data to any of the other parties.

Source code for all protocols in the SMC framework Lynx
is available online.2

III. RESULTS

We evaluated our protocols using the same data and sce-
narios for detecting drowsiness based on EEG signals from
15 drivers as Wu et al. [10]. We use data from 15 subjects
who participated in a 60-90 minutes sustained-attention driving
experiment in a real vehicle mounted on a motion platform
immersed in a 360-degree virtual-reality scene. For each of
the 15 drivers we have a dataset consisting of 1200 rows,
in chronological order, each consisting of 30 numerical input
values and a response value (the level of drowsiness). Ex-
periments were run on a machine with 36 vCPUs, 72.0 GiB
memory.

The training process in the 1st scenario (Fig. 2) scales
well with an increasing number of parties (drivers) in the

2https://bitbucket.org/uwtppml/lynx

Fig. 2. Runtime for many-party SMC training of LR model

computation, taking between 48.51 sec (m = 2) up to 350.39
sec (m = 14). This is in contrast with 0.10 sec to 0.43 sec
in the clear. The runtime grows with the number of drivers
because there is more training data available for processing,
and more parties that need to communicate. However, we
see that the impact of each new party participating in the
computation is moderate. Making a prediction for a target
driver takes on average 2.82 sec (m = 2) and 10.80 sec
(m = 14) using our framework.

In the 2nd scenario, the training comprises of 14 rounds of
2-party SMC. It takes 51.73 sec on average for the training,
since all 14 models can be run in parallel. The prediction from
the trained models involve all 14 parties as well as the target,
taking 2.89 sec on average. This is in contrast to 0.06 sec
(training) and 0.008 sec (inference) when done in the clear,
i.e. without encryption.

There is no increase in RMSE whatsoever in the process,
i.e. our framework produces the exact same results as in the
clear, adding privacy for the dataset holders.
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