Supplement to "Large-sample study of the kernel density estimators under multiplicative censoring" by M. Asgharian, M. Carone and V. Fakoor.

Additional technical details: proof of lemmas.

Proof of Lemma 1. a) By the definition of $U_{m,n}$ and (2.4), we have that $\|\hat{G} - G\|_{\infty} = \|U_{m,n}\|_{\infty}/\sqrt{k} \le \|\mathcal{F}_{m,n}^{-1}\|\|W_{m,n}\|_{\infty}/\sqrt{k}$. Using (2.3), we may write that $\|W_{m,n}\|_{\infty}/\sqrt{k} \le \|G_m - G\|_{\infty} + \|F_n - F\|_{\infty}$, from which the result follows using the law of the iterated logarithm for empirical distribution functions and the uniform boundedness of $\|\mathcal{F}_{m,n}^{-1}\|$.

b) We may write that

$$\|\hat{f} - f\|_{[a_{m,n},\infty)} \le \|\hat{f} - f\|_{[a_{m,n},\gamma_{m,n})} \mathbb{I}_{[0,\gamma_{m,n})}(a_{m,n}) + \|\hat{f} - f\|_{[\gamma_{m,n},\infty)}$$

and use that

$$\|\hat{f} - f\|_{[a_{m,n},\gamma_{m,n})} \leq \sup_{a_{m,n} \leq t < \gamma_{m,n}} \left| \int_{t \leq z < \gamma_{m,n}} \frac{1}{z} d\left[\hat{G}(z) - G(z) \right] \right| + \left| \int_{z \geq \gamma_{m,n}} \frac{1}{z} d\left[\hat{G}(z) - G(z) \right] \right| \\ \leq \left[F_{U}(\gamma_{m,n}) - F_{U}(a_{m,n}) \right] / \mu_{U} + \|\hat{f} - f\|_{[\gamma_{m,n},\infty)}$$

In the last inequality above, we use that \hat{G} vanishes below $\gamma_{m,n}$. Because we may also show that $\sup_{\gamma_{m,n} \leq s < \infty} |\hat{f}(s) - f(s)| \leq 2 \|\hat{G} - G\|_{[\gamma_{m,n},\infty)} / \gamma_{m,n}$ using integration by parts, the conclusion follows from a).

Proof of Lemma 2. Choose $\epsilon \in (0,1)$. By Lemma 1.2.1. of [1], there exists a constant $C = C(\epsilon) > 0$ such that

$$\operatorname{pr}\left(\sup_{0 \le x \le 1} |\mathcal{W}_n(x)| \ge \sqrt{3\log n}\right)$$

$$\leq \operatorname{pr}\left(\sup_{0 \le x \le 1} \sup_{0 \le y \le 1} |\mathcal{W}_n(x+y) - \mathcal{W}_n(y)| \ge \sqrt{3\log n}\right)$$

$$\leq 2C \exp\left(-\frac{3\log n}{2+\epsilon}\right).$$

The result follows from the Borel-Cantelli lemma. Alternatively, the reflection principle may be used along with results from [4].

Proof of Lemma 3. We first note that

$$\|\mathcal{F}_{m,n,\epsilon} - \mathcal{F}_{\epsilon}\| = \|(\hat{p} - p)\mathcal{I} + (1 - \hat{p})\mathcal{G}_{m,n,\epsilon} - (1 - p)\mathcal{G}_{\epsilon}\|$$

$$\leq |\hat{p} - p|(1 + \|\mathcal{G}_{\epsilon}\|) + \|\mathcal{G}_{m,n,\epsilon} - \mathcal{G}_{\epsilon}\|.$$

The first summand above is almost surely of order $\mathcal{O}(\sqrt{\log\log k/k})$ in view of (A1) and the fact that $\|\mathcal{G}_{\epsilon}\| < \infty$. We have that $\|\mathcal{G}_{m,n,\epsilon} - \mathcal{G}_{\epsilon}\| \leq \|\hat{f} - f\|_{[0,\tau-\epsilon]} \|\mathcal{A} \circ \mathcal{I}_{\epsilon}\| + \|\mathcal{G}_{m,n,\epsilon} - \hat{f}(\mathcal{A} \circ \mathcal{I}_{\epsilon})\|$. Using integration by parts, for t in $[\gamma_{m,n},\infty)$, we may write that

$$|\mathcal{G}_{m,n,\epsilon}(u)(t) - \hat{f}(t) \left(\mathcal{A} \circ \mathcal{I}_{\epsilon} \right) \left(u \right) (t)|$$

$$\leq \hat{f}(t) \left\{ \left| \int_{\gamma_{m,n} < y \leq t} y \left(\int_{y \leq z \leq \tau - \epsilon} \frac{u(z)}{z^2} dz \right) d \left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)} \right] \right| + \\ \left| \int_{0 < y \leq \gamma_{m,n}} y \left(\int_{y \leq z \leq \tau - \epsilon} \frac{u(z)}{z^2} dz \right) d \left[\frac{1}{f(y)} \right] \right| \right\}$$

$$\leq \hat{f}(t) \left\{ \left| \left[\left[\frac{1}{f(y)} - \frac{1}{\hat{f}(y)} \right] y \int_{y \leq z \leq \tau - \epsilon} \frac{u(z)}{z^2} dz \right]_{y = \gamma_{m,n}}^{t} \right| + \\ \left| \int_{\gamma_{m,n} < y \leq t} \left[\frac{1}{f(y)} - \frac{1}{\hat{f}(y)} \right] \int_{y \leq z} \frac{u(z)}{z^2} dz dy \right| \right\} + \\ \hat{f}(t) \left\{ \left| \int_{\gamma_{m,n} < y \leq t} \left[\frac{1}{f(y)} - \frac{1}{\hat{f}(y)} \right] \frac{u(y)}{y} dy \right| + \\ \left| \int_{0 < y \leq \gamma_{m,n}} y \left(\int_{y \leq z \leq \tau - \epsilon} \frac{u(z)}{z^2} dz \right) d \left[\frac{1}{f(y)} \right] \right| \right\}$$

$$\leq \|u\|_{[0,\tau - \epsilon]} \left\{ 2 \left\| 1 - \frac{\hat{f}}{f} \right\|_{[\gamma_{m,n},\infty)} \left[1 + \int_{\gamma_{m,n}}^{t} \frac{dy}{y} \right] + \\ \frac{\hat{f}(\gamma_{m,n}) \left(f(0) - f(\gamma_{m,n}) \right)}{f(0) f(\gamma_{m,n})} \right\}$$

$$\leq \|u\|_{[0,\tau - \epsilon]} \left\{ \frac{2\|\hat{f} - f\|_{[\gamma_{m,n},\infty)}}{f(\tau - \epsilon)} \left[1 + (\log(\tau - \epsilon) - \log(\gamma_{m,n})) \right] + \\ \frac{\hat{f}(\gamma_{m,n}) F_U(\gamma_{m,n})}{f(\gamma_{m,n})} \right\} .$$

Similarly, we may show that the inequality

$$|\mathcal{G}_{m,n,\epsilon}(u)(t) - \hat{f}(t) \left(\mathcal{A} \circ \mathcal{I}_{\epsilon} \right) (u)(t)| \leq \frac{\|u\|_{[0,\tau-\epsilon]} \hat{f}(\gamma_{m,n}) F_{U}(\gamma_{m,n})}{f(\gamma_{m,n})}$$

holds for t in $[0, \gamma_{m,n})$. In view of part b) of Lemma 1 and the fact that $\|\mathcal{A}\| < \infty$, we conclude that both $\|\mathcal{G}_{m,n,\epsilon} - \mathcal{G}_{\epsilon}\|$ and $\|\mathcal{F}_{m,n,\epsilon} - \mathcal{F}_{\epsilon}\|$ are almost surely of order

$$\mathcal{O}\left(\frac{\log(1/\gamma_{m,n})}{\gamma_{m,n}f(\tau-\epsilon)}\sqrt{\frac{\log\log k}{k}} + \frac{F_U(\gamma_{m,n})}{\gamma_{m,n}f(\gamma_{m,n})}\sqrt{\frac{\log\log k}{k}} + F_U(\gamma_{m,n})\right).$$

Define the operator $\mathcal{M}_{\epsilon}: D[0,\tau] \to D[0,\tau]$ as

$$\mathcal{M}_{\epsilon}(u)(t) = (1 - p)f(t) \int_{0 < y \le t} y \left(\int_{\tau - \epsilon < z \le \tau} \frac{u(z)}{z^2} dz \right) d\left[\frac{1}{f(y)} \right]$$

and observe that $\mathcal{F}_{\epsilon} = \mathcal{F} - \mathcal{M}_{\epsilon} = \mathcal{F} \circ (\mathcal{I} - \mathcal{F}^{-1} \circ \mathcal{M}_{\epsilon})$, where \mathcal{F}^{-1} exists and has norm $\|\mathcal{F}^{-1}\| \leq 2/p^2$ by Lemma 3 of [5]. It is possible to show that

$$\|\mathcal{M}_{\epsilon}\| \le (1-p)\left(\frac{\epsilon}{\tau - \epsilon}\right)$$

and thus, provided $\epsilon < \tau p^2/(p^2 - 2p + 2)$, $\|\mathcal{F}^{-1} \circ \mathcal{M}_{\epsilon}\| \le \|\mathcal{F}^{-1}\| \|\mathcal{M}_{\epsilon}\| < 1$ and $\mathcal{I} - \mathcal{F}^{-1} \circ \mathcal{M}_{\epsilon}$ is invertible. In such case, \mathcal{F}_{ϵ} is invertible with inverse $\mathcal{F}_{\epsilon}^{-1} = (\mathcal{I} - \mathcal{F}^{-1} \circ \mathcal{M}_{\epsilon})^{-1} \circ \mathcal{F}^{-1}$ of norm

$$\|\mathcal{F}_{\epsilon}^{-1}\| \le \frac{\|\mathcal{F}^{-1}\|}{1 - \|\mathcal{F}^{-1} \circ \mathcal{M}_{\epsilon}\|} \le \frac{2\tau - 2\epsilon}{p^2\tau - (p^2 - 2p + 2)\epsilon},$$

the latter bound decreasing monotonically to $2/p^2$ as ϵ goes to zero. Similarly, one can show that, provided $\epsilon < \tau \hat{p}^2/(\hat{p}^2 - 2\hat{p} + 2)$, $\mathcal{F}_{m,n,\epsilon}$ is invertible with inverse $\mathcal{F}_{m,n,\epsilon}^{-1}$ of uniformly bounded norm.

The rate of convergence found above is preserved for the inverse operators since, for some C > 0, we have that

$$\left\|\mathcal{F}_{m,n,\epsilon}^{-1} - \mathcal{F}_{\epsilon}^{-1}\right\| = \left\|\mathcal{F}_{m,n,\epsilon}^{-1} \circ (\mathcal{F}_{\epsilon} - \mathcal{F}_{m,n,\epsilon}) \circ \mathcal{F}_{\epsilon}^{-1}\right\| \le C \left\|\mathcal{F}_{m,n,\epsilon} - \mathcal{F}_{\epsilon}\right\|$$

in view of the boundedness of $\mathcal{F}_{m,n,\epsilon}^{-1}$ and the fact that the image of a continuous function under $\mathcal{F}_{\epsilon}^{-1}$ is a continuous function.

Proof of Lemma 4. Let $s \leq \tau - \epsilon$. Consider the sequence of Bernstein polynomials $P_{d_{m,n}}$ of order $d_{m,n}$ approximating $B_{Y,n}$, that is,

$$P_{d_{m,n}}(x) = \sum_{j=0}^{d_{m,n}} B_{Y,n} \left(\frac{j}{d_{m,n}} \right) {d_{m,n} \choose j} x^j (1-x)^{d_{m,n}-j} .$$

imsart-aos ver. 2010/09/07 file: asgharianetal2012aos_supp.tex date: December 3, 2011

We may first write, for $s \geq \gamma_{m,n}$,

$$\int_{0}^{s} B_{Y,n}(F(y))d\left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)}\right]
= -\int_{0}^{\gamma_{m,n}} B_{Y,n}(F(y))d\left[\frac{1}{f(y)}\right] + \int_{\gamma_{m,n}}^{s} B_{Y,n}(F(y))d\left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)}\right].$$

By the MVT, setting $L = ||g||_{[0,\tau]} + ||f||_{[0,\tau]} < \infty$, we have that

$$\left| \hat{f}(s) \int_{0}^{\gamma_{m,n}} B_{Y,n}(F(y)) d\left[\frac{1}{f(y)}\right] \right|$$

$$\leq \hat{f}(s) \sup_{0 \leq y \leq \gamma_{m,n}} |B_{Y,n}(F(y))| \left[\frac{f(0) - f(\gamma_{m,n})}{f(0)f(\gamma_{m,n})}\right]$$

$$\leq \hat{f}(\gamma_{m,n}) \sup_{0 \leq u \leq L\gamma_{m,n}} |B_{Y,n}(u)| F_{U}(\gamma_{m,n}) / f(\gamma_{m,n})$$

$$= \mathcal{O}\left(\frac{\hat{f}(\gamma_{m,n}) F_{U}(\gamma_{m,n})}{f(\gamma_{m,n})} \sqrt{\gamma_{m,n} \log(1/\gamma_{m,n})}\right) a.s.$$

Defining $\Delta_{m,n} = (B_{Y,n} - P_{d_{m,n}}) \circ F$, we may write

$$\int_{\gamma_{m,n}}^{s} B_{Y,n}(F(y)) d \left[1/\hat{f}(y) - 1/f(y) \right]$$

as

$$\int_{\gamma_{m,n}}^{s} \Delta_{m,n}(y) d \left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)} \right] + \int_{\gamma_{m,n}}^{s} P_{d_{m,n}}(F(y)) d \left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)} \right].$$

We may easily show that

$$\left| \hat{f}(s) \int_{\gamma_{m,n}}^{s} \Delta_{m,n}(y) d \left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)} \right] \right| \leq 2 \|\Delta_{m,n}\|_{\infty} \left[1 + \frac{\|\hat{f} - f\|_{[\gamma_{m,n},\infty)}}{f(\tau - \epsilon)} \right].$$

In view of Theorem 1.6.1 of [3], denoting by $\Omega(\phi, \delta)$ the modulus of continuity of ϕ with respect to bandwidth $\delta > 0$, we have that

$$\|\Delta_{m,n}\|_{\infty} \le \frac{5}{4} \cdot \Omega\left(B_{Y,n}, \frac{1}{\sqrt{d_{m,n}}}\right) = \mathcal{O}\left(\sqrt{\frac{\log d_{m,n}}{\sqrt{d_{m,n}}}}\right) \ a.s.$$

We may then use integration by parts to show that

$$\left| \hat{f}(s) \int_{\gamma_{m,n}}^{s} P_{d_{m,n}}(F(y)) d \left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)} \right] \right|$$

imsart-aos ver. 2010/09/07 file: asgharianetal2012aos_supp.tex date: December 3, 2011

$$\leq \frac{\|\hat{f} - f\|_{[\gamma_{m,n},\infty)}}{f(\tau - \epsilon)} \left\{ 2 \sup_{\gamma_{m,n} \leq y \leq \tau - \epsilon} |P_{d_{m,n}}(F(y))| + \int_{\gamma_{m,n}}^{\tau - \epsilon} |P'_{d_{m,n}}(F(y))| |f(y)dy \right\} \\
\leq \frac{\|\hat{f} - f\|_{[\gamma_{m,n},\infty)}}{f(\tau - \epsilon)} \left\{ 2 \left[\|\Delta_{m,n}\|_{\infty} + \|B_{Y,n}\|_{[0,1]} \right] + \int_{\gamma_{m,n}}^{\tau - \epsilon} |P'_{d_{m,n}}(F(y))| |f(y)dy \right\}$$

Inspecting the proof of Theorem 2.1 of [2], we have that

$$\left| P'_{d_{m,n}}(F(t)) \right| \leq 2 \cdot \Omega \left(B_{Y,n}, \sqrt{\frac{F(t)(1-F(t))}{d_{m,n}}} \right) \sqrt{\frac{d_{m,n}}{F(t)(1-F(t))}} ,$$

from which some algebraic manipulations yield that

$$\int_{\gamma_{m,n}}^{\tau-\epsilon} \left| P'_{d_{m,n}}(F(y)) \right| f(y) dy$$

$$= \mathcal{O}\left(d_{m,n}^{1/4} \left[\sqrt{\log d_{m,n}} + \sqrt{\log (1/\gamma_{m,n})} + \sqrt{\log (1/\epsilon)} \right] \right) \quad a.s.$$

Some calculations indicate that the choice $d_{m,n}=k/\sqrt{\log\log k}$ leads to the upper bound for $\hat{f}(s)\left|\int_{\gamma_{m,n}}^s B_{Y,n}(F(y))d\left[1/\hat{f}(y)-1/f(y)\right]\right|$ of least order, provided we have that $d_{m,n}\gamma_{m,n}\to\infty$: this optimal order is

$$\mathcal{O}\left(k^{-\frac{1}{4}}\log k/f(\tau-\epsilon)\right)$$
.

Proof of Lemma 5. Define the following terms:

$$\mathcal{J}_{1}(s) = \sqrt{\hat{p}} |W_{X,m}(s) - B_{X,m}(G(s))| , \quad \mathcal{J}_{2}(s) = \left| \sqrt{\hat{p}} - \sqrt{p} \right| |B_{X,m}(G(s))| ,
\mathcal{J}_{3}(s) = \sqrt{1 - \hat{p}} \hat{f}(s) \int_{0 < y \le s} |W_{Y,n}(y) - B_{Y,n}(F(y))| d \left[\frac{1}{\hat{f}(y)} \right] ,
\mathcal{J}_{4}(s) = \left| \left(\sqrt{1 - \hat{p}} - \sqrt{1 - p} \right) \hat{f}(s) \int_{0}^{s} B_{Y,n}(F(y)) d \left[\frac{1}{\hat{f}(y)} \right] \right| ,$$

$$\mathcal{J}_5(s) = \sqrt{1-p} \left| \hat{f}(s) \int_0^s B_{Y,n}(F(y)) d\left[\frac{1}{\hat{f}(y)} - \frac{1}{f(y)} \right] \right|$$

and
$$\mathcal{J}_6(s) = \sqrt{1-p} \left| \left(\hat{f}(s) - f(s) \right) \int_0^s B_{Y,n}(F(y)) d\left[\frac{1}{f(y)} \right] \right|.$$

Define further $\mathcal{I}_r = \|\mathcal{J}_r\|_{[0,\tau-\epsilon]}$ for r = 1,...,6, and note that

$$\|W_{m,n} - W_{m,n}^0\|_{[0,\tau-\epsilon]} \le \sum_{r=1}^6 \mathcal{I}_r$$
.

From KMT, we have that both \mathcal{I}_1 and \mathcal{I}_3 are $\mathcal{O}\left(\log k/\sqrt{k}\right)$ almost surely. Using Lemma 1.4.1 of [1], (A2) and Lemma 2, we have that both \mathcal{I}_2 and \mathcal{I}_4 are $\mathcal{O}\left(\sqrt{\log k \log \log k/k}\right)$ almost surely. In view of Lemma 4, we have that

$$\mathcal{I}_5 = \mathcal{O}\left(\frac{k^{-\frac{1}{4}}\sqrt{\log k}(\log\log k)^{\frac{1}{4}}}{f(\tau - \epsilon)}\right) \quad a.s.$$

Further, we find that $\mathcal{I}_6 \leq \|\hat{f} - f\|_{[0,\infty)} \sup_{0 \leq t \leq 1} |\mathcal{W}_{Y,n}(t)| / f(\tau - \epsilon)$, which implies that

$$\mathcal{I}_6 = \mathcal{O}\left(\left[\gamma_{m,n}^{-1}\sqrt{\frac{\log\log k}{k}} + F_U(\gamma_{m,n})\right]\frac{\sqrt{\log k}}{f(\tau - \epsilon)}\right) = \mathcal{O}\left(\frac{k^{-\frac{\alpha - 1}{2\alpha}}\sqrt{\log k}}{f(\tau - \epsilon)}\right)$$

almost surely. It is clear then, in view of the above, that \mathcal{I}_6 dominates for $\alpha \in (1,2)$, while \mathcal{I}_5 dominates for $\alpha \in [2,\infty)$.

Proof of Lemma 6. The result is a consequence of Lemma 1.4.1 of [1], Lemma 2 and (3.2).

Proof of Lemma 7. By Theorem 1, there exists a sequence of Gaussian processes $U_{m,n}^0$ such that, as $k \to \infty$,

$$\sup_{0 \le s \le \tau - \eta} \left| U_{m,n}(s) - U_{m,n}^0(s) \right| = \mathcal{O}\left(\epsilon_{m,n} (\log k)^{\frac{3}{2}} \sqrt{\log \log k}\right) \quad a.s$$

For any $s \in [0, \tau - \eta]$, we may use integration by parts to show that

$$\tilde{g}_{m,n}(s) - g_{m,n}(s) = \frac{1}{h_{m,n}} \int_0^\infty K\left(\frac{s-x}{h_{m,n}}\right) d\left[\hat{G}(x) - G(x)\right]$$

imsart-aos ver. 2010/09/07 file: asgharianetal2012aos_supp.tex date: December 3, 2011

(S.1)
$$= B_{m,n}(s) + \mathcal{O}\left(\frac{\epsilon_{m,n}(\log k)^{\frac{3}{2}}\sqrt{\log\log k}}{\sqrt{k}h_{m,n}}\right) \quad a.s. ,$$

where $B_{m,n}(s) = (\sqrt{k}h_{m,n})^{-1} \int_{-1}^{1} U_{m,n}^{0}(s - uh_{m,n}) dK(u)$. We notice that, for large m and n,

$$\sup_{0 \le s \le \tau - \eta} \sup_{-1 \le u \le 1} \left| U_{m,n}^0(s - uh_{m,n}) - U_{m,n}^0(s) \right|$$

$$\le \sup_{0 \le x \le \tau - \eta} \sup_{0 \le y \le h_{m,n}} \left| U_{m,n}^0(x + y) - U_{m,n}^0(x) \right| ,$$

and thus, using Theorem 2 and (K1), we obtain that (S.2)

$$\lim\sup_{m,n\to\infty} \sup_{0\le s\le \tau-\eta} |B_{m,n}(s)| \le \lim\sup_{m,n\to\infty} \left\{ \frac{\sqrt{h_{m,n}\log(1/h_{m,n})}}{\sqrt{k}h_{m,n}} V_K \right\} = 0 \quad a.s.$$

The result follows from (S.1), (S.2) and (A6).

References.

- [1] M. Csörgö and P. Révész. Strong Approximations in Probability and Statistics. Academic Press, 1981.
- [2] Z. Ditzian. Derivatives of Bernstein polynomials and smoothness. *Proceedings of the American Mathematical Society*, 93(1):25–31, 1985.
- [3] G.G. Lorentz. Bernstein polynomials. University of Toronto Press, Toronto, 1953.
- [4] P. Massart. The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. *The Annals of Probability*, pages 1269–1283, 1990.
- [5] Y. Vardi and C.H. Zhang. Large sample study of empirical distributions in a random-multiplicative censoring model. *The Annals of Statistics*, pages 1022–1039, 1992.