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Supplement to “Large-sample study of the kernel density estima-
tors under multiplicative censoring” by M. Asgharian, M. Carone
and V. Fakoor.

Additional technical details: proof of lemmas.

Proof of Lemma 1. a) By the definition of Up,, and (2.4), we have that
||é — Gl = HUm,n”w/\/E < ||~7:r;,1n”HWm,n”00/\/% Using (2.3), we may
write that | Winlleo/VE < |Gim — Glloo + [|F — F|loo, from which the re-
sult follows using the law of the iterated logarithm for empirical distribution
functions and the uniform boundedness of || F.} |-

b) We may write that
1 = Fliamnioe) < I = Flliammmmn) L0 mmn) @mn) + 1 = Fll 00
and use that

1f = Flammmn) < sup
am,n§t<’7m,n

‘Z;Z<V id[é(@-cuzﬂ|

lM EQQ@—G@]

< [Fu(ymm) = Folamm)] /1o + 1 = Fllp o0 -

_l’_

In the last inequality above, we use that G vanishes below Ym.n- Because
we may also show that sup, <. o 1f(s) — f(s)] <2||G — GH[,ym’moo)/'ym’n
using integration by parts, the conclusion follows from a).

Proof of Lemma 2. Choose € € (0,1). By Lemma 1.2.1. of [1], there exists a
constant C' = C'(e) > 0 such that

pr( sup [Wa(a)] > M)

0<z<1
0<z<10<y<1
3logn
2C — .
exp( 2+6>

The result follows from the Borel-Cantelli lemma. Alternatively, the reflec-
tion principle may be used along with results from [4].

< pr<sup sup [Wa(z +y) = Wa(y)| = \/3logn>

IN
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Proof of Lemma 3. We first note that

||~Fm,n,e - fEH ||(]§ - p)I+ (1 _ﬁ)gm,n,e - (1 - p)geH

< |I§ —p| (1 + ngH) + Hgm,n,e - QEH .

The first summand above is almost surely of order O(\/m) in view
of (A1) and the fact that ||G.|| < oo. We have that ||Gmne — Gell < |If —
fllor—allA o Ze|l + (|G n,e — f(A oZ.)||. Using integration by parts, for ¢ in
[Ym,n,00), we may write that

(Grnne (W) ()= f(£) (A 0 L) (u) ()]

e

2
f L_ 1 u(z) 3 ¢
{) [[f(y) f(y)] y/ySZSTE 2 ! ]y=’¥m,n
] e,
/Ym,n<y<t [f(y) f(y)] /y<z 22 d dy
o

11 |uly),
/m [f(y) f@)] y
< u[o,”]{z

ulz) ) {1}
/O<y<'ym,n Y </y<z<7—e Z2 dz ) d f(y) ‘}
2Hf - f”[’ym n,00)

v
< HUH[O,T*G] { Flr— 65 [1+ (log(T —€) — 10g<7m,n))] +

IN
~
—~
=

_l’_

1

f‘ i

[Ym,n,00)

fA(’Ym,n) (f(O) - f(')/m,n))
F(0)f(ym.n)

f(’Ym,n)FU(Vm,n)
f(Ymon) .
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Similarly, we may show that the inequality

i o u HUH[O,T—e}f(’Ym,n)FU(’Ym,n)
G c()(8) — (1) (Ao T) (w)(1)] < o)

holds for ¢ in [0, ¥y,n). In view of part b) of Lemma 1 and the fact that
|| Al < oo, we conclude that both ||Gy, n.e — Gell and || Fppn.e — Fel| are almost
surely of order

log(1/vmn) [loglogk Fu(Ymn) [loglogk
O J + ’ + Fu(Ym,n .
<'7m,nf(7' - 6) k 'Ym,nf('ym,n) k U(7 )

Define the operator M. : D[0, 7] — DI0, 7] as

and observe that F. = F — M. = Fo (I— Flo Mg), where F~1 exists
and has norm ||F~!|| < 2/p? by Lemma 3 of [5]. It is possible to show that

M < (1-p) (T;)

and thus, provided € < 7p?/(p? —2p +2), |F Lo M| < |F LMl < 1
and Z — F~ ! o M, is invertible. In such case, F. is invertible with inverse
Fl=Z-F1oM)toF ! of norm

1 < |F - 21 — 2¢
Tl [F oM T pPr— (p* —2p+2)e

the latter bound decreasing monotonically to 2/p? as € goes to zero. Simi-
larly, one can show that, provided € < 75%/(p? — 2p+2), Frnn.e is invertible
with inverse fm n,e Of uniformly bounded norm.

The rate of convergence found above is preserved for the inverse operators

since, for some C' > 0, we have that

Jr —ane O]: 1H<CHF’WNE ‘7:€H

IFe

1
H mne_ mne

in view of the boundedness of .7-";L n.e and the fact that the image of a con-

tinuous function under F, ! is a continuous function.

Proof of Lemma 4. Let s < 7 — €. Consider the sequence of Bernstein
polynomials Py, , of order d,, , approximating By, that is,

m,n

dmn
d . .
Py (2 E Byn () ( @,n>$](1 — )ty
mn ]
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We may first write, for s > vy, p,

s 1 1
/0 Byn(F(y))d [f(y) - f(y)]

Ym,n 1 s 1 1
- By (F d+/ Byn(F(y)d | — — ——
[ Bt | 1] " Brarw) [ R
By the MVT, setting L = ||glljo,-] + [|flljo,] < o0, we have that

—_

o) [ Brnronal ;||

< f(s) sup \BYn(F(?/)”[

0<y<vm,n

FO)f (m.n)

< f(vm,n)0< Sup | By (W) Fu (Ym,n) / f (Ymon)
SUSLYm,n

F ymn) Fu (Ym,n)
= O( g f(%fn; \/fymmlog(l/’ym,n)) a.s.

Defining Ay = (By;n — Pa,,.,,) © F', we may write

[ mratranalyiw 115w

m,n

as

s 1 1
/7m,n Apn(y)d Lg(y) "

We may easily show that

~ ) s L B L ”f - f“[ym,n,oo)
'f( ) Amn(y)d [f(y) f(y) f(r—e) ] '

In view of Theorem 1.6.1 of [3], denoting by (¢, ) the modulus of continuity
of ¢ with respect to bandwidth § > 0, we have that

5 1 log dp.n,
Amn ooS*(2 Bn,i :O - .S.
Bl < ( . W) ( m)

We may then use integration by parts to show that

. s 1 1
f(s) Lm,n Pty (F(y))d [f(y) - f(y)]
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Ym,n




sup Py, . (F(y))l
’Ym,nSyST_E

||f_f|['ym,n,oo){2
- f(r—¢)

* /m P, (F))| f(y)dy}

oo 1 [ Byl

1/ = Sl o) {2 [12m,0

D o)

" /m Py, (F())] f(y)dy}

Inspecting the proof of Theorem 2.1 of [2], we have that

from which some algebraic manipulations yield that

/’T—E
Ym,n

Py, .(F@)| Fw)dy

=0 <d,17{j4n [ log dpmn + 1/10g (1/vmn) + log(l/e)]> a.s.

Some calculations indicate that the choice dy,,, = k/+/loglog k leads to the

upper bound for f(s)[ 3 Byn(F(y)d [1/7(y) ~1/1()]
provided we have that dy, ,,Vm,n — 0o: this optimal order is

of least order,

O (k—% log k/f(r — e)) .

Proof of Lemma 5. Define the following terms:

T1(3) = VB IWxm(s) = BxanlG(s))| + Ba(s) = |V = Vb | IBxm(G(3)] -
Fils) = V1= 01 (s) |

\Wy,nw)—By,n(F(y)nd[ ! ] ,

0<y<s f(y)
Tis) = ‘(ﬂ—ﬁ—ﬂ—p) i) [ SBMF(y))d[} ” ,
o fy)
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Ts(s) =/1—-p|f

s 1 1

By ,(F(y)d | — — —

s>/ vn(F(1) [f(y) f(y)”
1
and Js(s) = /T—p ’ )/ Bya(F(y))d [” .
0

Define further Z, = || 7;[[jg ,_q for r = 1,...,6, and note that
6

<>'T,

r=1

[Winn

From KMT, we have that both Z; and Z3 are O (log k/ \/E) almost surely.
Using Lemma 1.4.1 of [1], (A2) and Lemma 2, we have that both Zy and Zy
are O <\/ log klog log k/ k:) almost surely. In view of Lemma 4, we have that

7,-0 7%\/log (loglogk)i s,
f(r—¢)

Further, we find that Zs < ||f — fll0,00) SUPo<t<1 IWyn(t)| / f(T — €), which
implies that

zﬁzo(

almost surely. It is clear then, in view of the above, that Zg dominates for
€ (1,2), while Z5 dominates for a € [2,00).

_ loglog k
PYm,ln A + Fy ('Ym,n)]

Viogk \ _ (% viogk
fa=a) "\ fr-9

Proof of Lemma 6. The result is a consequence of Lemma 1.4.1 of [1], Lemma
2 and (3.2).

Proof of Lemma 7. By Theorem 1, there exists a sequence of Gaussian pro-
cesses U%n such that, as k — oo,

sup  |Unmn(s = emnlogk% loglog k a.s.
| ()] =0 )3 Vloglog )

0<s<7—n

For any s € [0,7 — 7], we may use integration by parts to show that

Gnn(s) = gmn(s) = —— [ & (222} a6 - G)
e Gr)al |

hm,n hm,n
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(Sl) = Bm,n(S) + O €m,n(10g k)Q \/w as

Vkh o

where B, n(s) = (Vkhpmn) ™" f_ll U (s — twhmpn)dK (u). We notice that,

for large m and n,

qup  sup [0S, (5~ whim) — U2, (5)
0<s<7—n —1<u<l

< sup  sup  |Up (¢ +y) = Up,(@)]
0<z<7—n 0<y<hm,n

and thus, using Theorem 2 and (K1), we obtain that

(S.2)
hmn log(1/h
limsup sup |Bpyn(s)| < limsup \/ m,n log(1/ m’n)VK =0 a.s.
m,n—00 0<s<1—n m,n—o0 \/Ehm,n

The result follows from (S.1), (S.2) and (A6).
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