light-matter theory at the nanoscale
Pushing the boundaries of fast electron spectroscopy, energy-monochromated and aberration-corrected scanning transmission electron microscopes have opened the far infrared to nanometer scale spatial mapping. Together with experiment, we leverage these advances to resolve open fundamental questions in nano-spectroscopy, perform entirely new materials characterization techniques at the single-particle level, and discover advanced materials endowed with unprecedented functionalities.
Coupling between light and matter is extraordinarily weak. Optical resonator cavities provide an opportunity to coax repeated light-matter interactions, thereby enhancing coupling far beyond that of free space. In such settings, coupling can be so strong that it is no longer possible to disentangle the original optical and material degrees of freedom, resulting in non-equilibrium quantum optical states endowed with properties beyond those of their components.
Measurement of the two distinct components—scattering and absorption—of a single particle’s optical extinction provides fundamentally important and complementary information on how that object processes light: either scattering it back to the far-field or converting it into internal excitation.