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ABSTRACT

In a recent work, a sensitivity analysismethodology was described that allows for a visual display of forecast

sensitivity, with respect to model parameters, across a gridded forecast field. In that approach, sensitivity was

assessed with respect to model parameters that are continuous in nature. Here, the analogous methodology is

developed for situations involving noncontinuous (discrete or categorical) model parameters. The method is

variance based, and the variances are estimated via a random-effects model based on 2k2p fractional factorial

designs and Graeco-Latin square designs. The development is guided by its application to model parameters

in the stochastic kinetic energy backscatter scheme (SKEBS), which control perturbations at unresolved,

subgrid scales. In addition to the SKEBS parameters, the effect of daily variability and replication (both,

discrete factors) are also examined. The forecasts examined are for precipitation, temperature, and wind

speed. In this particular application, it is found that the model parameters have a much weaker effect on the

forecasts as compared to the effect of daily variability and replication, and that sensitivities, weak or strong,

often have a distinctive spatial structure that reflects underlying topography and/or weather patterns. These

findings caution against fine-tuning methods that disregard 1) sources of variability other than those due to

model parameters, and 2) spatial structure in the forecasts.

1. Introduction

Sensitivity analysis (SA) generally refers to methods

for assessing how inputs of a process affect its output,

with the terms ‘‘inputs,’’ ‘‘process,’’ and ‘‘output’’ in-

terpreted in an abstract sense. For example, Lucas et al.

(2013) consider climate models and perform SA to ex-

plore the effect of model parameters on the probabil-

ity of model crashes. The well-known adjoint method

(Errico 1997) can also be viewed as a SA method, al-

though the main goal there is fine-tuning or calibration

of model parameters (Ancell and Hakim 2007; Safta

et al. 2015; Hacker et al. 2011; Laine et al. 2012; Ollinaho

et al. 2014). Sometimes SA is performed not necessarily

for the purpose of calibration but to simply shed light on

the underlying physical processes (Roebber 1989;Roebber

and Bosart 1998; Robock et al. 2003; Marzban 2013;

Marzban et al. 2014).

The subtle but important differences between SA,

fine-tuning, and calibration are discussed by Marzban

et al. (2018a), where an (object-oriented) SA method is

developed to determine how model parameters af-

fect various features of spatially coherent ‘‘objects’’ in

forecast fields. The SA method developed here belongs

to that latter class; that is, wherein the main aim is not

fine-tuning or data assimilation [as in Ancell and Hakim

(2007), Järvinen et al. (2012), and Laine et al. (2012)],

but rather to obtain some sense of sensitivity for the

purpose of understanding how model parameters affect

the forecasts (Aires et al. 2014; Fasso 2006; Marzban

et al. 2019, 2018a, 2014; Oakley and O’Hagan 2004;

Saltelli et al. 2010; Sobol’ 1993; Zhao and Tiede 2011).

Of course, one may use that understanding to improve

forecasts, but that is only a secondary goal.Correspondingauthor:CarenMarzban,marzban@stat.washington.edu
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This paper is a member of a sequence of papers

all dealing with SA of gridded forecasts in numerical

weather prediction models. In the first of the sequel

(Marzban et al. 2018a), an object-oriented SA method

was developed to assess the effect of 11 models param-

eters in COAMPS (Hodur 1997) on the characteristics

of spatially coherent ‘‘objects’’ in the forecast. In a

follow-up paper (Marzban et al. 2018b), the effect of the

same model parameters on the spatial structure of

forecasts was examined. Common to both of those

works was the sampling scheme used for selecting

the values of the model parameters; given that the

model parameters were all continuous quantities, Latin

Hypercube Sampling (LHS) was employed (further

described in the method section).

In extending the developed methodology to incorpo-

rate noncontinuous (e.g., discrete or categorical) model

parameters, Marzban et al. (2019) examine the effect

of two model parameters in stochastic kinetic energy

backscatter schemes (SKEBS) (Leith 1990; Mason and

Thomson 1992; Berner et al. 2008, 2011; Shutts 2005)

on forecasts made by the Weather Research and

Forecasting (WRF) Model (Skamarock and Klemp

2008). In that specific application, although the two

model parameters (amplitude of perturbations to po-

tential temperature and nondivergent wind) are con-

tinuous, the SA included two additional factors that are

discrete—they measure how the sensitivities vary across

1) days, and 2) replication of SKEBS. The existence of

discrete factors in the SA precludes LHS, and so the

sampling of the parameter space was done according to

the Graeco-Latin square design (GLSD), further ex-

plained in the method section. That analysis was object

oriented because the main focus was on the character-

istics of spatially coherent structures in the forecasts.

The object features examined included the number, size,

and intensity of upper-air jet streaks, low-level jets,

precipitation areas, and frontal boundaries (i.e., baro-

clinic zones). A complex pattern of effects was found,

but an unambiguous conclusion was that the object

features are much less sensitive to perturbations of the

model parameters in comparison to daily variability and

variability due to replication.

As such, what remains to be done is the development

of a methodology for assessing the impact of noncon-

tinuous model parameters on the spatial structure of

forecasts (in SKEBS/WRF). Given the focus on spatial

structure, the approach taken here is similar to that of

Marzban et al. (2018b) wherein ‘‘maps’’ of sensitivity are

generated to visually convey the spatial pattern of sen-

sitivity. However, the extension of the SKEBS analysis

to more than two model parameters, and parameters

that include a mix of continuous and noncontinuous

quantities, requires an alternative design that in some

ways is even more ‘‘efficient’’ than GLSD. The design is

generally referred to as a fractional factorial design

(FFD), described in the method section. Here, suffice it

to say that FFD is more efficient thanGLSDbecause the

necessary number of runs for estimating the sensitivities

is smaller in FFD (Montgomery 2009).

Themain goals of this paper are 1) to develop a spatial

SA method wherein the factors of interest are not con-

tinuous, 2) illustrate the relevance (to SA) of some well-

established results from the field of experimental design,

and 3) demonstrate the methodology through a specific

example.

The outline of the paper is as follows: Given that the

aforementioned SKEBS analysis utilized a GLSD, here

the analysis also begins with a GLSD; but by contrast,

focus is on spatial structure of the forecast field, not

features of objects therein. The first forecast field ana-

lyzed is that of precipitation, again because that was the

field examined in the prior work. These results are

presented as a means of connecting the prior work to the

main focus of the work reported here, which is to

employ a FFD to assess the sensitivity of precipitation,

wind speed, and temperature, with respect to daily

variability, variability due to replication, and that due to

eight model parameters in SKEBS/WRF. Although,

forecasts at 3-h intervals (between 0 and 120 h) are ex-

amined using the developed methodology, only the re-

sults pertaining to 3- and 24-h forecasts are reported

here. Although several conclusions are drawn regarding

specific model parameters and forecast fields, the broad

conclusions of earlier studies (e.g., COAMPS with 11

model parameters, or SKEBS with two model parame-

ters) are found here again, that is, 1) the model param-

eters have a very small effect relative to effects of daily

variability and replication, and 2) even with small ef-

fects, many of the model parameters have a distinct

spatial structure of sensitivities. Most of the observed

spatial structures are not readily explainable (e.g., in

terms of topography). It is hypothesized that the spatial

structure observed in the sensitivities is a consequence

of that in the underlying topography and/or weather

patterns on the specific days included in the data. All of

these findings and conjectures are consistent with (and

confirm) claims that fine-tuning model parameters must

account for variability across space, weather systems,

and other sources of variability.

2. Method

All of the previously mentioned SA methods are

variance based, which simply means that the effect of

a factor (e.g., model parameter) on the response
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(e.g., forecast of temperature) is measured by the per-

centage of the variability in the latter that can be

explained by the former. As such, variance plays an

important role. The methodology developed here is

comprised of relatively standard techniques in the field

of experimental design (Montgomery 2009). There are

two main ingredients: 1) the statistical model for esti-

mating sensitivities, and 2) the sampling scheme for

generating the data necessary for the estimation.

a. Random-effects models

For the purpose of estimating sensitivities linear

models are often sufficient because even if the under-

lying processes involve nonlinear relations, to first ap-

proximation they are linear. The model employed

here is

y
i,j,...k,l

5m1 day
i
1X1

j
1 � � � 1Xk

k
1 «

i,j,...k,l
, (1)

where the response yijk,. . .,l denotes a measurement of

some quantity of interest (e.g., amount of precipitation

at a grid point) on the ith day, for the jth, . . . , kth values

of the model parameters X1, X2, . . . , Xk, respectively,

and for the lth replication of the experiment. The term

m denotes the truemean of the response across all values

of the factors, and « accounts for any factor that has not

been included in the model—often called ‘‘error.’’ The

index l varies over the number of replications (i.e., the

number of times the entire experiment has been re-

peated). As described in the data section, the number of

days in this study is nine, and the entire experiment is

replicated six times.

It is worth mentioning that the model in Eq. (1) is

not a regression model mapping model parameters to

forecasts, because that would require the predictors (i.e.,

model parameters) to be continuous, or at least nu-

merical. The ‘‘predictors’’ appearing on the right-hand

side of the equation represent the mean of the response

y at different levels of the factors. In fact, the factors in

that equation are not even restricted to be numerical

quantities; they may be categorical (e.g., yes/maybe/no).

Models of this kind are often referred to simply as linear

models (or ANOVA-type models) (Montgomery 2009).

The more common use of linear models treats the

factors on the right-hand side of Eq. (1) as fixed (non-

random) quantities, with the exception of the error term,

which is assumed to be a zero-mean, normally distrib-

uted random variable with variance s2
«. Such models are

called fixed-effects models, and statistical tests exist for

testing whether any of the factors, or a given factor, has

an effect on the response y. In fixed-effects models, the

results of the tests apply to only the specific values/levels

of the factors appearing in the data. For example, if the

X1 factor is found to have a small p value, all one can

conclude is that there is evidence that the true mean of

the response varies across the specific values/levels

taken by that factor in the data. To generalize that

conclusion to all possible values/levels, one must treat

the factor as a random variable.

In a random-effects model, all of the terms on the

right-hand side of Eq. (1) (except m) are random vari-

ables. The simplest probability model for these random

variables is that they are zero-mean, normally distrib-

uted variables, with corresponding variances satisfying

s2
response 5s2

day 1s2
X1 1s2

X2 1 � � � 1s2
« , (2)

where the so-called variance components (on the right

side of the expression) are to be estimated from data. A

natural quantity in random-effects models is the intra-

class correlation (r), defined as the ratio of each vari-

ance component to the total variance s2
response; it conveys

the proportion of the total variability in the response

that can be explained by each factor in the model. This

intraclass correlation is the measure of sensitivity used

in the present work.

Two common estimators for the variance compo-

nents are the analysis-of-variance, and the restricted-

maximum-likelihood estimators (Montgomery 2009);

the former is the simpler of the two, and is accompanied

by analytic formulas for computing confidence intervals,

but it has the defect of sometimes leading to negative

values for the estimates of the variance components. For

this reason, the latter estimator is used. The confidence

intervals for r are computed via a randomization pro-

cedure whereby the observed forecast value at a given

grid point is randomly assigned to a different/random

setting of the factors; the collection of these r values

across all the grid points constitutes the empirical sam-

pling distribution of r (from which confidence intervals

and p values can be found).

In the present application, where spatial maps of

sensitivity are produced, it is difficult (or even impossi-

ble) to produce a map that simultaneously displays

sensitivity and its confidence interval. Instead, only the

95% lower confidence bound (LCB) for r is shown. A

focus on the LCB is appropriate because the question of

interest is How small can r be? Asked differently, What

is the smallest plausible r consistent with the observed

data? Switching from a point estimate to an interval

estimate renders the analysis statistically more rigorous;

for example, one can say with 95% confidence, that the

true value of r at a given grid point is larger than that

observed. However, for the purpose of establishing

the existence of spatial structure, one may use either

estimate, because the relationship between the point
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estimate and the LCB is monotonic. Consequently, the

existence of spatial structure in a map of one estimate

implies a spatial structure in the map of the other esti-

mate. For this reason, both estimates are used here.

It is worth mentioning that the LCB for r cannot be

used for testing the hypothesis that r 5 0, because 0 ,
LCB, 1 (strictly), by construction. For the same reason,

the upper confidence bound for r cannot be used for

testing the hypothesis r 5 1. Given that the LCB is not

used for hypothesis testing, corrections for multiple

hypothesis testing (at multiple grid points) are not nec-

essary; it is the spatial structure of the LCB that is of

interest. This technical point is further addressed in the

discussion section.

The formula in Eq. (2) is standard in statistical texts on

experimental design. There, s2
« represents the variance of

the response with respect to any factors not included in

the model—hence the name ‘‘error variance.’’ However,

in data generated from a computer experiment—often

called ‘‘computer data’’ (Bowman et al. 1993; Sacks et al.

1989; Welch et al. 1992)—the only sources of variability

are those implicit in the design of the experiment. For

the design in the present study, the only sources of

variability are from changing the model parameters,

different days, and different replications. In other words,

for any specific values of the eight model parameters, on

any specific day, and for a specific replication, running

SKEBS/WRF will lead to the same response. That

property is a defining characteristic of computer data.

Therefore, for the model in Eq. (1), one has s2
« 5s2

rep

(i.e., variance due to replication can be estimated from

the variance of the errors).

A possible violation of this equality would occur

if/when there are interactions between the factors. The

introduction of interaction terms in Eq. (1) leads to an

underdetermined model, and so the effects cannot be

uniquely estimated (Montgomery 2009), a shortcoming

of both GLSD and FFD. In that situation, main effects

and interaction effects become aliased, and only their

sum can be estimated from data. Therefore, assuming

that the interaction effects are relatively small, the in-

terpretation of the error variance as variance due to

replication is permissible. Justifications for this as-

sumption are discussed in section 2b.

b. Sampling design

As mentioned in the introduction, for continuous

model parameters the sampling method of choice is

often the Latin hypercube sampling (LHS) (Cioppa

and Lucas 2007; Marzban 2013); it has been used in

sampling the model parameter space (Marzban et al.

2014), selecting the members in ensembles for ensem-

ble forecasting (Hacker et al. 2011), for emulation

(Santner et al. 2003), and for performing variance-

based SA (Saltelli et al. 2010, 2008). The popularity of

this sampling scheme derives from the fact that it leads

to estimates that are often more precise (never, less

precise) than simple random sampling (Cioppa and

Lucas 2007).

When the model parameters are discrete or categor-

ical, LHS does not apply, and the choice of the sampling

scheme is more complicated because there exists a wide

range of schemes optimized for different circumstances.

Many sampling schemes are designed to minimize the

number of runs necessary for estimating the parameters

of interest–an important consideration given the com-

putationally expensive nature of numerical models. Two

of the most common such sampling schemes are called

Graeco-Latin square designs (GLSD), and 2k2p frac-

tional factorial designs (FFD). Details of GLSD can

be found in many texts on experimental design (e.g.,

Montgomery 2009), but they are also described briefly in

the appendix. The GLSD is also the method that was

used in Marzban et al. (2019). The attractiveness of

the GLSD originates from the fact that the necessary

number of runs is significantly smaller than in a full

factorial design. For example, given k factors (e.g.,

model parameters), each taking L possible values, a full

factorial design would require Lk runs; by contrast

GLSD requires L2 runs, regardless of the number of

factors. Consequently, GLSD is desirable for handling

large number of factors.

Here, in addition to GLSD, FFD is also used–in fact,

used more–because it is even more efficient. In FFD

each factor takes only two values, often set to the min-

imum and maximum possible values of the factor. As

such, the necessary number of runs is 2k. Although the

binary treatment of the factors does considerably reduce

the necessary number of runs, the ‘‘magic’’ of the FFD is

in its ability to estimate the effect of the factors with a

fraction of the 2k runs. The fractions are often 1/2, 1/4, 1/8,

etc., leading to these designs being called 2k2p designs.

Not all values of k and p, however, are desirable be-

cause they often lead to aliasing of effects wherein the

effect of one factor cannot be disentangled from the

effect of another factor. However, special values of k

and p have been discovered that do allow for the esti-

mation of the main effects; in these special solutions,

even when aliasing does occur, it involves high-order

interactions which are generallymuch smaller thanmain

effects. That interaction effects are generally much

smaller than main effects is borne out due to several

‘‘principles:’’ the principle of hierarchical ordering, the

principle of effect sparsity, and the principle of effect

hierarchy [see pp. 192, 230, 272, 314, 329 inMontgomery

(2009), and 33–34 in Li et al. (2006)].
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These special solutions are generally listed in texts on

experimental design, or encoded in computer software.

For example, appendix X inMontgomery (2009) reveals

the special values of k and p inT1 Table 1 here. The first

column of Table 1 implies that in a problem involving

k 5 8 binary factors, one can estimate the main effects

with only 2824 5 16 runs—a sharp reduction from 28 5
256 runs of the model in a full factorial design. Even

more dramatic reduction in the number of runs is ob-

tained if the problem involves more factors. The last

column in Table 1 implies that in a problem involving

15 binary factors, the main effects can be estimated

with only 215211 5 16 runs, as compared to the 215 5
32 768 runs one may (be tempted to) perform in a full

factorial design.

These special designs require running a specific subset

of the 2k possible runs, and these subsets too are often

found in texts and computer software on experimental

design. For the present study involving eight model pa-

rameters, the 2824 design requires the fewest number of

runs, and the special values of the eight model param-

eters are shown inT2 Table 2.

For the present application, the eight SKEBS/WRF

parameters are shown inT3 Table 3, and they are furthered

discussed in the data section. It is the discrete nature of

the last four parameters that calls for the GLSD and/or

FFD as opposed to designs based on LHS.

c. Organization of the experiments

To maintain continuity with previous work, first a

GLSD experiment is performed on the four factors used

in the object-oriented SA work in (Marzban et al. 2019);

they are Day, Replication, and Par1 and Par2 in Table 3.

It may be worth repeating that the difference between

the current and the past SKEBS work is that the former

examines the sensitivitymaps across the entire grid field,

while the latter examined the sensitivity of objects

within the forecast field. After the GLSD experiment,

all eight model parameters are examined in a 2824 FFD.

The Day factor is still included in the model, and so

there are a total of nine factors in the model of Eq. (1).

3. Data/application

To generate the computer data necessary for per-

forming the SA, version 3.7.0 of the WRF-ARWModel

with lateral boundary conditions specified every 6h

from output of the Global Forecast System (GFS) is

used. All of the standard WRF parameters are the de-

fault ‘‘out of box’’ parameters, with a 25-km domain

over the continental United States. Nine days are se-

lected between December 2014 and February 2015, with

initial forecast hours 10 days apart to ensure minimal

temporal association between days. Specifically, they

are 1, 11, 21, 31 December 2014; 10, 20, 30 January; and

9, 19 February 2015. Winter months were chosen for the

high degree of variability with regards to the forecast

fields examined here (i.e., precipitation, temperature,

and wind speed). Forecasts of 3-h-accumulated precip-

itation were generated in 3-h intervals, although only the

3- and 24-h forecasts are analyzed here. Similarly, tem-

perature forecasts at only 3 and 24h are considered;

although both 2-m and 500-hPa forecasts were analyzed,

only the former are presented here. As for wind speed,

3- and 24-h forecasts at 250hPa are studied here, al-

though results at 850 hPa are also available.

In the prior GLSD experiment involving four factors,

because one of the factors was Day, and because it took

nine values, Par1 andPar2were discretized into nine values

as well (GLSD requires the same number of values/levels

for all factors). ForPar1 theyare (0.53 1025, 1.68753 1025,

2.875 3 1025, 4.0625 3 1025, 5.25 3 1025, 6.4375 3 1025,

7.625 3 1025, 8.8125 3 1025, 1.0 3 1024), and for Par2

they are (0.5 3 1025, 1.6875 3 1025, 2.875 3 1025,

4.06253 1025, 5.253 1025, 6.43753 1025, 7.6253 1025,

8.8125 3 1025, 1.0 3 1024). The range of the nine values

are chosen to contain the recommended SKEBS values,

but span one order of magnitude smaller and one order of

magnitude larger than the default values. It is worth re-

peating that in random-effects models, inference of the

sensitivities pertains to all possible values of the parame-

ters, not just to the specific values selected in the data; for

this reason, the specific nine values selected here do not

play an important role in the final analysis.

In the 2k2p FFD experiment, all eight model param-

eters are treated as binary, taking the minimum and

maximum values shown in Table 3.

One of the main goals here is to assess the effect of the

replication factor (i.e., the purely stochastic component

of SKEBS/WRF) and how it compares with the effect of

the other factors (i.e., theDay factor and the eightmodel

parameters). Here, the GLSD and the FFD experiments

are each replicated six times.1 To clarify the two designs,

TABLE 1. Special values of k and p that allow estimation of main

effects (i.e., the effect of model parameters on the response) in a

total of 2k2p runs.

k 8 8 8 10 10 11 12 13 14 15

p 4 3 2 6 5 7 8 9 10 11

2k2p 16 32 64 16 32 16 16 16 16 16

1 In the jargon of experimental design, one says that the GLSD

experiment is a three-factor design (i.e., Day, Par1, Par2) crossed

with the replication factor.

MONTH 2020 MARZBAN ET AL . 5

JOBNAME: MWR 00#00 2020 PAGE: 5 SESS: 8 OUTPUT: Thu Mar 26 16:56:32 2020 Total No. of Pages: 19
/ams/mwr/0/mwrD190321

M
on

th
ly

 W
ea

th
er

 R
ev

ie
w

  (
Pr

oo
f O

nl
y)



consider the number of runs: At every forecast hour, the

total number of model runs is 6 3 92 5 486 for GLSD;

that is, six replications of 92 runs of a GLSD involving

the factors Day, Par1, and Par2. For the 2824 FFD the

total number of model runs is 6 3 9 3 16 5 864 (i.e., 6

replications, 9 days, and 16 runs involving the 8 model

parameters). Although these numbers may seem large,

they are significantly smaller than what would be nec-

essary in a full factorial design: 6 3 93 5 4374, and 6 3
9 3 28 5 13 824, respectively.

4. Results

In a variance-based approach to SA, one varies all of

the factors of interest (Day, Replication, and model

parameters) according to some sampling scheme (e.g.,

GLSD or FFD), runs the forecasting model (here

WRF/SKEBS) with those settings, computes the result-

ing variance for the response variable (e.g., accumulated

precipitation at a given grid point), and then uses statis-

tical models of the type in Eq. (1) to apportion that var-

iability across the factors in the model, via Eq. (2).

To get a sense of the magnitude and nature of these

sources of variability,F1 Fig. 1 shows 24-h forecasts of ac-

cumulated precipitation (in mm), for the 9 days exam-

ined here, with the model parameters set to their default

values.F2 Figure 2 shows the 24-h forecasts of accumulated

precipitation for one perturbation (33 in Table 2) of the

eight model parameters according to FFD. Evidently,

across the perturbations, the spatial structure of the

forecasts changes in a complex fashion. The 16 pertur-

bations in Table 2 lead to evenmore varied and complex

changes, depending on day, and the effect of replication

(not shown). The main purpose of the methodology

developed here is to determine the extent to which each

model parameter contributes to these changes.

To make connection with prior work, the first SA re-

sult shown here is from a GLSD involving only the four

factors examined in Marzban et al. (2019), and their

effect on 3-h forecasts of accumulated precipitation. The

top-left panel in F3Fig. 3a shows the total variance (across

days, parameter values, and replication) [i.e., s2
Response in

Eq. (2)], estimated at each grid point. Darker (lighter)

shades of gray correspond to more (less) variability. It is

evident that there exists significant spatial structure.

Some of the causes for the spatial structure are discussed

below, but the main question here is How much of that

spatial structure is due the various factors that alto-

gether account for the observed variability? The re-

maining panels in Fig. 3a show maps of intraclass

correlation r, gauging the proportion of total variability

that can be attributed to each of the factors; a high/low

(dark/light) value implies high/low sensitivity. The num-

bers appearing atop each panel are the spatial average of

the r values across the panel. That theDaypanel ismostly

black, and that a relatively large proportion (about 75%)

of the total variability can be attributed to daily vari-

ability, is a direct consequence of the significant daily

TABLE 3. The eight model parameters (Par) (and their range) whose sensitivity is assessed.

SKEBS name Description Range

Par1 tot backscat t Total backscattered dissipation rate for potential temperature (5 3 1027, 1 3 1024)

Par2 tot backscat psi Total backscattered dissipation rate for streamfunction (5 3 1027, 1 3 1024)

Par3 rexponent t Spectral slope of potential temperature perturbations (21.83, 20.01)

Par4 rexponent psi Spectral slope of streamfunction perturbations (21.83, 20.01)

Par5 ztau t Decorrelation time (s) for potential temperature perturbations (10 800, 43 200)

Par6 ztau psi Decorrelation time (s) for streamfunction perturbations (10 800, 43 200)

Par7 lmaxforct Maximal forcing wavenumber in latitude for potential

temperature perturbations

(1, 65)

Par8 stoch vertstruc opt Constant vertical structure of random pattern generator (0 or 1)

TABLE 2. The 16 runs corresponding to the 2824 design, involving eight factors. These runs assure that the effect of the model parameters

can be estimated independently of the existence of any two-way interactions.

X1 21 1 21 1 21 1 21 1 21 1 21 1 21 1 21 1

X2 21 21 1 1 21 21 1 1 21 21 1 1 21 21 1 1

X3 21 21 21 21 1 1 1 1 21 21 21 21 1 1 1 1

X4 21 21 21 21 21 21 21 21 1 1 1 1 1 1 1 1

X5 21 21 1 1 1 1 21 21 1 1 21 21 21 21 1 1

X6 21 1 21 1 1 21 1 21 1 21 1 21 21 1 21 1

X7 21 1 1 21 1 21 21 1 21 1 1 21 1 21 21 1

X8 21 1 1 21 21 1 1 21 1 21 21 1 1 21 21 1
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variability seen in Fig. 1. The white patches correspond to

grid points where no precipitation was forecast on any of

the days, for any of the model parameter values, and for

any replication.

The finding that a relatively large proportion (25%) of

total variability is due to replication, and that a very

small proportion (0.1%) is due to the two model pa-

rameters, is consistent with the conclusions of Marzban

et al. (2019) where features of forecast objects were the

response variable of the SA. Less expected is the non-

trivial spatial structure associated with Replication and

Par2. It may be tempting to attribute the dark region in

the corresponding panels (in the northeast of the do-

main) to the persistence of precipitation across the

9 days in the data; however, an examination of Fig. 1

reveals that, in fact, precipitation is only mildly persis-

tent in that region. But regardless of its explanation, one

important consequence of this spatial structure is that

the replication of SKEBS/WRF ought not be expected

to have a uniform effect across the spatial domain.

Figure 3b shows the analogous results for 24-h fore-

casts of accumulated precipitation. The most notable

FIG. 1. The 24-h forecasts of 3-h-accumulated precipitation (in mm) for the 9 days examined here, with the SKEBS model parameters set

to their default values.

Fig(s). 1 live 4/C

MONTH 2020 MARZBAN ET AL . 7

JOBNAME: MWR 00#00 2020 PAGE: 7 SESS: 8 OUTPUT: Thu Mar 26 16:56:32 2020 Total No. of Pages: 19
/ams/mwr/0/mwrD190321

M
on

th
ly

 W
ea

th
er

 R
ev

ie
w

  (
Pr

oo
f O

nl
y)



difference is that the solid/white patches in Fig. 3a are

not present in Fig. 3b; this is because at 24 h, every grid

point does receive some level of precipitation, and so, it

is possible to assess sensitivity at all grid points. Another

noteworthy difference is that whereas the overall con-

tribution of Day and Replication factors, at 3 h, are

about 75% and 25%, respectively, at 24 h, the contri-

butions are reversed—32% and 68%, respectively. The

increasing contribution—from 25% to 68%—of the

Replication factor over Day (weather variability across

our sample) is a consequence of the nonlinear growth of

the stochastic perturbations related to flow instabilities

as model forecasts are integrated forward. The decrease

from 75% to 32% is then a simple consequence of the

fact that the sum of the contributions across all factors

must be 100%.

Perhaps even more importantly, the coherent spatial

structures seen in all four panels are far more diffused at

24 h compared to the 3-h results. The reason for this

phenomenon is probably that the model is in its spinup

phase early during this period, and that a longer forecast

horizon allows for a greater influence of SKEBS per-

turbations on simulated precipitation. Also, the less

diffused spatial structure at 3 h is a consequence of the

FIG. 2. As in Fig. 1, but with the eight SKEBS model parameters perturbed according to FFD (33 in Table 2).

Fig(s). 2 live 4/C
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(coincidental) similarities between the actual forecast

fields across the 9 days (Fig. 1); at 24 h the different

movement of the weather systems tends to decorrelate

the sensitivity fields, leading to the more diffused ap-

pearance of the sensitivity maps. In summary, at 24 h, a

very small fraction (about 0.2%) of the variability in

precipitation forecasts is due to model parameters, and

there exists a relatively diffused spatial structure in the

sensitivities.

A comment about spatial structure is in order. Spatial

structure is inherently a multifaceted concept, and con-

sequently difficult to quantify. Throughout this paper,

the spatial structure is assessed only qualitatively, and

through the visual examination of sensitivity maps.

Attention is placed on the degree to which the image is

‘‘clumpy’’ versus ‘‘diffused.’’ This is not a limitation in

the present work, because the spatial structure is in-

variably addressed in the context of comparing one

field with another. For example, it is quite evident

that in Fig. 3b the panels corresponding to Day and

Replication factors have similar (even complementary)

spatial structure, and that both of those structures

are distinct from that seen in the panels for Par1 and

Par2, which themselves have similar spatial structure.

Although a proposal to quantify these spatial struc-

tures is presented in the discussion section, the re-

mainder of this paper will continue to address spatial

structure in a qualitative and comparative sense.

Also, it is important to emphasize that in spite of

the resemblance between many of the aforementioned

spatial patterns (e.g., Fig. 3b) and weather patterns (e.g.,

Fig. 1) the former are patterns in the sensitivity of the

forecasts. Specifically, if a region in Fig. 3b ismostly dark

colored, then it follows that the forecast in that region is

highly sensitive to changes in the corresponding model

parameter. It does not follow that increasing (decreas-

ing) the model parameter will lead to higher (lower)

forecast values. As such, the spatial patterns in these

figures are difficult to explain in terms of meteorological

processes because complex nonlinear interactions de-

termine the growth (or decay) rates of introduced per-

turbations. As seen below (for temperature forecasts),

some spatial patterns do lend themselves to simple ex-

planations (following topography, for example), but in

general, or at least in the case of precipitation, simple

explanations of the patterns are not readily available.

Therefore, throughout this paper, focus is placed on

establishing the existence of spatial structure in the map

of sensitivities, and less effort is made to explain the

patterns in meteorological terms.

Returning to the analysis,F4 Figs. 4a and 4b are the an-

alogs of Figs. 3a and 3b but from an FFD involving all

eight model parameters in Table 3. The top-left panel

shows the variability in accumulated precipitation across

the days, replications, and perturbations of the model

parameters. Again, the main goal of the SA method

developed here is to ‘‘decompose’’ this figure into its

variance components. However, whereas in Fig. 3 the

quantity being displayed is the point estimate of r, the

quantity displayed in Fig. 4 is the 95% LCB of r. As

discussed in the method section, in spite of the statistical

rigor accompanying the LCB, examination of the point

estimate of r itself can also be revealing. Based on

Fig. 4a, it appears that the aforementioned spatial pat-

tern associated with Par2 (see Fig. 3a) is present for Par3

and Par7 to an even stronger extent. An examination of

the point estimates of r itself (not shown) reveals that

Par5 has a similar spatial structure. By contrast, Par1,

Par4, Par6, and Par8 are associated with a far more

diffused spatial structure.

Note that in Fig. 4a the spatial patterns associated

with the total variability, Replication, Par1 and Par2

are nearly identical to those found in the GLSD ex-

periment (Fig. 3). Such agreements are not guaranteed

because there are several important differences be-

tween the two designs. First, the model parameter

perturbations in the GLSD are different from those in

the FFD. Second, whereas the Day factor is one of the

factors in the GLSD, in FFD it is not. Consequently,

the similarity of the spatial structures across the two

designs is a testament to the robustness of the results.

However, these differences in design do lead to some

small-scale differences in the sensitivity maps, and so

the agreement between the GLSD and FFD results is

not exact.

To summarize Fig. 4a, based on the domain averages

shown atop each panel, 3-h forecasts of accumulated

precipitation are affected mostly by daily variability and

replication (in that order), and almost not at all by any of

the model parameters. Parameters 2, 3, 5, and 7, in spite

of having negligible contribution to sensitivity, appear

to have similar spatial structures, and that structure is

distinct from that associated with the other model

parameters.

For 24-h forecasts, the results are shown in Fig. 4b.

The spatial structures seen at 3 h due to daily variability

and replication are still clearly visible. The overall con-

tribution of all themodel parameters is only about 2%of

the total variability, and the spatial structure of sensi-

tivities for all of them is relatively diffused.

The sensitivity maps for 3-h forecasts of 2-m temper-

ature (not shown) display a map of total variance that

suggests relatively high sensitivity over land, but much

less sensitivity over the oceans. The decomposition of

that variability leads to a nearly homogeneous map for

the daily contribution, and the replication map displays
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sensitivity over the water of Pacific Ocean and the Gulf

of Mexico. The maps corresponding to the model pa-

rameters show no coherent spatial structure, at all. (This

is the reason why the corresponding figures for 2-m

temperature are now shown.)

The analogous results for 24-h forecasts are shown in

F5 Fig. 5; these are the point estimates of r, because the

LCB of r leads to maps that are nearly white when

viewed on a common grayscale. The total variance of

this response variable has a distinct spatial structure,

with larger variance over land, andmuch less so over the

Pacific Ocean and the Gulf of Mexico. The main task of

the proposed methodology is to assess how that vari-

ability is apportioned across the factors examined here.

It can be seen that on the average nearly all of the var-

iability (92%) is due to daily variability, with the Pacific

Ocean and the Gulf of Mexico still showing lower sen-

sitivity than the remainder of the domain. A much

smaller proportion (7%) of total variability is due to

replication, but this time the aforementioned waters

show more sensitivity. Par3 and Par7 have a similar

spatial structure wherein their effects appear to be re-

stricted to the aforementioned waters. Par4 and Par6

appear to affect the northern and southern regions, re-

spectively, of the Pacific Ocean. Par1 appears to affect

the eastern coast of the United States and the waters off

that coast. Again, here, less effort is made to explain

these patterns; the main goal is to demonstrate the

FIG. 3. (a) For 3-h forecasts of accumulated precipitation, the spatial structure of total variability (across Day,

Replication, and two model parameters) according to a GLSD, and its decomposition into variance components.

Darker (lighter) shades of gray correspond to higher (lower) values of the intraclass correlation r. The gray bar in

the bottom right refers to the r values appearing in the panels for the model parameters. (b) As in (a), but for 24-h

forecasts of accumulated precipitation.

Fig(s). 3 live 4/C
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existence of nontrivial spatial structure associated with

the sensitivity of the various factors.

Possible explanations of the land–water contrast in

Fig. 5 are as follows: Analyses of sea surface tempera-

ture (SST) are used as lower boundary conditions in our

simulations. SST is a slow-varying variable at weather

time scales, contributing to the reduced total (Total Var

panel) and daily variances (Day panel in Fig. 5) over

portions of the Pacific Ocean and Gulf of Mexico. The

interaction of the lower atmosphere with the imposed

lower boundary acts as a significant stabilizing influence

that limits surface air temperature variability compared

to temperatures over continental surfaces. This is par-

ticularly obvious over the Pacific Ocean portion of

our domain. There, the proximity of imposed lateral

boundary conditions at the inflow boundary (western

edge of our model domain) leaves little time for

perturbations to grow, particularly over the relatively

short forecast horizons considered here. Both influ-

ences (from imposed lower and lateral boundaries)

limit the extent to which variability in surface air

temperature can develop.

This is in contrast to land surfaces, where two-way

interactions between the atmosphere and land contribute

to larger total and daily variances. But for replication,

influences from land properties, terrain, and diurnal cy-

cles dominate and force the replicated forecasts to be

more similar, hence less sensitivity to replication over

land. By contrast, the damped forcing over the ocean

allows the variability of the replications to dominate,

thereby explaining the reversal seen in Replication panel

of Fig. 5. It is also noted that results over the Atlantic

Ocean behave differently from those over the Pacific

Ocean. Over the eastern part of the domain, contrasts

FIG. 3. (Continued)

Fig(s). 3,a live 4/C
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between land and ocean surfaces are not observed.

Perturbations that develop over land and have time to

amplify generally propagate over the ocean along the

prevailing flow, contributing to the larger daily variabil-

ity, at the expense of replication (see Fig. 5).

When the response is 3-h forecasts of 250-hPa wind

speed, the results (not shown) suggest that parameters

1, 4, 6, and 8 have a similar and diffused spatial

structure. The remaining parameters appear to have

no effect at all. The results for 24-h forecasts, with the

point estimates of r displayed, show highly nontrivial

spatial patterns ( F6Fig. 6). The absence of any topo-

graphic signature in these maps is not surprising,

but the existence of any spatial structure at all is

somewhat unexpected. The variability due to the Day

factor still accounts for the majority of the total vari-

ance, and with similar spatial structure. The spatial

structure of the Replication factor nearly complements

that of the Day factor [i.e., where the sensitivity to daily

variability is high (low), sensitivity to replication is low

FIG. 4. (a) As in Fig. 3a, but for an FFD involving eight model parameters. Also, the quantity shown is the 95% LCB for r. (b) As in (a),

but for 24-h forecasts of accumulated precipitation.

Fig(s). 4 live 4/C
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(high)]. Par2 and Par3 have a nearly identical spatial

structure, and that structure is different from those

seen for the other model parameters.

As a final analysis, it is worth examining the domain-

average sensitivity values (reported atop each panel

in the figures above) because they display an interesting

pattern.T4 Table 4 summarizes the average r values for the

Day factor, the Replication factor, and the total contri-

bution from the model parameters; the GLSD results as

well as the 3-h forecasts results (excluded above) are

also included. Several patterns are noticeable:

d As one ‘‘moves’’ from 3- to 24-h forecasts, the con-

tribution of the Day factor decreases, more so for

precipitation than for wind speed and temperature.
d As one ‘‘moves’’ from 3- to 24-h forecasts, the

contribution of the Replication factor increases,

more so for precipitation than for wind speed and

temperature.
d Of the three contributors to sensitivity—Day,Replication,

and model parameters—the latter has the smallest effect.
d Of the two large contributors—DayandReplication—the

former is larger, except for 24-h precipitation forecasts.

FIG. 4. (Continued)

Fig(s). 4,a live 4/C
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d FFD and LSD yield the same patterns.

All of these observations can be summarized as

follows: for discrete forecast fields (e.g., precipitation)

sensitivity with respect to daily variability decreases

significantly with longer forecast times, while that due

to replication increases significantly. But for contin-

uous forecast fields such as temperature and wind

speed, almost all of the sensitivity is due to daily

variability, and it decreases only modestly for longer

forecast times.

5. Conclusions and discussion

A methodology is developed for assessing the spatial

structure of the sensitivity of forecasts with respect

to noncontinuous factors. Random-effects models are

employed to estimate the intraclass correlation (r) ex-

pressing the proportion of the total variability in fore-

casts that can be attributed to a given factor. Fractional

factorial designs (FFD) and Graeco-Latin square de-

signs (GLSD) are utilized to select the values of the

factors. Maps of the estimated r values, as well as its

FIG. 5. As in Fig. 4b, but for 2-m temperature. Also, the quantity shown is the estimate of r itself, not the 95% LCB.
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95% lower confidence bound, at each grid point, then

provide for a visual display of the sensitivities.

The methodology is applied to 10 factors—1 repre-

senting daily variability, 1 representing replication,

and 8 others corresponding to SKEBS/WRF Model

parameters—for the purpose of studying the spatial

structure of the effect of the factors on the forecasts of

precipitation, temperature, and wind speed. The find-

ings are complex, but they confirm previous findings

that the model parameters have no appreciable effect

in magnitude when compared with the effect of daily

variability and replication. Furthermore, whereas the

sensitivity of the temperature and wind speed forecasts

with respect to the Day factor falls off for longer

forecasts, that pattern is reversed for precipitation

forecasts. More importantly, in spite of the small

magnitude of the effects, the sensitivity associated with

each of the factors examined here has a distinct spatial

structure. A consequence of this finding is that one

should not expect the effect of ‘‘fine-tuning’’ to be

homogeneous across the forecast domain, especially

for shorter lead times.

FIG. 6. As in Fig. 5, but for 250-hPa wind speed.

Fig(s). 6 live 4/C

MONTH 2020 MARZBAN ET AL . 15

JOBNAME: MWR 00#00 2020 PAGE: 15 SESS: 8 OUTPUT: Thu Mar 26 16:56:36 2020 Total No. of Pages: 19
/ams/mwr/0/mwrD190321

M
on

th
ly

 W
ea

th
er

 R
ev

ie
w

  (
Pr

oo
f O

nl
y)



In examining maps of any quantity (one per grid

point), it is important to acknowledge the lack of

independence across grid points. For example, in

applications that involve maps of p values, one in-

troduces corrections that account for the spatial

correlation between neighboring grid points (Elmore

et al. 2006; Livezey and Chen 1983; Wilks 2006).

These corrections are necessary for assessing whether

an effect can be considered as statistically significant

at a given significance level. Although such correc-

tions were implemented in some of the sequel of

papers to which this article belongs, the emphasis on

the spatial structure of the sensitivities renders the

corrections of secondary importance.2 For instance,

even though the r values in Fig. 6 may not meet any

standard of significance (corrected or otherwise),

the fact that Par2 and Par3 have nearly identical

spatial structure is unlikely to be affected by correc-

tions for multiple hypothesis testing across depen-

dent grid points.

A discussion of the number of days analyzed in this

study is in order. Here, a relatively small number of days

are examined because of the pedagogical nature of the

article, as reflected in Figs. 1 and 2. The reasons for the

specific choice (i.e., 9) trace back to a requirement of

GLSD (i.e., wherein all factors are required to have the

same number of levels). As a result, the number of days

is tied to the number of levels deemed adquate for the

factors. If such a constraint is unrealistic in a given study,

then a 2k2p design should be considered instead. It is

also important to point out that a relatively small num-

ber of days analyzed here do not immediately obviate

the conclusions found here because a relatively small

number of days will generally lead to relatively large

p values, but it is unlikely to affect to spatial structure

of the p values. In other words, as long as the 9 days

examined here are representative of the population,

there is no reason to doubt the conclusions reported

here. Said differently, increasing the number of days in

the dataset will likely lead to smaller p values, but the

spatial structure of the p values is expected to be

unaffected.

As mentioned previously, the discussions of spatial

structure in this paper have been qualitative, and justi-

fied only because focus has been on visually comparing

one sensitivity map with another. However, it is possi-

ble to quantify spatial structure. Indeed, SKEBS itself

contains parameters that directly affect the spatial

structure of the forecasts (Shutts 2005; Berner et al.

2011); these are the parameters of the cellular au-

tomaton algorithm that is employed in the SKEBS

pattern generator. In principle, these parameters are

independent of the model parameters studied in this

article, and as such one cannot ask how the parame-

ters of the cellular automaton algorithm affect the

model parameters in Table 3. However, the spatial

structure of the forecasts can be modeled in ways

that summarize that spatial structure by a handful

of quantities whose sensitivity with respect to the

parameters in Table 3 can be assessed using the

method described in this paper. For instance, con-

sider the two images in F7Fig. 7. These images are

simulated Gaussian Random Fields (GRF) (Cressie

1993); such fields are parameterized with a number

of quantities which directly control (and, therefore,

quantify) the spatial structure. In addition to param-

eters that set the mean and variance of the entire field,

there are also parameters that control the spatial ex-

tent of correlations, which in turn set the ‘‘size’’ of the

typical ‘‘object’’ in the field; one such parameter is

often denoted as scale, and Fig. 7 shows two examples

of random Gaussian fields with different values of the

scale parameter. It is worth pointing out that these

TABLE 4. The average (across domain) percentage of total variability attributed to daily variability, Replication, and the model pa-

rameters in the 2k2p (top) FFD and (bottom) LSD. The6values are 1.96 times the standard error of the average r; the resulting interval

is approximately a 95% confidence interval.

Precipitation 2-m temperature 250-hPa wind speed

3 h 24 h 3 h 24 h 3 h 24 h

FFD Day 72.1 6 0.5 37.9 6 0.6 99.0 6 0.1 92.2 6 0.3 99.9 6 0.0 95.8 6 0.2

Replication 26.9 6 0.5 60.4 6 0.6 0.9 6 0.1 7.5 6 0.3 0.1 6 0.0 4.2 6 0.2

Parameters 1.0 6 0.1 1.7 6 0.2 0.1 6 0.0 0.3 6 0.1 0.0 6 0.0 0.0 6 0.0

LSD Day 74.5 6 0.5 32.3 6 0.6 98.3 6 0.2 84.6 6 0.4 99.6 6 0.1 88.9 6 0.4

Replication 25.4 6 0.5 67.6 6 0.6 1.7 6 0.2 15.3 6 0.4 0.4 6 0.1 11.1 6 0.4

Parameters 0.1 6 0.0 0.1 6 0.0 0.0 6 0.0 0.1 6 0.0 0.0 6 0.0 0.0 6 0.0

2 In addressing the problem of multiple hypothesis testing,

Marzban et al. (2018a) control the false discovery rate (Benjamini

and Hochberg 1995), and Marzban et al. (2018b) use multivariate

multiple regression and the Pillai’s trace test (Fox et al. 2013;

DelSole and Yang 2011) to account for spatial correlation.
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examples do resemble many of the sensitivity maps

shown in this paper, as well as the spatial patterns

generated by the native SKEBS pattern generator [see

e.g., Fig. 1 in Berner et al. (2011) and in Shutts (2005)].

As such, it is possible to apply the GRF model to the

sensitivity maps generated here, and estimate the

various parameters of the underlying Gaussian field.

Then, by setting the response variable in Eq. (1) to one

of these Gaussian parameters, one can assess the im-

pact of the model parameters in Table 1 on the spatial

struture of the forecast field. This quantification of

spatial structure has, in fact, already been employed

in assessing the quality of gridded forecast fields

(Marzban and Sandgathe 2009), and it could be ap-

plied to the present sensitivity maps. Such an exercise

would make for a worthwhile extension of the present

analysis.
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APPENDIX

Graeco-Latin Square and Fractional Factorial
Designs

Consider an experiment involving four factors (A, B,

C, D), each taking four values denoted Ai, Bi, Ci, and

Di, with i 5 1, . . . , 4. A full factorial design requires

44 runs, but it can be shown (Montgomery 2009)

that if only the main effects (not interactions) are

of interest, then only the specific 16 runs shown

in TTA1 able A1 are sufficient. Such designs are called

Graeco-Latin square designs (GLSD). Their defining

characteristic is that every combination of the factor

levels appears only once.

In a fractional factorial design (FFD) involving k

binary factors, the number of runs is 2k. However,

there are certain designs that require only a frac-

tion of those runs. These fractional deigns lead to

aliasing (i.e., one can estimate only a linear combi-

nation of the effects). In some designs, however,

the main effects are aliased only with high-order in-

teraction effects. As such, under the assumption

that the interactions are weak, one can use these de-

signs to estimate the main effects. In one such design,

of the 28 runs only the 16 shown in Table 2 are re-

quired. This design is called a 2824 (Resolution IV)

design with generators (31 X2 X3 X7), (31 X2 X4

X8), (31 X3 X4 X6), and (32 X3 X4 X5). It can be

shown that the alias structure of this design leads to

the main effects to get aliased with three-way and

higher interaction effects; all two-way interactions

are aliased with each other, and none of them is

aliased with the main effects (Montgomery 2009). In

short, with this design one can reliably estimate the

main effects (i.e., sensitivities) of eight factors with

only 16 runs. This is the design used here for the FFD

analysis.

TABLEA1.An example of an LSD involving four factorsA,B,C,

and D, each taking four values (denoted by the indices, 1, 2, 3,

and 4).

A1 A2 A3 A4

B1 (C1, D1) (C2, D2) (C3, D3) (C4, D4)

B2 (C2, D4) (C1, D3) (C4, D2) (C3, D1)

B3 (C3, D2) (C4, D1) (C1, D4) (C2, D3)

B4 (C4, D3) (C3, D4) (C2, D1) (C1, D2)

FIG. 7. Examples of simulated random Gaussian fields with the scale parameter set to (left) 10 and (right) 5.
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