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Topic 9: The Impulse-Momentum Principle 

To summarize what we’ve done thus far… 

We first considered fluid statics, in which case a mass balance is of little value – it would 
simply tell us that the amount of mass in a static system remains constant. However, we did find 
a force balance useful to understand the relationship between pressure and depth in a liquid. 
Looking back, we now understand that relationship to also be an energy balance, reflecting the 
fact that, in static fluids, energy is converted between two “forms” (gravitational potential energy 
and pressure-based energy) as a function of the vertical location. We used this understanding to 
evaluate the forces of objects and static fluids on one another, considering flat surfaces initially, 
and then curved or bent surfaces. Finally, we used that force analysis to compute the buoyancy of 
partially or fully submerged objects. 

We then extended the analysis to systems with moving fluids. The key feature of this 
extension was the inclusion of another form in which fluids could acquire and hold energy – as 
kinetic energy. As before, we recognized that energy could be converted among different forms, 
and we concluded that the sum of pressure-based, gravitational, and kinetic energy would remain 
constant in an ideal fluid; this conclusion led to the Bernoulli equation. 

Recognizing that the initial derivation of the Bernoulli equation is strictly applicable only to 
fluid particles traveling along streamlines, but that it is difficult to keep track of all such particles 
in a fluid system, we developed a general approach for analyzing fluid behavior from an Eulerian 
rather than a Lagrangian perspective. This analysis led to the RTT which, when applied to mass, 
yields the continuity equation. In this section, we apply the RTT first to momentum and then 
energy. As we will see, using the RTT simultaneously to analyze mass, momentum, and energy 
changes in fluid systems allows us to solve an impressive number of complex fluids problems. 
We begin with the analysis of momentum, as follows. 

Consider a parcel of mass with center of gravity moving with velocity vector V . If the parcel 
is subjected to a force F , it will accelerate in the direction of the force. The acceleration is 

/d dtV , and, by Newton’s second law, is related to the force by: 

( )d mdm m
dt dt

= = =
VVF a  

The product mV  is the linear momentum of the parcel, so the force can be equated with the rate 
of change of linear momentum. Thus, a force in any direction exerted on the fluid causes the 
linear momentum of the fluid to increase in the direction of the force, and, correspondingly, any 
change in the linear momentum of the fluid reflects the result of a force acting on it. 

The linear momentum of a parcel of fluid is an extensive property. We can convert that 
quantity into an intensive property by normalizing with respect to mass, yielding the term we 
have defined in the context of the RTT as imom. In this case, imom turns out to be the velocity 
vector, i.e.: 
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mom
m
m

= =
V Vi  (1) 

Momentum can be carried into or out of a CV by fluids that cross the control surface 
(advective momentum transport), or it can be added to or taken out of the CV by non-advective 
processes. Formally, the RTT tells us that the rate at which momentum accumulates in the CV 
equals the sum of the net rates of advective transport of momentum into the CV and non-
advective momentum transport into the CV. In the RTT, the advective input is actually written as 
the negative of the advective output, so the equation has the following form: 

mom
d d V
dt

ρi
CV CS

mommom dρ
•

= − • +∫ ∫ V Ai E  (2) 

Note that i  and E are shown in bold because momentum is a vector. (I don’t know how to put 
both a dot and an arrow over the E!) Substituting mom = Vi , and making the assumption of steady 
flow so that the accumulation term is zero, we obtain: 

CS

0 momdρ
•

= − • +∫ V V A E  (3) 

If we are dealing with a system in which the flows across the control surface can be 
represented as a limited number (k) of discrete 1-D flows, the equation can be simplified further 
by replacing the integration with a summation over the various inlets and outlets: 

( )0 mom
kk

ρ
•

= − • +∑ V V A E  (4) 

( ) ( )cosmom tot VAk kk k
Qρ ρ θ

•

= • =∑ ∑V V A VE  (5) 

where Qtot and θVA are the overall volumetric flow rate and the angle of the velocity with the area 
vector ( A ), respectively, at each inlet or outlet k. If the flow is perpendicular to the CV 
boundary at each inlet and outlet, cos θVA is 1.0 at the outlets and −1.0 at the inlets, yielding: 

( ) ( )mom
outlets inlets

Q Qρ ρ
•

⎡ ⎤= −⎣ ⎦∑ V VE  (6) 

If the fluid is incompressible, ρ can be taken outside the summation signs in any of the preceding 
equations. Finally, if the fluid is incompressible and the CV has only one inlet and outlet (so that 
Qin

 = Qout): 

( )mom out inQρ
•

= −V VE  (7) 
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Although the preceding equations are written in vector notation, they are most often applied 
to only one directional component of momentum at a time. For instance, applying Equations 5, 6, 
and 7 to x-directed momentum, we would write: 

( ) [ ], cos cosmom x x VA x tot VA kk
k k

E V AV V Qρ θ ρ θ
•

= =⎡ ⎤⎣ ⎦∑ ∑  (8) 

( ) ( ),mom x x xoutlets inlets
E V Q V Qρ ρ
•

⎡ ⎤= −⎣ ⎦∑  (9) 

( ), , ,mom x out x in xE Q V Vρ
•

= −  (10) 

where θVA, is the angle of the velocity with the area vector ( A ) at location k. 

It is worth noting the two different ways that V appears in Equation 8. The term cos VAAV θ  
represents the volumetric flow rate across the boundary of the CV at location k, with the product 

cos VAV θ  corresponding to the component of the velocity that is perpendicular to the boundary. 
On the other hand, the term xV  is the component of the velocity in the x direction at location k 
and appears in the equation because we are computing the change in x-directed momentum; xV  
equals cos VxV θ  and thus might be a different component of velocity than cos VxV θ . Errors 
associated with using an incorrect component of velocity or in the sign associated with a 
particular flow are among the most common errors when using the RTT for momentum. 

The above equations all represent ways to compute the rate of advective momentum transport 
into a specified CV, with some involving application of simplifications that are frequently 
justified. The key to using these equations in a practical way is recognition of the fact that, by 
Newton’s second law, the force that is applied to a mass equals the rate at which momentum is 
transferred to that mass. In the situation of interest to us, we don’t specify the mass explicitly, but 
rather just state that it is whatever mass is within the CV at a given instant. Correspondingly, the 
force applied to the mass in the CV can be identified as the rate at which that mass acquires 

momentum, i.e., it is mom

•

E . Therefore, we can write: 

ext mom

•

=∑F E  (11) 

where ext∑F  is the sum of all external forces applied to the CV. 

Over a short time dt, the amount of momentum transferred into the CV can be expressed as: 

( ) ( )mom extd m dt dt
•

= = ∑V FE  (12) 

The product of a force and the time over which it is exerted is called an impulse, so the two 
preceding equations are referred to as two versions of the impulse-momentum principle. By 
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substituting ext∑F  for mom

•

E  in the RTT, we obtain expressions that can be used to determine 
the forces that moving fluids exert on their surroundings, and vice versa. For example, for a 
system to which Equation 7 applies, we find: 

( )ext out inQρ= −∑F V V  (13) 

Equation 13 indicates that, for a system with a single inlet and a single outlet and an 
incompressible fluid, the external force on the fluid equals the product on the right-hand side of 
the equation. Correspondingly, an equal and opposite force is exerted by the fluid on whatever is 
holding it. 

Note that both the force and velocity are vectors and must be dealt with using the usual rules 
of vector arithmetic. Writing Equation 13 for the components of force and velocity in each 
coordinate direction, we obtain: 

( ), ,x out x in xF Q V Vρ= −∑  (14a) 

( ), ,y out y in yF Q V Vρ= −∑  (14b) 

( ), ,z out z in zF Q V Vρ= −∑  (14c) 

One way to think about the impulse-momentum equation is to consider that forces are like 
“momentum pumps” – they add momentum into a fluid, in the same way the real pumps can add 
energy to a fluid. Correspondingly, forces that are applied by a fluid on an external object are 
like turbines – they represent ways that momentum is extracted from a fluid. The key difference 
between energy and momentum in this regard is that momentum is a vector, so that forces add or 
extract momentum in a specific direction, and not just into or out of the fluid in a general sense. 

By combining the impulse-momentum equation with the RTT applied to mass (i.e., the 
continuity equation), we are able to solve many complex fluids problems, often obtaining results 
that we would be hard-pressed to reach intuitively. Before demonstrating this capability with 
some examples, one other point is worth noting. If any force is exerted on a fluid, the fluid exerts 
an equal and opposite reaction force. As a result, the force associated with momentum change of 
a fluid can be interpreted as either an external force applied to the fluid (providing momentum to 
the fluid in the direction of that force), or a force being applied by the fluid on its surroundings, 
thereby depleting the fluid of momentum in the direction of that force. Since the two forces of 
interest are equal in magnitude and opposite in direction, these two views are identical, but we 
cannot take both views at once, or we will be “double-counting.” For example, if water in a pipe 
is initially heading in the +x direction and takes a 180o turn, we can say that the pipe is applying 
a force, and therefore adding momentum, to the water, in the −x direction. This force causes the 
x component of the water’s velocity to decrease and eventually become negative. Equivalently, 
we could explain the same phenomenon by saying that the water is applying a force to the pipe, 
and therefore losing momentum, in the +x direction. Either analysis leads to the same result. To 
minimize confusion, we will attempt to always carry out our analyses by considering the external 
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forces on the fluid of interest, and then, if desirable, interpret the result in terms of the force that 
the fluid exerts on its surroundings. 

________________________ 
Example: A flow of 300 L/s of water passes through the vertical 300-to-200-mm diameter 
reducing pipe bend sketched below. The pressure at the entrance is 70 kPa, the bend has a 
vertical height of 1.5 m from the centerline of the inlet to the centerline of the outlet, and the 
volume of the bend is 0.085 m3. What force (magnitude and direction) is required to anchor the 
bend in place? Ignore friction. 

 

Solution. As the water passes through the reducing pipe, it accelerates in the −x and the +z 
directions, so it must be experiencing a net force in those directions. The forces on the fluid 
within the CV, in the horizontal direction, include the horizontal components of the pressure at 
points 1 and 2 and of the force exerted by the pipe. The pressure at point 1 is given as 70 kPa. 
The force on the CV at that point can therefore be computed as p1A1, and, since the CV is 
perpendicular to the direction of flow at that point, the force is entirely in the +x direction. 

To compute the pressure-based force at point 2, we need to compute the pressure at that point. 
We expect p2 to be less than p1, because between points 1 and 2, the velocity head and elevation 
head of the water both increase, and these increases in head must be balanced by a corresponding 
loss of pressure head. The velocity at point 1 can be computed from the flow rate and area, and 
the velocity at point 2 can then be computed using the continuity equation: 

( )

3
1

1 2
1

0.300 m /s 4.24 m/s
/ 4 0.300m

QV
A π

= = =  

V1 

1.5 m

V2 

Boundary 
of CV

z 
x 

Fpipe 

1 

2 

p1
 = 70 kPa 

θ= 120o
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2 2
1

2 1
2

0.300 m4.24 m/s 9.55 m/s
0.200 m

dV V
d

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

The pressure at point 2 can then be determined with the Bernoulli equation: 

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +  

( )
2 2

1 2
2 1 1 2 2

V Vp p z z
g

γ
⎡ ⎤−

= + − +⎢ ⎥
⎣ ⎦

 

( )

2 2

3 22

m m4.24 9.55
N 1 kPas s70 kPa 9810 1.5 m
m 1000 N/m2 9.81 m/s

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠⎢ ⎥= + − + ⎜ ⎟⎢ ⎥ ⎝ ⎠
⎢ ⎥
⎣ ⎦

 

18.7 kPa=  

We can now solve the force balance in the horizontal direction on the water in the CV. The 
pressure-based force on the CV at point 2 is perpendicular to the surface at that point, so it makes 
a −60o angle with the +x direction, whereas the velocity at point 2 makes a 120o angle. Applying 
Equation 14a to this system, we can equate the net, x-directed force with the rate of change in the 
x-directed momentum: 

( )1 1 ,1 2 2 ,2 , 2 ,2 1 ,1cos cos cos cospx px pipe x Vx Vxp A p A F Q V Vθ θ ρ θ θ+ + = −  

where the subscripts on θ indicate whether the angle is the one between the velocity or the 
pressure with the x coordinate. Substituting values: 

( ) ( ) ( ) ( ) ( )
2 2

o o
,

0.300 m 0.200 m
70,000 Pa cos 0 18,700 Pa cos 60 pipe xF

π π⎛ ⎞ ⎛ ⎞
+ − + =⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟4 4⎝ ⎠ ⎝ ⎠
 

3
o o

3

m kg m m0.300 1000 9.55 cos120 4.24 cos 0
s m s s

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
 

, 7946 Npipe xF = −  

That is, the force is 7946 N in the −x direction. A similar analysis for the z-directed forces yields: 

1 1 ,1 2 2 ,2sin sinpz pzp A p A Vθ θ+ − ( ), 2 ,2 1 ,1sin sinpipe z Vz VzF Q V Vγ ρ θ θ+ = −  
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( ) ( ) ( ) ( )
2

o 3
,3

0.200 m N0 18,700 Pa sin 60 0.085 m 9810
m pipe xF

π⎛ ⎞ ⎛ ⎞+ − − + =⎜ ⎟ ⎜ ⎟⎜ ⎟4 ⎝ ⎠⎝ ⎠
 

3
o

3

m kg m0.300 1000 9.55 sin120 0
s m s

⎛ ⎞ ⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
 

, 3824 Npipe zF =  

The resultant force and its angle of action can then be computed as follows:: 

( )22 2 2
, , 7946 3824 N 8818 Npipe pipe x pipe zF F F= + = − + =  

o3824arctan 154.3
7946pipeFα = =
−

 

________________________ 

Example. The two-dimensional overflow structure shown below (shape and size unspecified) 
produces the flowfield shown. Calculate the magnitude and direction of the horizontal 
component of the resultant force the fluid exerts on the structure. Ignore friction. 

 

Solution. Applying the Bernoulli equation between the water surface at points sufficiently 
upstream and downstream of the structure that the flow is horizontal, we can write: 

2 2
1 1 2 2

1 22 2
p V p Vz z

g gγ γ
+ + = + +  

2 2
1 20 m 5 m 0 m 2 m

2 2
V V

g g
+ + = + +  

Also, by the continuity equation: 
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( ) ( )1 25m * 2m * V W V W=  

2 12.5V V=  

Solving the Bernoulli and continuity equations simultaneously, we obtain: 

3

1 2
m /s3.33 m/s 8.33 m/s 16.65

m
QV V q
W

= = = =  

Because the streamlines are approximately straight and parallel at the inlet and outlet of the CV, 
the pressure variation with depth is approximately hydrostatic, so we can compute the pressure-
based forces on the two ends of the CV. Noting that the force at the downstream end is in the −x 
direction, we find: 

( )1, ,1 1 3

kN 5 m9.81 5 m *
m 2x cF h A Wγ ⎛ ⎞⎛ ⎞= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

1, kN122.5
m

xF
W

=  

( )2, ,2 2 3

kN 2 m9.81 2 m *
m 2x cF h A Wγ ⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

2, kN19.6
m

xF
W

= −  

We can now apply the impulse-momentum equation to the water in the CV. The rate of loss of 
x-directed momentum of water in the CV equals the net x-directed force on that water. The 
x-directed forces include the pressure-based forces on the ends of the CV and the force of the 
structure. Thus, normalizing all forces to a unit width: 

( ) ( )2, 1,, 1, 2, ,
2, 1,

x xext x x x x structure
x x

Q V VF F F F
q V V

W W W W W
ρ

ρ
−

= + + = = −∑  

3
,

3 2

kN kN m /s kg m m 1 kN122.5 19.6 16.65 1000 8.33 3.33
m m m m s s 1000 kg-m/s

x structureF
W

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞− + = −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

, kN19.65
m

x structureF
W

= −  

The structure exerts a net force on the water of 19.65 kN/m to the left, so the force of the water 
on the structure is 19.65 kN/m to the right. The figure characterizing the system, with the 
additional information derived above and the EL included, is shown below. 
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___________________ 


