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Principles of Ideal Fluid Flow; The Bernoulli and Continuity Equations 

Some Key Definitions 
We next begin our consideration of the behavior of fluid dynamics, i.e., of fluids that are in 

motion. Initially, we consider ideal fluids, defined as those that have zero viscosity (they are 
inviscid). Inviscid fluids experience no resistance to movement, either past solid objects or past 
adjacent portions of the fluid that are moving at different velocities. 

The analysis of such systems starts with a differential volume of fluid that is envisioned to 
remain as a coherent unit of mass as it moves through the system of interest; such a unit is 
referred to as a “particle” of fluid. Different particles of fluid in a given system are likely to be 
moving in different directions and at different velocities at any instant, and a single fluid particle 
is likely to change directions and speeds over time. Imagine that we took a picture that showed 
the velocity vectors of all fluid particles in the system at some instant, t1. Now imagine that we 
drew an arrow in the direction of the velocity vector for a particle at the point where it enters the 
system. Then, we could move a differential distance in the direction of the velocity vector, and 
draw another arrow in the direction of the velocity vector for the fluid particle that was at that 
point at t1. If we continued this process until we reached the outlet of the system and connected 
all the differential-length arrows, we would have a continuous line describing the velocity 
vectors from the given inlet point to a point at the outlet. Such a line is called a streamline. A 
different streamline originates from every point at the system inlet; most streamlines continue to 
a point at the system outlet, but some can dead-end in the middle of the system by intersecting a 
surface a solid or a fluid layer that is perpendicular to the fluid particle’s velocity vector and is 
immobile; such dead-ends are called stagnation points. 

Streamlines characterize the velocity distribution in the system at a given instant. If a fluid 
particle started at the inlet end of a streamline, it might not follow that streamline through the 
system, because by the time it reached some downstream location, the streamline might have 
shifted from its original position. The path followed by a given fluid particle over time is called a 
pathline (this term is defined in Chapter 4 of Munson). 

If streamlines do not change shape or location over time, then the velocity at a given point in 
the system remains the same from one time to the next. In that case, all fluid particles that pass 
through a given location will have the same velocity, and particles that enter the system at a 
given location will proceed along the same pathline, no matter when they enter. Such a system is 
said to have steady flow. In a system with steady flow, the streamlines and pathlines coincide. 

The Bernoulli Equation: Concept and Derivation 

Now, consider the movement of a particle along a pathline in an ideal fluid, and define 
distance along the pathline by a coordinate s. A particle of fluid that is at any point on the 
pathline (s1) at one instant is at a different point on the same pathline (s2) at some later time. As it 
moves from s1 to s2, this particle might undergo changes in three parameters that affect the 
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amount of energy associated with it: it might accelerate or decelerate (change in v)1, it might 
move vertically upward or downward (change in z), or it might experience an increase or 
decrease in the local pressure (change in p). Specifically, a change in velocity changes the 
particle’s kinetic energy, a change in elevation changes its gravitational potential energy, and a 
change in pressure changes its “mechanical potential energy.” (This latter statement is based on 
the idea that pressure can be interpreted as the mechanical potential energy of an object per unit 
volume that it occupies. Note that, if the fluid is compressible, the change in pressure will be 
accompanied by a change in its volume.) These three forms of energy can be quantified as 
follows: 

21KE
2

mv=  (1) 

gravPE mgz=  (2) 

mechPE pV=  (3) 

where m is the mass of the particle and V  is its volume. It is convenient to normalize these 
energy values to the particle mass, yielding: 

2KE 1
2

v
m

=  (4) 

gravPE
gz

m
=  (5) 

mechPE pV
m

=
m

 (6) 

Because we have specified that the fluid is ideal, it has no viscosity, and therefore no energy 
is converted to heat (via friction) as the particle travels from s1 to s2. Therefore, if no other 
process occurring between points s1 and s2 adds or removes energy from the particle, the 
principle of conservation of energy tells us that the total energy of the particle must remain 
constant between the two locations. Put another way, any increase in one “form” of energy 
carried by the particle must be balanced by decreases in the other “forms.” Writing the sum of 
the three forms of energy identified above as Etot, we can express the energy conservation 
principle in either of the following ways: 

totE pV
m

= 21 Constant
2

v gz
m

+ + =  (7) 

                                                 
1 By convention, a lower case v is used to represent the velocity of a fluid particle or an infinitesimal amount of fluid 
at a given location, whereas an upper case V is used to represent the average velocity of a macroscopic amount of 
fluid (e.g., the average velocity of the fluid at the outlet of a pipe). 



 3

1 1p V 2 2 2
1 1

1
2

p Vv gz
m

+ + = 2
2 2

1
2

v gz
m

+ +  (8) 

where ‘1’ and ‘2’ refer to locations corresponding to s1 and s2 on a single pathline. 

If the fluid is incompressible, 1V 2V= V= . In that case, we can multiply through by the 
(fixed) density of the fluid to obtain Equation 9, and if we divide the resulting equation by the 
specific weight, we obtain Equation 10: 

totE
V

2 2
1 1 1 2 2 2

1 1
2 2

p v z p v zρ γ ρ γ= − + + = + +  (9) 

2 2tot 1 2
1 1 2 2

E 1 1
2 2

p pv z v z
mg g gγ γ

= + + = + +  (10) 

Equations 9 and 10 are statements of the principle of conservation of energy as it applies to a 
single fluid particle at two different locations and two different times. The two equations express 
the same idea and differ only in that the terms in Equation 9 have dimensions of pressure (or, 
equivalently, energy per unit volume of the particle), whereas in Equation 10, the terms have 
dimensions of length (energy per unit weight of the particle). 

Certain terms in Equation 9 are referred to by special names: p is called the static pressure, 
γ z is called the hydrostatic pressure, and the sum p + ρ v2/2 is called the dynamic pressure. The 
static pressure is the pressure one measures if the measuring device moves with the fluid particle 
or, equivalently, is placed in the flow path in a way that does not cause any kinetic energy to be 
converted to mechanical energy at the point of measurement. The dynamic pressure, on the other 
hand, is the pressure that one measures if all the kinetic energy is converted to mechanical 
energy at the measurement point; this pressure is the largest pressure that can be generated in the 
fluid at the given elevation. 

The terms in Equation 10 are also given special names and are commonly referred to as 
various forms of head: p /γ is called the pressure head, v2/2g is called the velocity head, and z is 
called the elevation head. Also, the sum of the elevation head and the pressure head is called the 
piezometric head, and the sum of all three forms of head is called the total head. Conceptually, 
the head represents the elevation gain that could be induced in the fluid if the energy associated 
with that head were completely converted to gravitational potential energy. Thus, for example, a 
velocity head of 6 m means that, if the kinetic energy were completely converted to potential 
energy, the fluid would rise by ∆z = 6 m. 

While Equations 9 and 10 are useful conceptually, they are inconvenient to use in a practical 
way because they require that we keep track of the location of individual fluid particles over 
time. We can eliminate this requirement by restricting the application of the equations to systems 
with steady flow. In that case, all the fluid particles that pass through s1 at any time have 
identical properties, and the same is true for the particles that pass through s2. As a result, an 
analysis that compares the energy of the particle at s1 now with the energy of the particle at s2 
now is equivalent to the analysis that would apply to any particle that has flowed from s1 to s2. In 
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other words, if a system has steady flow, Equations 9 and 10 apply to the (different) particles that 
are at s1 and s2 at any instant, as long as s1 and s2 are on the same pathline. For steady flow, the 
constraint that the particles be on the same pathlines is identical to a constraint that they be on 
the same streamline. When applied to particles on a single streamline in steady flow, Equations 9 
and 10 are both known as the Bernoulli equation, and the corresponding, constant value of 

totE / V  or totE / mg  is referred to as the Bernoulli constant. 

Note that the Bernoulli equation can be used without any knowledge about the detailed path 
that the fluid particle follows as it travels from point 1 to point 2; all that is required is that both 
points be on the same streamline in a system with steady flow. Of course, the equation also 
applies if the distance between points 1 and 2 is differential, i.e., if s2

 − s1
 = ds. In that case, the 

form of the Bernoulli equation shown in Equation 9 can be written as follows: 

21 0
2

d p v z
ds

ρ γ⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

 (11) 

Carrying out the differentiation, and applying the fact that v can be written as ds/dt, we find: 

0 dp dv dz dp dsv
ds ds ds ds

ρ γ ρ= + + = +
dv

dt ds s
dz dp dza
ds ds ds

γ ρ γ+ = + +  (12) 

s
dp dza
ds ds

ρ γ= − −  (13) 

where as is the acceleration of the particle in the s direction. The term ρas is /sma V , so it can 
be written as /sF V , where Fs is the force exerted on the particle in the s direction. Also, dz/ds 
can be written as sin θ, where θ is the angle of the streamline with the horizontal. Therefore, we 
can write: 

sF
V

sindp
ds

γ θ= − −  (14) 

Equation 14 shows that Bernoulli equation can be interpreted as a force balance on the fluid 
particle, expressing the idea that the net force per unit volume in the s direction (i.e., the force 
causing any acceleration that occurs along the streamline) equals the sum of the gradients in the 
static and hydrostatic pressures in that direction. 

At this point, it is worth reviewing the assumptions of the derivation that might limit the 
application of the Bernoulli equation. First, the equation applies only along a pathline, or 
equivalently, a streamline in a system with steady flow. A second assumption is that no energy is 
transferred into or out of the particle between s1 and s2, and that the only transformations of 
energy in the particle between those two points involve conversions among kinetic, mechanical 
(pressure-based), and gravitational energy. The absence of energy transfers into the particle 
means that no pumps or other energy-delivering devices are present between s1 and s2, and the 
absence of energy losses means that no energy-removing devices (e.g., turbines) are between the 



 5

two locations and also that there is no energy loss due to friction (i.e., the fluid is inviscid, or 
ideal). Finally, it was assumed that the fluid was incompressible; this assumption was used when 
we equated 1V  to 2V  in going from Equation 8 to Equations 9 and 10; if the fluid were 
compressible, we could still carry out a similar analysis, but the mathematics would be more 
complicated because the mechanical energy would depend on both the pressure and the 
(variable) particle volume. 

As noted above, the Bernoulli equation applies strictly only along a streamline. In general, 
the total energy per unit volume (as expressed by Equation 9) or per unit weight (as expressed by 
Equation 10) can change from one streamline to the next, making it inappropriate to apply the 
equation to the total flow along a collection of streamlines. Most often, of course, we are more 
interested in macroscopic flow than in the flow of individual fluid particles, so it is useful to 
identify conditions under which the Bernoulli equation applies at a macroscopic scale. Those 
conditions are, in fact, relatively easy to identify: if the Bernoulli constant is identical for all the 
streamlines in the system, then all the fluid particles anywhere in the system have the same 
energy per unit volume or weight, and the Bernoulli equation can be applied to a collection of 
streamlines equally as well as to a single streamline. 

A physical system in which such a condition applies (approximately) is one in which, at 
some point, the fluid is contained in a reservoir and has negligible velocity (more precisely, if the 
velocity head is negligible compared to the piezometric head). In that case, the changes in 
pressure and elevation anywhere in the reservoir correspond to those for a static fluid 

( [ ]p zγ∆ = −∆ ), so the Bernoulli constant has the same value (equal to 21
2

p vρ+ zγ+ ) for all 

the fluid (Figure 1). Other physical arrangements that lead to the same outcome are discussed 
below. In this course, we consider only systems in which all the fluid entering the system has 
equal energy per unit volume or weight (or, if fluid enters the system at multiple points, the 
energy per unit volume or weight is equal for all the fluid entering at each location). 

 
Figure 1. A model system in which the Bernoulli constant is identical for all streamlines. 

To downstream pipes, 
reservoirs, outlets, etc. 

All streamlines pass through this 
layer, where p and z are identical 
and v is negligible. Therefore, the 
Bernoulli constant is identical 
along all streamlines. 
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Piezometers and Pitot Tubes 

A piezometer tube is a tube that is place in a fluid system such that the opening in the tube is 
tangent to the flow. Fluid will rise in the tube until the pressure exerted from the inside of the 
tube into the system equals that exerted from the system into the tube. That pressure equals the 
static pressure of the fluid in the system (p). Correspondingly, the height to which the fluid will 
rise equals the pressure head in the system at that location (p / γ). Also, the elevation of the fluid 
in the tube corresponds to the value of z at the location where the tube is inserted, plus the value 
of p / γ at that point; i.e., it equals the value of the piezometric head at that location in the system. 
A curve drawn through the locus of points representing the piezometric head at every point in the 
system is referred to as the hydraulic grade line (HGL); a curve drawn though the locus of point 
representing the total head is called the energy line (EL). 

On the other hand, if the opening of the tube is directed into the flow at the same location, a 
stagnation point will develop at the entrance to the tube. Such a tube is called a Pitot tube. The 
pressure at the stagnation point will be the dynamic pressure of the fluid, because at that point 
the kinetic energy of the upstream fluid will all have been converted to mechanical potential 
energy. Correspondingly, fluid will rise in the Pitot tube to a height equal to the sum of the 
pressure head and the velocity head of the fluid that is passing by the tube (far enough away that 
it is not affected by the tube). The difference in fluid height between a piezometer tube and a 
Pitot tube inserted into the system at the same location thus indicates the local velocity head, 
from which the fluid velocity can be determined. 

 

Figure 2. Pitot tubes can be used to determine the height of the HGL and the EL at a given 
location in a fluid. 

Steady Flow with Straight, Parallel Streamlines 
Consider a system in which the streamlines are straight and parallel, such as in a section of a 

pipe with a constant cross-section, or flow between two flat plates aligned parallel to one 
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another. A schematic of a finite fluid element that is aligned with the cross-section of the flow in 
such a system is shown in Figure 3. The dimensions of this element are δ s in the direction of 
flow, δ l in the direction perpendicular to the boundaries above and below the fluid, and δ w in 
the third coordinate direction (into the page, in the figure). 

 
Figure 3. Definition diagram for a system with straight parallel streamlines. 

Because the streamlines are straight and parallel, the element remains a fixed distance from 
the lower boundary as it moves, so the acceleration, and therefore the force, on the element in the 
l direction must be zero. Now consider a section with the same dimensions as the element in the 
s and w directions, but only differentially long in the l direction (i.e., an element with dimensions 
δ s * δ w * dl). The force balance in the +l direction on this section is as follows: 

( ) ( ) ( )cos 0pp dl s w p s w s w dl
l

δ δ δ δ γ δ δ α∂⎛ ⎞− + + − =⎜ ⎟∂⎝ ⎠
 

( )cosdp dlγ α− =  

dp dzγ= −  

Then, integrating from point 1 to point 2, we find: 

( )2 1 1 2p p z zγ− = −  (15) 

z = 0 

z1 z2 

p1 

p2 
v Top liquid surface 

Solid support under 
bottom liquid surface 

s 

l 
w 

α 

b 

b

a 

a 
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The result indicates that the pressure distribution across the cross-section is the same as it 
would be in a static fluid. That is, if we follow a line perpendicular to the streamlines, the 
pressure increases with the vertical distance from the top of the liquid in proportion to γ. For this 
reason, the pressure distribution across the cross-section is referred to as hydrostatic, even 
though it applies to a fluid in motion. Rearranging Equation 15 and dividing through by γ, we see 
that it implies that the sum of the pressure and elevation heads is a constant across the cross-
section of flow: 

1 2
1 2

p pz z
γ γ
+ = +  (16) 

Equation 16 implies that the piezometric head is identical for all the streamlines across the 
system cross-section. However, as noted previously, an implicit assumption applicable to all 
systems we will consider is that the Bernoulli constant is the same for streamlines in a system. 
Given that the Bernoulli constant is the sum of the piezometric head and the velocity head, we 
conclude that the velocity head must be identical for all the streamlines in Figure 3, i.e., if the 
Bernoulli equation applies to a system, then over any section of the system where the streamlines 
are straight and parallel, the velocity must be the same along every streamline. 

Now, consider another section through the flow shown in Figure 3, but this time consider a 
section that is not perpendicular to the boundaries (e.g., section b-b). That section cuts across all 
the streamlines in the system, all of which have the same Bernoulli constant. Furthermore, the 
velocity (and the velocity head) is identical along all the streamlines. Therefore, the piezometric 
head must also be identical for all the streamlines. Thus, we can conclude that for systems in 
which the Bernoulli equation applies and in which the streamlines are straight and parallel, the 
piezometric head is the same everywhere in the system; equivalently, the pressure distribution is 
hydrostatic everywhere in the system. Because the piezometric head is identical everywhere in 
such systems, we expect the fluid in a piezometer tube to rise to the same height if the tube is 
inserted into a region where the streamlines are straight and parallel, regardless of where in that 
region the tube is inserted. This is a useful result, because it means that we can insert a 
piezometer tube anywhere in a pipe with a constant cross-section, and the measured piezometric 
head will be the same as would be found at any other location in that pipe, i.e., we need not 
worry about placing the tube in a particular location. 
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Figure 4. The pressure distribution across the cross-section of flow in a straight section of 
pipe is hydrostatic, so the HGL is the same at every point in that cross-section. For ideal 
fluids, the velocity is also constant across the cross-section, so the EL is the same at every 
point as well. However, for real fluids, the velocity varies across the cross-section, as shown 
in this figure. 

The Continuity Equation for an Incompressible Fluid in Steady Flow 
Often, it is useful to combine an equation for conservation of mass with the Bernoulli 

equation (which characterizes conservation of energy) to analyze systems with flow. To do so, 
consider the volume occupied by all the fluid in a system of interest between locations 1 and 2, 
with all the flow entering that volume at point 1 and leaving at point 2. The mass flow rate 
(mass/time) entering this volume is ρ1Q1, and that leaving is ρ2Q2, where Q is the volumetric 
flow rate (volume/time). Also, designating the cross-sectional area as A, we can define the 
average velocity perpendicular to A as V = Q/A. 

If the Bernoulli equation applies between these two locations, the fluid must be 
incompressible, and the flow must be steady. To meet these constraints, the fluid density must be 
constant (ρ1

 = ρ2
 = ρ), and the mass flow rate into the volume at 1 must be matched by the mass 

flow rate out at 2. Thus: 

ρ 1Q ρ= 2Q  

1 1 2 2V A V A=  (17) 

Equation 17 indicates that, in a system to which the Bernoulli equation applies, the product 
of the average velocity of the fluid perpendicular to the system boundary and the cross-sectional 
area of that boundary must be the same at the entry and the exit of the system. As noted above, 
this equation, known as the continuity equation, is a statement of the principle of conservation 
of mass. It is derived here for somewhat restrictive conditions; we will derive a more general 
statement of the same idea later in the course. The main consequence of Equation 17 is that, 
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between two locations that meet the requirements for the Bernoulli equation to apply, the cross-
sectional area of the flow must increase in proportion to any decrease in the flow velocity, and 
vice versa. 

One simple application of the continuity equation in conjunction with the Bernoulli equation 
is in the analysis of two sections of pipe with different diameters. Assuming that the diameter in 
each section of the pipe is constant, the pressure distribution is hydrostatic at each location. 
However, by the continuity equation, the velocity in the smaller-diameter section must be greater 
than that in the larger-diameter section. As a result, the velocity head is also greater in the 
smaller-diameter section and, since the Bernoulli equation tells us that the total head must be the 
same in both locations, the piezometric head must be larger in larger-diameter section. Thus, the 
HGL drops when the diameter of a pipe decreases, and the HGL rises when the diameter 
increases. 

___________________ 
Example. A straight, horizontal water pipe changes diameter from 6 in. at the inlet to 3 in. at the 
outlet. If the pressures are 7.5 psi at the inlet and 5.0 at the outlet, find the flow rate at 70oF. 
Ignore friction. 

 

Solution. Because the water is assumed to be frictionless and the flow is completely enclosed, the 
velocity along all streamlines is the same across any given cross-section. Therefore, we can treat 
the velocity on any streamline as the average velocity of the whole flow at that location. 
Designating the inlet as point 1 and the outlet as point 2, we can apply the continuity equation for 
incompressible flows to obtain: 

1 1 2 2Q A v A v= =  

( ) ( )2 2

1 2

6 in 3 in
4 4

v v
π π⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

2

1

4v
v
=  

We can also apply Bernoulli’s equation. Noting that, at 70oF, γwater is 62.3 lbs/ft3 and that the 
pipe is horizontal (so z1

 = z2): 

3 in 6 in 

7.5 psi 
5 psi 
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1 1 2 2
1 22 2

p v p vz z
g gγ γ

+ + = + +  

( )1 2
2 1

p p z z
γ
−

= −
( )2 22 2 2

1 12 1 14 15
2 2 2

v vv v v
g g g

−−
+ = =  

( ) ( )( )( )
( )

2 2 2
1 2

1 3

2 32.2 ft/s 2.5 psi 144 in /ft2
4.98 ft/s

15 15 62.3 lbs/ft
g p p

v
γ
−

= = =  

( ) ( )
2

3
1 1

0.5 ft
4.98 ft/s 0.978 ft /s

4
Q A v

π⎛ ⎞
= = =⎜ ⎟

⎜ ⎟
⎝ ⎠

 

____________________ 

Free Jets 

Free jets represent a different limiting case from flow with straight and parallel streamlines: 
whereas in systems with straight and parallel streamlines the velocity is constant everywhere and 
the pressure varies with location, in free jets the pressure is atmospheric everywhere and the 
velocity varies with location. The characteristics of a free jet are shown schematically in Figure 
5. 

 
Figure 5. Characteristic behavior of a free jet, based on the Bernoulli equation. 

We can apply the Bernoulli equation to free jets as follows. Defining the location where the 
jet is formed as 1 and any other point on its trajectory as point 2, we find: 

1p
γ

2 2
1 1

1
2

pv z
g γ

+ + = 2
2 2

1
2

v z
g

+ +  
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( )2 2
2 1 1 22v v g z z− = −  (18) 

Writing the velocities in terms of their components, and noting that the horizontal component of 
the velocity, vx, is constant (so vx,1

 = vx,2): 

( ) ( )2 2 2 2 2 2
,2 ,2 ,1 ,1 ,2 ,1

1 2 2 2
x z x z z zv v v v v v

z z
g g

+ − + −
− = − =  

At the highest point in the trajectory, the vertical velocity (vz,2) is zero, so: 

2
,1

max 2
zv

z
g

∆ =  (19a) 

,1 max2zv g z= ∆  (19b) 

The fluid’s vertical velocity is declining steadily at a rate g, so the time required for to reach the 
apex of its trajectory, and the corresponding horizontal distance traveled, are as follows: 

,1 max2z
apex

v zt
g g

∆
= =  (20) 

max max
,1

2 2
apex x x

z zx v v
g g
∆ ∆

= =  (21) 

The velocity of the fluid in a free jet increases as the fluid falls. By continuity, then, the 
cross-section of the jet must decrease as the fluid falls (so that VA remains constant). 

___________________ 
Example. A siphon operates as shown below. The hose has a uniform diameter of 150 mm. Find 
the discharge in m3/s and the pressure head (p /γ) at point 2. Assume that the fluid is frictionless. 
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Solution. As in the previous example, the assumption that the fluid is frictionless means that we 
can treat the flow as being identical along all the streamlines. The discharge can be determined 
by carrying out an energy balance between points 1 and 3. We define the datum for elevation to 
be at point 3, so that the elevations at points 1 and 2 are 4 m and 5 m, respectively. At point 1, 
the velocity of the fluid is negligible, and at both points 1 and 3, the pressure is atmospheric. 
Therefore, writing the equation using gage pressures, we have: 

2 2

1 3
2 2
avg avgv vp pz z
g gγ γ

⎛ ⎞ ⎛ ⎞
+ + = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

2

0 4 m 0 0 0
2
avgv
g

+ + = + +  

( ) ( )( )22 4 m 2 9.8 m/s 4 m 8.85 m/savgv g= = =  

( ) ( )2
30.15 m

8.85 m/s 0.156 m /s
4avgQ v A

π⎛ ⎞
= = =⎜ ⎟

⎜ ⎟
⎝ ⎠

 

Note that point 1 is taken away from the hose, where the velocity is negligible and the 
pressure is atmospheric. If we took point 1 to be in the hose at the level of the reservoir, the 
velocity would be 8.85 m/s, and the pressure would be less than atmospheric. 

The pressure head at point 2 can be determined using a similar energy balance between 
points 2 and 3. By the continuity equation for incompressible fluids, the velocities must be 
identical at these two points, so: 

2 2

2 3
2 2
avg avgv vp pz z
g gγ γ

⎛ ⎞ ⎛ ⎞
+ + = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

1 

2

3

4 m

1 m
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( )
( )

( )
( )

2 2
2

2 2

8.85 m/s 8.85 m/s
5 m 0 0

2 9.8 m/s 2 9.8 m/s
p
γ
+ + = + +  

2 5 mp
γ

= −  

The negative pressure means that the absolute pressure in the hose at point 2 is less than 
atmospheric. As a consequence, if a hole were poked in the hose at point 2, air would enter the 
hose from the atmosphere, rather than water squirting out into the air. 
____________________ 

Plumes (not covered in class and not required reading – just for interest) 
A similar analysis applies to plumes of gases in gases or liquids in liquids, as long as there is a 
density difference between the two fluids and frictional energy losses are negligible. Also, in the 
case of liquid-in-liquid plumes, the pressure changes that occur as the plume rises or falls must 
be taken into account. In that case, the Bernoulli equation can be manipulated as follows: 

( )
2 2

1 0 1 0
1 0 0

2plume

p p v vz z
gγ

⎛ − ⎞ −
+ − + =⎜ ⎟

⎝ ⎠
 (22) 

where the subscript “plume” has been added to indicate that the term refers to the liquid that is 
being discharged. Since the pressure in the plume is the same as that of the surrounding fluid, we 
can manipulate the first term as follows: 

( ) ( ) ( )1 0 1 0 1 01 0 surround surroundsurround

plume plume plumeplume

p p h h z zp p γ γ
γ γ γ γ

− − −⎛ − ⎞
= = = −⎜ ⎟

⎝ ⎠
 

where “surround” refers to the surrounding fluid, h is measured downward from the surface of 
the surrounding fluid, and z is measured upward from the datum. Substituting this result into the 
Bernoulli equation, we find: 

( ) ( )
2 2

1 0 1 0
1 0 0

2
surround

plume

z z v vz z
g

γ
γ

− −
− + − + =  

( )
2 2
1 0

1 01 0
2

surround

plume

v vz z
g

γ
γ

⎛ ⎞ −
− − + =⎜ ⎟⎜ ⎟

⎝ ⎠
 

( )
2 2
1 0

1 0 0
2 1 surround

plume

v vz z
gγ

γ

−
− + =

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

 (23) 
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( )
2 2
1 0

1 0 0
2 '

v vz z
g
−

− + =  (24) 

where: 

s.g.
' 1 1 1

s.g.
plume plumesurround

plume surround surround

g g g g
ργ

γ ρ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎝ ⎠
 (25) 

Equation 24 is essentially identical to Equation 18, with the exception of having g' instead of g as 
the acceleration. This makes sense, since the buoyancy of the surrounding fluid counteracts 
gravity and causes the plume to fall more slowly, or to rise, when the discharge is into a second 
liquid instead of into a gas phase. 

_______________________ 
Example. Sewage discharges into the ocean from a horizontal outfall pipe at a depth of 120 ft. 
When the ocean is still, the plume reaches the surface at a point that is 95 ft horizontally from the 
end of the pipe. The ocean water has a specific gravity of 1.03. Neglecting mixing and friction, 
find the velocity of the plume as it exits the pipe. 

Solution. The trajectory in this system is like that of water discharging into the atmosphere, 
flipped vertically. The given information is equivalent to the conditions at the apex, and the 
desired information corresponds to what would be the velocity at the apex. We can therefore use 
a modified version of Equation 21, as follows: 

max2
'x apex

zv x
g
∆

=  

( )
( )( )2

2 120 ft
95 ft 6.03 ft/s

1 1.03 32.2 ft/s
−

= =
−

 

_______________________ 

Flow in Open Channels 
Flow which is supported from below but is at atmospheric pressure at its upper surface 

represents an intermediate case between flow in closed pipes and free jets. Such flow is referred 
to as open channel flow and is addressed briefly in the latter part of this course and in CEE 345. 
In open channel flow, the pressure at the top surface is constant at atmospheric pressure. If the 
flow is down an incline, then the fluid accelerates as it flows and, by continuity, its cross section 
must decrease. Thus, as the fluid flows down an open channel, its velocity increases, its cross-
section decreases, and the pressure on its upper surface remains constant. The streamlines in such 
a system cannot be exactly parallel (they must converge to cause the cross-section to decline), so 
the pressure distribution is not hydrostatic throughout the system, as it is in pipe flow. However, 
over distances that are short enough that the convergence of the streamlines is negligible, the 
analysis presented previously for pipe flow is approximately valid. Therefore, it is usually 
assumed that the pressure distribution perpendicular to the streamlines (e.g., section a-a in Figure 
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3) is hydrostatic, even though that along other sections (e.g., section b-b) is not. In open channel 
flow where the flow is strictly horizontal, there is no convergence of the streamlines, and the 
pressure distribution is expected to be hydrostatic. 


