
 1

Analysis of Complex Pipe Networks with Multiple Loops and Inlets and Outlets 

The techniques described previously for analysis of pipe flow are satisfactory if the pipe 
system is simple, consisting of one pipe or a combination of pipes in which the flow directions 
are all known unambiguously. In more complex systems, pipes might be combined in 
interconnected loops in ways that make it difficult to determine even the direction of flow in any 
given pipe. The fundamental relationships that we have derived up to this point – the energy and 
continuity equations and the relationships between flow and headloss in any given pipe – still 
apply in such a system, but the sheer number of equations that need to be satisfied to determine 
the complete flow conditions is daunting. The conditions in such systems are usually solved with 
specialized computer programs designed specifically for that purpose. However, before such 
programs were widely available, less sophisticated techniques were developed for analyzing the 
systems. These techniques are easily programmed into a spreadsheet, so they provide a bridge 
between the very simple problems that can be solved manually and the massive ones that can be 
solved only with special software. In this section, we explore these intermediate-scale 
techniques. These techniques, as well as more sophisticated ones, allow us to answer such 
questions as: 

*  For the given flow rates, what will be the head loss in each pipe? 
*  Will additional head have to be supplied by pumps in order to obtain the desired flows? 
*  How much will the flow rates change in various parts of the system if a new pipe is 

installed, connecting two previously unconnected points, or to replace an older, smaller 
pipe? 

*  How much will the pressure at a consumer’s tap drop if the fire hydrant outside his or her 
home is in use? 

Solving the System of Equations 

The methods used historically to solve pipe network problems are “relaxation” techniques, in 
which a few of the variables are estimated, the others are computed, and the original estimates 
are revised based on algebraic manipulations of the computed variables. The numerical solution 
will, of course, depend to some extent on which equation is used to relate flow to headloss. 

With respect to pipe network analysis, the traditional approach is known as the Hardy Cross 
method. This method is applicable if all the pipe sizes (lengths and diameters) are fixed, and 
either the headlosses between the inlets and outlets are known but the flows are not, or the flows 
at each inflow and outflow point are known, but the headlosses are not. This latter case is 
explored next. 

The procedure involves making a guess as to the flow rate in each pipe, taking care to make 
guesses in such a way that the total flow into any junction equals the total flow out of that 
junction. Then the headloss around each loop is calculated, based on the assumed flows and the 
selected flow vs. headloss relationship. Next, the system is checked to see if the headloss around 
each loop is zero. Since the initial flows were guessed, this will probably not be the case. The 
flow rates are then adjusted in such a way that continuity (mass in equals mass out) is still 
satisfied at each junction, but the headloss around each loop is closer to zero. This process is 
repeated until the adjustments are satisfactorily small. The detailed procedure is as follows. 
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1. Define a set of independent pipe loops in such a way that every pipe in the network is 
part of at least one loop, and no loop can be represented as a sum or difference of other 
loops. The easiest way to do this is to choose all of the smallest possible loops in the 
network. 

2. Arbitrarily choose values of Q in each pipe, such that continuity is satisfied at each pipe 
junction (sometimes called nodes). Choose a sign convention for each loop; one easy 
option choice is to consistently define Q to be positive if the (assumed) direction of flow 
is clockwise with respect to loop under consideration. This convention means that the 
same flow in a given pipe might be considered positive when analyzing one loop, and 
negative when analyzing another. 

3. Compute the headloss in each pipe, using the same sign convention for headloss as for 
flow, so that hf in each pipe has the same sign as Q, when analyzing any given loop. 

4. Compute the headloss around each loop. If the headloss around every loop is zero, then 
all the pipe flow equations are satisfied, and the problem is solved. Presumably, this will 
not be the case when the initial, arbitrary guesses of Q are used. 

5. Change the flow in each pipe in a given loop by ∆Q. By changing the flow rates in all the 
pipes in a loop by the same amount, we assure that the increase or decrease in the flow 
into a junction is balanced by the exact same increase or decrease in the flow out, so that 
we guarantee that the continuity equation is still satisfied. The trick is to make a good 
guess for what ∆Q should be, so that the headloss around the loop approaches zero. To 
achieve this, we assume that we can choose a value of ∆Q that is exactly what is needed 
to make the headloss zero, and then see how this value of ∆Q is expected to be related to 
other system parameters. The relationship is derived as follows. 

The Darcy-Weisbach equation can be written in the form: 
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where K equals the combination of variables preceding Q2 in the middle equality. Note that, 
because K includes the friction factor, it might change when Q changes. Nevertheless, for the 
current calculations, we assume that K is approximately constant over the range of Q values of 
interest. 

Consider a pipe in a particular loop in our system. Designate the initial estimate of Q in that 
pipe as Q0, and the corresponding headloss as hf,0. The new estimate of the flow through the pipe, 
which we hope will cause the headloss around the loop to be zero, will then be Q1

 = Q0
 + ∆Q. We 

can then estimate the initial (subscript 0) and new (subscript 1) headloss through the pipe to be: 
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Assuming that the higher order terms are small compared to the first two, we can drop them 
from Equation 4. Next, we sum the headlosses in all the pipes around the loop being analyzed. If 
∆Q was perfectly chosen, then that sum will be zero, so: 
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where the summation is over all i pipes in the loop. Since ∆Q is the same for every pipe in the 
loop, it can be taken outside the second summation, yielding: 
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Equation 7 provides a way to calculate a value of ∆Q that will cause the headloss around the 
loop to be zero, if the higher order terms that are dropped between Equations 4 and 5 are indeed 
negligible and if K is the same for flowrates of Q and Q + ∆Q. For the first few iterations, those 
conditions are not likely to be met, so the computed value of ∆Q will not cause the headloss 
around the loop to be exactly zero, but it will nevertheless cause the headloss to be closer to zero 
than it was in the previous iteration. The value of ∆Q can then be added to the preceding values 
of Q, and a new iteration can be carried out. This same process can be used for all the loops in 
the network, and then repeated until the criterion that hf around all the loops be zero is met. 

As noted previously, the initial guess of the flow rates is entirely arbitrary, as long as 
continuity is satisfied at each junction. If one makes good guesses for these flowrates, the 
problem will converge quickly, and if one makes poor guesses, it will take more iterations before 
the final solution is found. However, any guesses which meet the mass balance criterion will 
ultimately lead to the same, correct final result. 

Note that the assumptions for flow must be consistent for all the loops in the system. That is, 
once a flow rate and direction are assumed for a given pipe, those same assumptions must be 
used for that pipe in every loop that includes it. Finally, note also that, if a pipe is part of two or 
more different loops, the correction factors for all the loops that contain it are applied to it. 
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_______________________ 
Example.  Determine the flow rates in all the pipes in the network shown below. Use the DW 
equation to relate headlosses to flow rates. If the pressure head at point a is 40 m, find the 
pressure head at d (which might represent a fire demand, for example). 

 

Solution. The analysis can be done in a spreadsheet, as shown below for an initial guess of Q 
values. All values are in units of meters and seconds. 

1 2 3 4 5 6 7 8 9 
     π D2/4 Guess Q/A DVρ/µ 

Loop Pipe D (m) L (m) e/D (−−) A (m^2) Q (m^3/s) V (m/s) Re 
A Ab 0.3 250 0.000833 0.071 0.04 0.57 4.19E+04 
 Be 0.1 100 0.0025 0.008 0.04 5.09 1.26E+05 
 ed 0.2 125 0.00125 0.031 0.025 0.80 4.10E+04 
 dc 0.2 125 0.00125 0.031 −0.025 0.80 2.02E+05 
 ca 0.2 100 0.00125 0.031 −0.020 0.64 3.19E+05 
         

B cd 0.2 125 0.00125 0.031 0.025 0.80 2.02E+05 
 dg 0.15 100 0.001667 0.018 0.02 1.13 6.99E+04 
 gf 0.25 125 0.001 0.049 0.02 0.41 1.71E+04 
 fc 0.15 100 0.001667 0.018 0.005 0.28 1.56E+05 
         

C de 0.2 125 0.00125 0.031 −0.025 0.80 4.10E+04 
 eh 0.1 100 0.0025 0.008 0.015 1.91 4.35E+04 
 hg 0.25 125 0.001 0.049 0 0.00 5.90E+04 
 gd 0.15 100 0.001667 0.018 −0.02 1.13 6.99E+04 
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1 2 10 11 12 13 14 15 16 17 

  
From 

Prob.8−37 
f=0 if 
R=0 DW eqn      

Loop Pipe f ff hf hf/Q Σhf Σ(hf/Q) ∆Q new Q 
A ab 0.019 0.019 0.26 6.4  0.0211 
 be 0.025 0.025 32.87 821.8  0.0211 
 ed 0.021 0.021 0.42 16.7  0.0105 
 dc 0.021 0.021 −0.42 16.7  −0.0345 
 ca 0.021 0.021 −0.21 10.7 32.91 872.4 −0.0189 −0.0389 
        

B cd 0.021 0.021 0.42 16.7  0.0345 
 dg 0.022 0.022 0.97 48.6  0.0149 
 gf 0.020 0.020 0.08 4.2  0.0106 
 fc 0.022 0.022 0.06 12.1 1.53 81.6 −0.0094 −0.0044 
        

C de 0.021 0.021 −0.42 16.7  −0.0105 
 eh 0.025 0.025 4.62 308.2  0.0107 
 hg #DIV/0! 0.000 0.00 0.0  −0.0043 

 gd 0.022 0.022 −0.97 48.6 3.23 373.5 −0.0043 −0.0149 

Columns 1-4 reiterate the given information. Columns 5 and 6 are fixed values that depend 
only on the given input information. Column 7 is the assumed flow rate through the given pipe 
for the current iteration. Note that the flow in pipe cd is assumed to be from left to right, which is 
counter-clockwise in Loop A, but clockwise in Loop B, so the flow rate is assigned a negative 
value in the first case and a positive value in the second one. 

Columns 8 and 9 show the computed velocity (without sign) in the pipes and the Reynolds 
number, for the assumed flow rates, and Column 10 shows the estimate of f based on the 
equation given in Munson Problem 8-37; this equation allows one to estimate f directly from 
values of Re and ε/D. Because this equation has Re in the denominator of one term, f is 
undefined in pipes with zero flow; in Column 11, f is assigned a value of zero for such 
conditions. The value in Column 12 is hf, based on the DW equation, with the same sign 
convention as for flow rate, and Column 13 shows hf/Q. Note that, because hf and Q always have 
the same sign, hf/Q is always positive. 

Columns 14 and 15 show the summations of hf and hf/Q around each loop. Column 16 then 
shows the computed value of ∆Q to be applied as a correction to the flow in each pipe. Note that 
one ∆Q is computed for each loop, and that ∆Q is applied to every pipe in the loop. Also, pipes 
that are in more than loop have the corrections for both loops applied to them. Therefore, the 
formulas for calculating the flow rates to be assumed for the next iteration must be written 
carefully. For example: 
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Loop A, pipe ab: , 1 ,ab i ab i loop AQ Q Q+ = + ∆  

Loop A, pipe dc: , 1 ,dc i dc i loop A loop BQ Q Q Q+ = + ∆ − ∆  

Loop B, pipe cd: , 1 ,cd i cd i loop A loop BQ Q Q Q+ = − ∆ + ∆  

Loop B, pipe dg: , 1 ,dg i dg i loop B loopCQ Q Q Q+ = + ∆ − ∆  

The calculated flow rates and the percentage changes in those rates compared to the previous 
values for the first and sixth iterations are summarized below. By the sixth iteration, the 
estimated flow rates are all changing by <5%, which is less than the error associated with the 
estimate of f, so the calculations are as accurate as they will ever get. 

Iteration #1  Iteration #6 
new Q % change  new Q % change 
0.0211 −47.2  0.0098 −0.4 
0.0211 −47.2  0.0098 −0.4 
0.0105 −75.5  0.0065 −0.6 

−0.0345 75.5  −0.0317 0.1 
−0.0389 94.3  −0.0502 0.1 

     
0.0345 −37.6  0.0317 −0.4 
0.0149 −47.0  0.0082 −1.5 
0.0106 −47.0  −0.0035 3.6 

−0.0044 −187.9  −0.0185 0.7 
     

−0.0105 17.3  −0.0065 1.6 
0.0107 −28.9  0.0033 −3.0 

−0.0043 #DIV/0!  −0.0117 0.9 
−0.0149 21.6  −0.0082 1.2 

_______________________ 


