
Agent Mobility and the Evolution
of Cooperative Communities

INTRODUCTION

W e are concerned with whether and how cooperation evolves in social worlds
characterized by the presence of selfish agents engaged in repeated rela-
tions without central authority. This fundamental problem has been the

focus of many studies across all the social sciences as well as philosophy, biology,
and computer science. Based on the seminal works of John Maynard Smith [1], and
Robert Axelrod [2], the iterated prisoner’s dilemma (IPD) has become the central
metaphor for the evolution of cooperation in populations of selfish agents without
central authority.

To investigate whether and how agents in an IPD can overcome the individual
rational choice to defect to achieve the socially optimal outcome of mutual coop-
eration, we construct an artificial world and then analyze characteristics of that
world via simulation. The artificial world that we construct is an anarchic, competi-
tive place populated by agents with limited cognitive and social capabilities whose
resources are being constantly drained. Into this harsh environment we introduce
agent movement and constrained interactions in the form of spatial neighborhoods,
features that we anticipate will foster cooperation.1 We are interested in several
properties of this artificial world. Does it become highly cooperative? If cooperation
emerges, is it stable? Do agent movement and the type of movement facilitate the
generation of a stable cooperative world? Are there patterns in the kinds of strategies
that help generate a cooperative world or in the kinds of strategies that evolve in
a cooperative world?

STRUCTURE OF THE ARTIFICIAL WORLD
The basic architecture of the artificial world is an IPD.2 Agents have two choices:
cooperate (C) and defect (D). For each interaction, both agents receive a payoff of
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An artificial world is constructed that is based upon a spatial iterated
prisoner’s dilemma game. Several additional features are introduced into
this model, the key feature being the ability of agents to move around in
their world. Movement is a mechanism for exit or noncompulsory play.
When agents can move, high levels of cooperation are achieved more
frequently and are considerably more stable than when they cannot
move. Also, when cooperative worlds occur, they are generated and

sustained by the formation of networks of densely connected
“cooperative” agents that can withstand invasion and parasitism by

noncooperative agents.
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CC if both cooperate and DD if both
defect. If one agent defects while the
other cooperates, then the exploiter re-
ceives DC and the sucker receives CD.
To conform to the prisoner’s dilemma,
agent preferences across payoffs adhere
to the following standard inequalities:
DC > CC > DD > CD and 2CC > DC +
CD. Each agent is represented by a
strategy specifying how the
agent behaves as it interacts
with other agents. Agent
strategies are restricted to
those employing just the
previous interaction with
the other agent(s) to deter-
mine current choices.3

Strategies are probabilistic,
defined by the conditional
probabilities to cooperate
(p1, p2, p3, p4), given that the
outcome of the previous in-
teraction was CC, CD, DC,
or DD, respectively, with the
addition of a cooperate or defect choice
stipulation when an agent interacts
with another agent for the first time.
The payoffs used in the simulation are
CC = 1, CD = 13, DC = 3, and DD = 11,
although additional simulations with
different payoffs also were imple-
mented to assess the sensitivity
of the results to changes in the
payoffs. The initial mix of agent
strategies is a set of identical
strategies, all with the following
set of conditional probabilities
(.5, .5, .5, .5). Also, half the
agents cooperate the first time
they interact with another
agent, and the other half defect
the first time they interact with
another agent. The purpose of choosing
this “random strategy mix” is to avoid
an initial selection of strategy mixes that
is biased toward generating either a co-
operative or a noncooperative world.4

Several features are added to the ba-
sic IPD to produce the artificial world.
First, in most social contexts, agents are
located at or occupy some place or po-
sition in their world at any given mo-
ment in time and, as a result, most in-

teractions among social units remain
dictated by spatial proximity.5 The ad-
dition of a spatial component to the ar-
tificial world introduces the possibility
of spatial variability.6 Therefore, an ex-
plicit spatial dimension is introduced
by constructing a set of toroidal worlds
(a 20 2 20 grid of cells) consisting ini-
tially of 60 agents that are randomly as-

signed locations on the grid.7 Each cell
can contain, at most, one agent. For
each round of the simulation, agents in-
teract with all agents who occupy the
four nondiagonal cells that immediately
surround the agent: a von Neumann
neighborhood.

Second, while compulsory play is a
typical characteristic of most IPD analy-
ses, there are probably few social situa-
tions in which agents are forced to in-
teract with some set of other agents.
Agents usually can choose to exit, with-
draw, or refuse to play, suggesting that
many kinds of social interactions ap-
pear to be better represented as forms
of noncompulsory play.8 We focus on
agent movement as form of noncom-

pulsory play. When agents find them-
selves in an unprofitable and undesir-
able situation, they often move to free
themselves from the negative conse-
quences of that situation.9

Since agents are assumed to have
little information about their environ-
ment, they only move when they are
doing poorly at their current location,

and the worse they are doing, the
more likely it is that they will
move. Specifically, agents move
only when they receive a nonposi-
tive total payoff for the current
round. Agents receiving a positive
payoff in the current round are
“satisfied” with their location and
remain there. Because there is a
nontrivial risk associated with
movement, agent movement is
probabilistic. In practical terms, if
agents were to move with cer-
tainty every time a nonpositive
payoff were obtained, then far too

much movement would occur and
chaos would reign. The likelihood that
an agent will move increases with the
magnitude of the negative total payoff
of the current iteration. An agent moves
if the change in energy (DE, defined
later) is greater than or equal to a ran-

domly generated integer be-
tween 1 and 100. Two types of
movement are introduced: lo-
cal, in which the agent moves
to an empty adjacent cell; and
global, in which the agent
moves to a randomly selected
open cell anywhere on the grid.

Third, we incorporate the
notion of an environmental
carrying capacity into the arti-

ficial world by introducing a cost of sur-
vival for agents. All social entities con-
sume various resources to sustain
themselves. All ecologies can support a
finite number of agents and, as more
agents compete, the economic and en-
vironmental costs of available resources
increase. Therefore, as the artificial
world becomes more populated, the
cost of surviving increases.10 The num-
ber of agents is restricted to a fixed

Specifically, agents move only when they receive a
nonpositive total payoff for the current round.

Agents receiving a positive payoff in the current
round are “satisfied” with their location and

remain there. Because there is a nontrivial risk
associated with movement, agent movement is

probabilistic. In practical terms, if agents were to
move with certainty every time a nonpositive

payoff were obtained, then far too much movement
would occur and chaos would reign.

All social entities consume various resources to
sustain themselves. All ecologies can support a

finite number of agents and, as more agents
compete, the economic and environmental costs of

available resources increase. Therefore, as the
artificial world becomes more populated, the cost

of surviving increases.
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range by applying to every agent each
iteration a cost of surviving that is de-
pendent on population size. The for-
mula for the cost of surviving, a, is

a = k + 4 ? ~DC + CC! ? N/~X ? Y !

in which k is a constant, DC and CC are
the IPD payoffs, N is the number of
agents in the world, and X is the width
and Y is the height of the world grid.
The cost of surviving indirectly allows
the simulation to select the percentage
of the population with the highest en-
ergy levels for reproduction and the
lowest percentage for elimination. The
change in energy (DE) for each iteration
of an agent is the sum of all interactions
minus the cost of surviving:

DE = (
i=1

4

Ai − a

where Ai is the payoff from the interac-
tion in the ith direction and a is the cost
of surviving. An agent is eliminated
from the simulation when its energy
falls below 0.

Fourth, because all individuals die
and all social units, that we are aware
of, eventually fall apart, disband, go
bankrupt, are taken over, or are over-
run, we assume that agents have a lim-
ited existence or life span. An agent has
a probability G of elimination on each
iteration,

G = ~A − T !/M

where A is the age of the agent, T is a
constant for the minimum life span,
and M is a constant where T + M is the
maximum life span. Once an agent
reaches the minimum life span, then it
has a nonzero and increasing probabil-
ity of elimination until it reaches the
maximum life span, and then it is elimi-
nated with a probability of 1.0. Of
course agents can be eliminated at any
time if their energy level falls below 0. In
the basic simulation results that will be
reported later, the minimum life span of
an agent (T) is 2048 iterations and the
maximum life span (T + M) is 6144
iterations.

Fifth, agents reproduce themselves,
in the sense that they create a replica-
tion of themselves. Since we are at-
tempting to model social units and not
just individuals, we have opted for
asexual reproduction. The “genetic ma-
terial” (here, the strategy), therefore,
comes from one “parent,” and there is
no “crossover” of genetic material. Rep-
lication requires a certain level of en-
ergy (maturity, size, power, and wealth),
and it costs the agent a significant
amount of energy. Therefore, agents
must reach a fixed level of energy (r)
before they can replicate. Once an agent
replicates itself, the energy of the agent
and the replicated agent are both set to
(r/2). r is set to 1000 for the basic simu-
lation runs and is varied for additional
simulation runs. For all simulations in
this analysis, the replicated agents are
placed in a randomly selected open cell

on the grid. Our approach to setting
reproduction thresholds and to de-
termining the relative fitness of the
members of the population has the ad-
vantage of performing the reproduc-
tion/elimination calculation at every it-
eration instead of making periodic
sweeps through the population, more
gracefully modifying the population of
the simulation.

Sixth, to give the artificial world some
dynamic, we introduce strategy muta-
tion. There are a number of ways to vary
an agent’s strategy or to introduce
new strategies. Agent strategies can
change via imitation, learning, or inno-
vation, or they can emerge generation-
ally via mutation. In a world where
agents face a noisy environment, have
difficulty observing the behavior of
other agents for a significant period of
time, where it is often not in the interest

TABLE 1

Simulation Results

Outcomes
No

Movement
Global

Movement
Local

Movement Total

Stable Cooperation 11 (37%) 24 (80%) 24 (80%) 59 (65%)
No Cooperation 6 (20%) 6 (20%) 3 (10%) 15 (17%)
Punctuated Equilibrium 13 (43%) 0 (0%) 3 (10%) 16 (18%)

FIGURE 1

Cooperative actions with local movement.
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of agents to reveal their strategies, and
where there are no reliable mechanisms
to transmit that information, change via
imitation or learning seems less appro-
priate than change by either innovation
or mutation.11 The introduction of new
strategies occurs when replication oc-
curs. There is a fixed (20%) chance that
a strategy mutates during the replica-
tion process. When a mutation occurs,
the agent’s strategy is modified by
changing each of the pi in the strategy
of the parent by [1d, d], where 0 < d < 1.
Specifically, if d is set to (0.1), as is the
case for the basic simulation results,
then the actual value to change the pi is
randomly selected from a uniform dis-
tribution over the interval (10.1) to
(0.1).

RESULTS

Original Configuration
To address the set of questions posed in
the Introduction, 90 simulations of this
artificial world, as initially configured in
section 2, were run: 30 with no move-
ment, 30 with local movement, and 30
with global movement.12 Several gen-
eral patterns emerged. First, as pre-
sented in Table 1, most simulation runs
(83%) achieve a high level of coopera-
tion (the average cooperation rate
among agents is over 95%) at some
point during the course of the simula-
tion run. Fifty-nine simulation runs
(65%) eventually ended up in what ap-
pears to be a stable cooperative equilib-
rium (a high level of cooperation is
achieved at some point in the simula-
tion and is maintained until the end of
the simulation), and 16 simulation runs
(18%) ended up in a punctuated equi-
librium (long periods of stable, high lev-
els of cooperation punctuated by peri-
odic massive dips to near universal de-
fection), a pattern that is similar to that
found by Nowak and Sigmund [10].
Only 17% (15 runs) ended up in a stable,
noncooperative equilibrium (the aver-
age cooperation rate quickly declined
and stayed at less than 5% for the entire
simulation run).13

Second, somewhat surprisingly, the
introduction of movement does not
seem to have a significant impact on

whether or not high levels of coopera-
tion are achieved. High levels of coop-
eration are not achieved (“no coopera-
tion” in Table 1) about the same per-
centage of the time for all three types of
movement. However, the introduction
of movement does have an important
impact on the stability of cooperative
equilibria. Simulations with local or
global movement achieve stable coop-
eration 80% of the time, while those
simulations with no movement achieve
stable cooperation only 37% of the time.

Simulations with no movement experi-
ence punctuated equilibria 43% of the
time, while those simulations with
some form of movement experience
punctuated equilibria only 5% of the
time. Examples of typical patterns of
stable cooperation, no cooperation, and
punctuated equilibrium are depicted in
Figures 1–3, respectively.

Third, the transition from near uni-
versal defection to near universal coop-
eration is always characterized by two
features: networks of cooperative

FIGURE 2

Cooperative actions with global movement.

FIGURE 3

Cooperative actions with no movement.
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agents form, and these networks are
composed of agents that employ ver-
sions of the Grim strategy (a pure form
of the Grim strategy is [1.0, 0.0, 0.0,
0.0]).

Sensitivity Analysis
A total of 160 additional simulations
were run to assess the robustness of the
simulation results to variations in pay-
offs, mutation rates, mutation magni-
tudes, reproduction thresholds, and life

span lengths. First, 30 simulations were
run with two alternative payoff matri-
ces. The payoffs of the first alternative
matrix are CC = 1, CD = 15, DC = 5, and
DD = 11. This reconfiguration serves to
increase both the potential payoff from
exploiting one’s partner and the poten-
tial loss from being exploited. The sec-
ond alternative matrix is CC = 2, CD =
13, DC = 3, and DD = 12. This matrix
broadens the difference in payoffs be-
tween the mutual cooperation payoff

CC and the mutual defection payoff DD

to four points, as opposed to two in the

original matrix. Second, 30 simulations

were run varying both the length of the

agent’s life span (shorter, 2000 itera-

tions, and longer, 6000 iterations) as

well as whether the life span occurred

earlier (from 1000 to 5000 iterations) or

later (from 3000 to 7000 iterations).

Third, 30 simulations were run with
lower (10%) and higher (40% and 50%)
mutation rates. Fourth, 30 simulations

were run varying the magnitude of

change in strategy probabilities due to

mutation; specifically, d = (0.3), and d =

(0.5). Fifth, 40 simulations were run

with two alternative reproduction

thresholds: one higher, requiring 2000

units of energy to reproduce and one

lower, requiring 800 units of energy to

reproduce.

The results of these sensitivity runs

add considerable additional support to

the general results regarding the effects

of movement. As reported in Table 2,

for the entire set of sensitive runs, agent

movement is more likely to generate
stable cooperation (83% versus 39%), is
less likely to produce punctuated equi-
libria (11% versus 46%), and is less likely
to produce no cooperation (6% versus
15%) than when agents cannot move. In
addition, the pattern between the type
of movement and the three types of
outcomes holds within each of the five
types of sensitivity variations.14

DISCUSSION

Movement
The simulation results indicate that the
introduction of movement (either glob-
al or local) increases substantially the

TABLE 2

Summary of All Sensitivity Results

Outcomes No Movement Global and Local Movement Total

Stable Cooperation 25 (39%) 79 (83%) 104 (65%)
No Cooperation 10 (15%) 6 (6%) 16 (10%)
Punctuated Equilibrium 30 (46%) 10 (11%) 40 (25%)
Total n = 65 n = 95 n = 160

The simulation results indicate
that the introduction of

movement (either global or local)
increases substantially the

likelihood that stable, highly
cooperative worlds are

generated; 80% of the time for
simulations with movement

versus 37% without movement.

FIGURE 4

Nodes of cooperation emerge. Grim (red) agents begin to dominate over more noncooperative
(darker shaded) agents. Turn number 306,202 of a simulation with local movement.
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likelihood that stable, highly coopera-
tive worlds are generated: 80% of the
time for simulations with movement
versus 37% without movement. When
agents cannot move, there is a high
probability that they are either isolated
and experience no interaction or be-
come trapped in unprofitable relation-
ships and are unable to find more co-
operative partners. In either case, the
agent’s energy is drained to 0, and it is
eliminated. Movement makes it more
likely that agents will sever unproduc-
tive relationships and will more readily
reestablish productive relationships.15

Agent movement appears to be an
effective mechanism to help build and
maintain large networks of cooperative
agents because it appears to increase
the stability of the cooperative net-
works. Cooperative networks can be
fragile. Networks of cooperative agents
fall apart when they become frag-
mented and are separated into smaller
parts. Fragmentation typically occurs
when one or more members of the
network are “invaded” by noncoop-
erative agents. Interactions with the
noncooperative agents can produce
energy losses that can lead the member
of the cooperative network to move
and in some cases to be eliminated.
This can allow noncooperative agents
into the network and can lead to its
fragmentation.

While movement helps generate
high levels of cooperation and the for-
mation and maintenance of cooperative
clusters of agents, too much movement
is very detrimental to the development
of high levels of cooperation.16 As noted
earlier, if agents were to move with cer-
tainty every time a nonpositive payoff
were obtained, then far too much
movement would occur, making the de-
velopment of both cooperative clusters
and a cooperative world impossible. In-
deed, if the probability of the move-
ment of agents with nonpositive payoffs
is adjusted so that, on average, agents
have a 10% chance of moving rather
than the original 1% chance, then coop-
eration is never achieved, regardless of
the type of movement and the mutation
magnitudes. Increasing the probability
of movement, even when agents have

FIGURE 5

Much larger nodes of cooperation populated by Grim agents evolve. Turn number 308, 544 of
the same simulation run reported in Figure 4.

FIGURE 6

Strategy mix with local movement.
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nonpositive payoffs, makes the genera-
tion of cooperative clusters impossible.
Cooperative clusters can only develop
and be maintained if agents have a rela-
tively low probability of moving even if
they receive a nonpositive payoff.
Movement is only beneficial if an agent
really is located in a position that gen-
erates a significant string of nonpositive
payoffs.

Cautious Cooperation: The “Grim
Transition”
When there is a transition from a non-
cooperative to a highly cooperative
world, a version of the Grim strategy
dominates numerically and appears to
be essential for this transition. Indeed,
the Grim strategy dominates all (75)
transitions to cooperation for the origi-
nally configured results and all transi-
tions to cooperation for the sensitivity
analysis simulation runs. In the transi-

tion period, cooperative nodes of a
“stingy” form of Grim (e.g., [0.85, 0.05,
0.05, 0.05]) begin to emerge. This is il-
lustrated in Figure 4, a screen capture of
the spatial grid at turn 306,202 of a
simulation with local movement. Coop-
erative nodes of Grim strategies (red
shaded) begin to emerge and are at-
tacked by highly noncooperative strate-
gies (darker shaded).17 As Grim strate-
gies come to dominate the world, the
strategies themselves transform and be-
come somewhat more generous. The
probability of cooperation after a CC in-
teraction approaches 1.0, and the other
probabilities increase to between 0 and
.3 overall (see the screen capture of the
spatial grid at turn 308,544 in Figure 5).

“Communities” of Cooperation
The emergence of small, relatively
stable nodes or networks of agents
characterize every transition from un-
cooperative to cooperative worlds. The

importance of the formation of net-
works is strengthened by the fact that
when the probability of agent move-
ment is made higher, cooperation does
not occur and no networks or clusters
form even when Grim agents dominate.
The networks of cooperative agents
form what could be considered to be
primitive social networks or the basic
foundations of “communities.”18

Once cooperative communities be-
come large and dense, agents employ-
ing all-D strategies may cause some

movement around the edges of the
community, but these agents are un-
able to break up the cooperative nodes.
Agents on the periphery of the commu-
nity may be driven to move by the nega-
tive interactions with all-D strategies,
but all-D agents find such interactions
unprofitable as well and will also soon
move away. The agents in the heart of
the community remain untouched,
continue to profit from the CC interac-
tions, and are in a situation to repro-
duce at a faster and more consistent

When there is a transition from
a noncooperative to a highly

cooperative world, a version of
the Grim strategy dominates

numerically and appears to be
essential for this transition.

FIGURE 7

Strategy mix with global movement.

FIGURE 8

Strategy mix with no movement.
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rate than other agents. This structure of
cooperation in which an external group
shields an internal core is similar to that
reported by Lomberg [17].

Changes in Dominant Cooperative
Strategy
Once cooperative networks are estab-
lished and interactions are almost en-
tirely characterized by mutual coopera-
tion, Grim-like strategies often lose
their numerical dominance. This occurs
because highly noncooperative strate-
gies such as all-D usually have been
eliminated, thereby diminishing the
danger of exploitation by these strate-
gies and allowing room for strategies
that are a little more forgiving than
Grim.19 These strategies are able to in-
filtrate the Grim communities by hav-
ing, like Grim, a high CC probability. No
one strategy clearly emerges. Indeed,
the emergence of strategies that are
Pavlov-like (see Figure 6) and TFT-like
(see Figure 7) and of a strategy that is
the combination of Grim coupled with
high CD probabilities (i.e., [0.99, 0.87,
0.03, 0.08]) are all about equally likely
to emerge, probably because it is the
CC probability that is most important.
The profile of strategies that come to
dominate or emerge appears to be
quite similar across the three types of
movement.

Collapse of Cooperation and
Cooperative Communities
Large clusters of cooperative agents
sometimes do collapse, and this usually
occurs because the networks of Grim-
like agents evolve into networks made
up of agents with strategies that are “too
nice.”20 The typical pattern that leads to
collapse is the upward drift in the prob-
ability of cooperating following a CD
outcome.21 In these cases, average CD
probabilities drift up to over 0.8 (Figure

8]. These agents, having a strategy mix
such as [0.99, 0.85, 0.10, 0.07], can easily
be taken advantage of, allowing nasty
strategies such as all-D or mean TFT to
invade. This leads to a long and slow
(up to 100,000 iterations) decline to
near total defection. Lomberg [17] and
Nowak and Sigmund [10] discovered a
similar pattern: The generation of too
many nice strategies makes successful
exploitation too easy, leading to the col-

lapse of cooperation. Lomborg [17] lik-
ened this situation to the “classic pre-
dicament of societies going ‘soft.’ ”

Summary
The artificial world that we have con-
structed is based on a spatial IPD that
places agents with limited capabilities
(limited memory and cognition, no
means of verbal communication, and
no shared history or beliefs) into a
harsh world (an anarchic, competitive
world where the environment consis-
tently drains their limited resources).
Yet, even in such a world, cooperative
networks usually eventually emerge,
and some, typically associated with the
ability of agents to move, can be quite
stable, leading to long-term high levels
of cooperation.

NOTES
1. Agent movement and interaction in spatial neighborhoods affect partner selection, a feature

shown to be relevant to the emergence of cooperation [3–7].
2. As with most agent-based modeling approaches [8], we begin with an explicit set of assump-

tions about some phenomena and use them to generate simulated data. We search for patterns
in the simulated data, particularly the large-scale effects from the interactions of locally
interacting agents or what are often referred to as “emergent properties” of the system (see
[9]).

3. We make this restriction because it makes our analysis comparable to a considerable amount
of previous work making the same restriction.

4. Following Nowak and Sigmund [10], the combination of seeding the initial strategy pool with
one strategy and the application of a genetic algorithm allow for complex emergent behavior.

5. See Nowak et al. [11] for an argument about the importance of considering social dilemmas
as occurring in social space and for a discussion of various geometries to represent social
space.

6. Minnis [12] suggests that human populations employ a number of coping strategies to exploit
spatial variability.

7. Dugatkin and Wilson [4], Nowak and May [13], Oliphant [14], Lindgren [15], Lindgren and
Nordahl [16], and Lomberg [17] have introduced a spatial component into the IPD or PD
environment.

8. A number of scholars have incorporated noncompulsory play into the IPD (see [18–21]).
9. Mobility is one of a number of important coping strategies or buffer mechanisms that human

populations use to exploit the favorable aspects of temporal and spatial variability to mitigate
the risk of scarcity [12, 22].

10. Our perspective on the relevance of an environmental carrying capacity is based on the work
of Hardin [23,24] and Clayton and Radcliffe [25], who argue that those human populations do
have cultural carrying capacities. Note as well that our cost of survival mechanism is similar
to the global metabolic rate of Epstein [26].

11. When innovation is characterized as a process whereby a very small percentage of agents
randomly vary their current strategy (e.g., [17]), then it has properties similar to generational
change via mutation.

12. Each simulation was run for 2 million iterations, a period of time sufficiently long for the
simulations to stabilize and either to reach a highly cooperative state or to remain in a
conflictual state, and also to observe the collapse of high levels of cooperation.

13. All 90 experienced an initial and rapid decline to near universal defection, and it takes a
considerable length of time before a transition to high levels of cooperation occurs. This is
primarily due to the fact that simulations begin in a relatively noncooperative world populated
by a set of random strategy agents. When the magnitude of change in strategies created by
mutations is small, it is very difficult to generate moderately or highly cooperative agents, and
the simulation is quite likely to remain mired in defection for a long period of time.

The importance of the formation of networks is strengthened by the fact
that when the probability of agent movement is made higher, cooperation
does not occur and no networks or clusters form even when Grim agents

dominate. The networks of cooperative agents form what could be
considered to be primitive social networks or the basic foundations

of “communities.”
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14. The results for the lower mutation rate are somewhat different from the main results reported earlier. As anticipated, cooperation is more difficult
to achieve with a lower mutation rate. But this is the case only when agents cannot move. Stable cooperation is still achieved 80% of the time with
movement and only 60% without movement. Also, as anticipated, when mutation magnitudes are increased, cooperative worlds are much more likely
to be generated across all three types of movement and high levels of cooperation are reached consistently more quickly.

15. We anticipated that local movement would be more effective at generating and maintaining cooperation than global movement because move-
ment to an adjacent location allows agents to stay in the same geographic locale, making it more likely that an agent can retain some of the same
beneficial relationships that it was involved in previously; “membership” in a cooperative cluster can be preserved. However, local movement pro-
vides a slightly greater likelihood of achieving a highly cooperative world than global movement, but such worlds are slightly more likely to
collapse.

16. This result is consistent with the work of Hutson and Vickers [6] and Ferriere and Michod [7]. They also discovered, by numerical and analytical
means, respectively, that while movement helps cooperative or altruistic strategies invade a population of defectors, too much movement is
detrimental.

17. It is Grim, rather than TFT, as Nowak and Sigmund [10] observed, that appears to succeed in invading the world of agents that are essentially
almost pure all-D, because, in addition to being provocable, retaliatory, and nice, they are only slightly forgiving (DC probabilities range from 0.05
to 0.3).

18. These networks are similar to what Taylor [27] refers to as egalitarian anarchic communities because they exhibit a limited form of reciprocity and
direct and many-sided relationships. However, they lack Taylor’s third characteristic of community, beliefs and values in common.

19. See Taylor [27] for a discussion of the importance of the norm of reciprocity in communities.
20. This should not be surprising because Lorberbaum [28] demonstrated that no strategy is an evolutionarily stable strategy in the infinitely repeated

prisoner’s dilemma.
21. The evolution of strategies with high CD probabilities in both highly cooperative and highly defection-dominated worlds appears to be a function of

evolutionary drift.
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