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ARTIFICIAL LIFE

CHRISTOPHER G. LANGTON

1. THE BIOLOGY OF POSSIBLE LIFE

Biology is the scientific study of life—in principle anyway. In practice, biology
is the scientific study of life on Earth based on carbon-chain chemistry. There
is nothing in its charter that restricts biology to the study of carbon-based life;
it is simply that this is the only kind of life that has been available to study.
Thus, theoretical biology has long faced the fundamental obstacle that it is
impossible to derive general principles from single examples.

Without other examples it is extremely difficult to distinguish essential prop-
erties of life—properties that must be shared by any living system in principle—
from properties that may be incidental to life, but which happen to be universal
to life on Earth due solely to a combination of local historical accident and
common genetic descent. Since it is quite unlikely that organisms based on
different physical chemistries will present themselves to us for study in the
foreseeable future, our only alternative is to try to synthesize alternative life-
forms ourselves—Artificial Life: life made by man rather than by nature.

1.1. Artificial Life

Biology has traditionally started at the top, viewing a living organism as a
complex biochemical machine, and has worked analytically down from there
through the hierarchy of biological organization—decomposing a living organ-
ism into organs, tissues, cells, organelles, and finally molecules—in its pursuit
of the mechanisms of life. Analysis means ‘the separation of an intellectual or
substantial whole into constituents for individual study’. By composing our
individual understandings of the dissected component parts of living organisms,

© 1989 Addison-Wesley Publishing Company, Inc. Reprinted from L. Nadel and D. Stein (eds.), 1991
Lectures in Complex Systems (Santa Fe Institute Studies in the Sciences of Complexity, Lectures, 4;
R_eading, Mass: Addison-Wesley, 1992), 189-241. Reprinted by permission. This is an updated ver-
sion of a paper that originally appeared in Langton (1989b).
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traditional biology has provided us with a broad picture of the mechanics of life
on Earth.

But there is more to life than mechanics—there is also dynamics. Life depends
critically on principles of dynamical self-organization that have remained largely
untouched by traditional analytic methods. There is a simple explanation for
this—these self-organizing dynamics are fundamentally non-linear phenomena,
and non-linear phenomena in general depend critically on the interactions be-
tween parts: they necessarily disappear when parts are treated in isolation from
one another, which is the basis for the analytic method.

Rather, non-linear phenomena are most appropriately treated by a synthetic
approach. Synthesis means ‘the combining of separate elements or substances
to form a coherent whole’. In non-linear systems, the parts must be treated in
each other’s presence, rather than independently from one another, because
they behave very differently in each other’s presence than we would expect
from a study of the parts in isolation.

Artificial Life is simply the synthetic approach to biology: rather than take
living things apart, Artificial Life attempts to put living things together.

But Artificial Life is more than this. To understand the overall aims of the
Artificial Life enterprise, one needs to do the following: (1) Broaden the scope
of the attempts, beyond simply recreating ‘the living state’, to the synthesis of
any and all biological phenomena, from viral self-assembly to the evolution
of the entire biosphere. (2) Couple this with the observation that there is no
reason, in principle, why the parts we use in our attempts to synthesize these
biological phenomena need be restricted to carbon-chain chemistry. (3) Note
that we expect the synthetic approach to lead us not only to, but quite often
beyond, known biological phenomena: beyond life-as-we-know-it into the realm
of life-as-it-could-be.

Thus, for example, Artificial Life involves attempts to (1) synthesize the
process of evolution (2) in computers, and (3) will be interested in whatever
emerges from the process, even if the results have no analogues in the ‘natural’
world. It is certainly of scientific interest to know what kinds of things can
evolve in principle, whether or not they happened to do so here on Earth,

1.2. Al and the Behaviour Generation Problem

Artificial Life is concerned with generating lifelike behaviour. Thus it focuses
on the problem of creating behaviour generators. A good place to start is to
identify the mechanisms by which behaviour is generated and controlled in
natural systems, and to recreate these mechanisms in artificial systems. This is
the course we shall take later in this paper.
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' The related field of Artificial Intelligence is concerned with generating inrel-
ligent behaviour. It, too, focuses on the problem of creating behaviour genera-
tors. However, although it initially looked to natural intelligence to identify its
underlying mechanisms, these mechanisms were not known, nor are they today
Therefore, following an initial flirt with neural nets, Al became wedded to the;
only other known vehicle for the generation of complex behaviour: the techno-
lqu of serial computer programming. As a consequence, from the very begin-
ning artificial intelligence embraced an underlying methodology for the
generation of intelligent behaviour that bore no demonstrable relationship to the
method by which intelligence is generated in natural systems. In fact, Al has
focused‘ primarily on the production of intelligent solutions rather than on the
production of intelligent behaviour. There is a world of difference between
these two possible foci.

By contrast, Artificial Life has the great good fortune that many of the
mechanisms by which behaviour arises in natural living systems are known.
There are still many holes in our knowledge, but the general picture is in place,
Therefore, Artificial Life can start by recapturing natural life and has no need
to resort to the sort of initial infidelity that is now coming back to haunt AL

'I.‘he key insight into the natural method of behaviour generation is gained by
noting that nature is fundamentally parallel. This is reflected in the ‘architec-
ture’ of natural living organisms, which consist of many millions of parts, each
one of which thas its own behavioural repertoire. Living systems are highly
distributed and quite massively parallel. If our models are to be true to life, they
must also be highly distributed and quite massively parallel. Indeed, it is un-
likely that any other approach will prove viable.

2. HISTORICAL ROOTS OF ARTIFICIAL LIFE

Mankind has a long history of attempting to map the mechanics of his contem-
porary technology on to the workings of nature, trying to understand the latter
in terms of the former.

It is not surprising, therefore, that early models of life reflected the principal
Itechnology of their era. The earliest models were simple statuettes and paint-
ings—works of art which captured the static form of living things. These statues
were Qrovided with articulated arms and legs in the attempt to capture the
dynam¥c form of living things. These simple statues incorporated no internal
dynamics, requiring human operators to make them behave.

The earliest mechanical devices that were capable of generating their own
behaviour were based on the technology of water transport. These were the
carly Egyptian water-clocks called Clepsydra. These devices made use of a
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rate-limited process—in this case the dripping of water tbrough a fixed oriﬁf:g——
to indicate the progression of another process—the position of the sun. Ctesibius
of Alexandria developed a water-powered mechanical clock arounc.i 135 BC
which employed a great deal of the available hydraulic technology-—including
floats, a siphon, and a water-wheel-driven train of gears. . ‘

In the first century AD, Hero of Alexandria produced a treatise on Preumatics,
which described, among other things, various simple gadgets in the sha.pe of
animals and humans that utilized pneumatic principles to generate simple
movements.

However, it was really not until the age of mechanical clocks that artefacts
exhibiting complicated internal dynamics became possible. Around ap 850 the
mechanical escapement was invented, which could be us§d to regulate the
power provided by falling weights. This invention ushered in the great age of
clockwork technology. Throughout the Middle Ages and the Renaissance, the
history of technology is largely bound up with the technology of clocks. Clocks
often constituted the most complicated and advanced application of the tech-

of an era.

nog)egr}}/laps the earliest clockwork simulations of life were the s.o—called ‘Jacks’,
mechanical ‘men’ incorporated in early clocks who would swing a hammer to
strike the hour on a bell. The word ‘jack’ is derived from * jaccomarchxad‘us’,
which means ‘the man in the suit of armour’. These accessory figures retained
their popularity even after the spread of clock dials and ha‘mds——tc? the ext.ent
that clocks were eventually developed in which the function of Umekeelljmg
was secondary to the control of large numbers of figures engaged in various
activities, to the point of acting out entire plays.

Finally, clockwork mechanisms appeared which had done gway altogether
with any pretence at timekeeping. These ‘automata’ \A{ere entirely devotec% to
imparting lifelike motion to a mechanical figure or animal. These mechanlscal
automaton simulations of life included such things as elephants, peacocks, sing-
ing birds, musicians, and even fortune-tellers.

This line of development reached its peak in the famous duck of Vaucanson,
described as ‘an artificial duck made of gilded copper who drinks, eats, quacks,
splashes about on the water, and digests his food like a living duck’.! Vaucanson’s
goal is captured neatly in the following description:

In 1735 Jacques de Vaucanson arrived in Paris at the age of 26. Under. the il}ﬂqence of
contemporary philosophic ideas, he had tried, it seems, to reproduce life artificially.

Unfortunately, neither the duck itself nor any technical descriptions or diagrarps
remain that would give the details of construction of this duck. The complexity

' All guotes concerning these mechanical ducks are from Chapuis and Droz (1958).
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of the mechanism is attested to by the fact that one single wing contained over
400 articulated pieces.

One of those called upon to repair Vaucanson’s duck in later years was a
‘mechanician’ named Reichsteiner, who was so impressed with it that he went on
to build a duck of his own—also now lost—which was exhibited in 1847, Here
is an account of this duck’s operation from the newspaper Das Freie Wort:

After a light touch on a point on the base, the duck in the most natural way in the world
begins to look around him, eyeing the audience with an intelligent air. His lord and
master, however, apparently interprets this differently, for soon he goes off to look for
something for the bird to eat. No sooner has he filled a dish with oatmeal porridge than
our famished friend plunges his beak deep into it, showing his satisfaction by some
characteristic movements of his tail. The way in which he takes the porridge and swal-
lows it greedily is extraordinarily true to life. In next to no time the basin has been half
emptied, although on several occasions the bird, as if alarmed by some unfamiliar noises,
has raised his head and glanced curiously around him. After this, satisfied with his frugal
meal, he stands up and begins to flap his wings and to stretch himself while expressing
his gratitude by several contented quacks. But most astonishing of all are the contractions
of the bird’s body clearly showing that his stomach is a little upset by this rapid meal and
the effects of a painful digestion become obvious. However, the brave little bird holds
out; and after a few moments we are convinced in the most concrete manner that he has
overcome his internal difficulties. The truth is that the smell which now spreads through
the room becomes almost unbearable, We wish to express to the artist inventor the
pleasure which his demonstration gave to us.

Fig. 1.1 shows two views of one of the ducks—there is some controversy as
to whether it is Vaucanson’s or Reichsteiner’s. The mechanism inside the duck
would have been completely covered with feathers and the controlling mechan-
ism in the box below would have been covered up as well.

2.1. The Development of Control Mechanisms

Out of the technology of the clockwork regulation of automata came the more
general—and perhaps ultimately more important—technology of process con-
trol. As attested to in the descriptions of the mechanical ducks, some of the clock-
work mechanisms had to control remarkably complicated actions on the part of
the automata, not only powering them but sequencing them as well.

Control mechanisms evolved from early, simple devices—such as a lever
attached to a wheel which converted circular motion into linear motion—to
later, more complicated devices—such as whole sets of cams upon which would
ride many interlinked mechanical arms, giving rise to extremely complicated
automaton behaviours.

Eventually programmable controllers appeared, which incorporated such
devices as interchangeable cams, or drums with movable pegs, with which one
could program arbitrary sequences of actions on the part of the automaton. The
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Frg. 1.1. Two views of the mechanical duck attributed to Vaucanson. From Chapuis and
Droz (1958). Reprinted by permission

writing and picture-drawing auiomata of Fig. 1.2, buﬂt‘ by the ?aquet-Droz
family, are examples of programmable automata. The introduction of such
programmable controllers was one of the primary developments on the road to
general-purpose compuiers.

2 2. Abstraction of the Logical ‘Form’ of Machines

During the early part of the twentieth century, the formal application .of logic
to the mechanical process of arithmetic led to the apstract formulation Qf a
*procedure’. The work of Church, Kleene, Godel, Turing, and l?ost‘ formalized
the notion of a logical sequence of steps, leading to the rgahzaﬁon Fhat the
essence of a mechanical process—the ‘thing’ responsible for its d?fnamlc b?ha-
viour—is not a thing at all, but an abstract control stru.cture, or ‘program —a
sequence of simple actions selected from a finite repertoire. Furthermore, it was1
recognized that the essential features of this cogtrol .structur.e could be capture

within an abstract set of rules—a formal specxﬁcatlon——wnhogt regard v,:o the
material out of which the machine was constructed. The‘ ‘logical‘ form’ of a
machine was separated from its material basis of construction, and it was found
that ‘machineness’ was a property of the former, not of the latter. Today, the
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F1c. 1.2, Two views of a drawing automaton built by the Jaquet-Droz family. From
Chapuis and Droz (1958). Reprinted by permission

formal equivalent of a ‘machine’ is an algorithm: the logic underlying the
dynamics of an automaton, regardless of the details of its material construction,
We now have many formal methods for the specification and operation of
abstract machines: such as programming languages, formal language theory,
automata theory, recursive function theory, etc. All these have been shown to
be logically equivalent,

Once we have learned to think of machines in terms of their abstract, formal
specifications, we can turn around and view abstract, formal specifications as
potential machines. In mapping the machines of our common experience (o
formal specifications, we have by no means exhausted the space of possible
specifications. Indeed, most of our individual machines map to a very small
subset of the space of specifications—a subset largely characterized by method-
ical, boring, uninteresting dynamics.

2.3. General-Purpose Computers

Various threads of technological development—programmable controllers, cal-
culating engines, and the formal theory of machines—have come together in
the general-purpose, stored-program computer. Programmable computers are
extremely general behaviour generators. They have no intrinsic behaviour of
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their own. Without programs, they are like formless matter. They must be told
how to behave. By submitting a program to a computer—that is: by giving it
a formal specification for a machine—we are telling it to behave as if it were
the machine specified by the program. The computer then ‘emulates’ that more
specific machine in the performance of the desired task. Its great power lies in
its plasticity of behaviour. If we can provide a step-by-step specification for a
specific kind of behaviour, the chameleon-like computer will exhibit that be-
haviour. Computers should be viewed as second-order machines—given the
formal specification of a first-order machine, they will ‘become’ that machine.
Thus the space of possible machines is directly available for study, at the cost
of a mere formal description: computers ‘realize’ abstract machines.

24 Formal Limits of Machine Behaviours
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3. THE ROLE OF COMPUTERS IN STUDYING LIFE AND
OTHER COMPLEX SYSTEMS

Artificial Intelligence and Artificial Life are’each concerned with the applica-
tion of computers to the study of complex, natural phenomena. Both z'ire con-
cerned with generating complex behaviour. However, the manner in which ea}ch
field employs the technology of computation in the pursuit of its respective
goals is strikingly different. o ' ‘

Al has based its underlying methodology for generating intelligent behavu.)ur
on the computational paradigm. That is, Al uses the technology of computation
as a model of intelligence. AL, on the other hand, is attempting to deve%op a
new computational paradigm based on the natural processes that support l.1vmg
organisms. That is, AL uses insights from biology to explore the dynamlcs of
interacting information structures. AL has not adopted the computatxo'nal para-
digm as its undertying methodology of behaviour generation, nor does it attempt
to ‘explain’ life as a kind of computer program. '

One way to pursue the study of artificial life would be to attempt to create life
in vitro, using the same kinds of organic chemicals out of which we are con-
stituted, Indeed, there are numerous exciting efforts in this direction. This Woul.d
certainly teach us a lot about the possibilities for alternative life-forms within
the carbon-chain chemistry domain that could have (but didn’t) evolve here.

However, biomolecules are extremely small and difficult to work with, re-
quiring rooms full of special equipment, replete with doz‘ens of ‘p_ostdocs’ and
graduate students willing to devote the larger part of their professional careers
to the perfection of electrophoretic gel techniques. Besides, although the crea-
tion of life in vitro would certainly be a scientific- feat worthy of note—and
probably even a Nobel prize—it would not, in the long run, tell us much more
about the space of possible life than we already know.

Computers provide an alternative medium within which to attempt t.o syn-
thesize life. Modern computer technology has resulted in machinery with tre-
mendous potential for the creation of life in silico.

Computers should be thought of as an important laboratory tool fo.r the study
of life, substituting for the array of incubators, culture dishes, microscopes,
electrophoretic gels, pipettes, centrifuges, and other assorted wet-lab parapher-
nalia, one simple-to-master piece of experimental equipment devoted exclus-
ively to the incubation of information structures. ‘

The advantage of working with information structures is that information has
no intrinsic size. The computer is the tool for the manipulation of information,
whether that manipulation is a consequence of our actions or a consequence of
the actions of the information structures themselves. Computers themselves
will not be alive, rather they will support informational universes within which
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dynamic populations of informational ‘molecules’ engage in informational ‘bio-
chemistry’.

This view of computers as workstations for performing scientific experi-
ments within artificial universes is fairly new, but it is rapidly becoming ac-
cepted as a legitimate, even necessary, way of pursuing science. In the days
before computers, scientists worked primarily with systems whose defining
equations could be solved analytically, and ignored those whose defining equa-
tions could not be so solved. This was largely the case because, in the absence
of analytic solutions, the equations would have to be integrated over and over
again, essentially simulating the time behaviour of the system. Without com-
puters to handle the mundane details of these calculations, such an undertaking
was unthinkable except in the simplest cases.

However, with the advent of computers, the necessary mundane calculations
can be relegated to these idiot-savants, and the realm of numerical simulation
is opened up for exploration. ‘Exploration’ is an appropriate term for the pro-
cess, because the numerical simulation of systems allows one to ‘explore’ the
system’s behaviour under a wide range of parameter seitings and initial con-
ditions. The heuristic value of this kind of experimentation cannot be over-
estimated. One often gains tremendous insight for the essential dynamics of a
system by observing its behaviour under a wide range of initial conditions,
Most importantly, however, computers are beginning to provide scientists with
a new paradigm for modelling the world. When dealing with essentially
unsolvable governing equations, the primary reason for producing a formal
mathematical model—the hope of reaching an analytic solution by symbeolic
manipulation—is lost. Systems of ordinary and partial differential equations are
not very well suited for implementation as computer algorithms. One might
expect that other modelling technologies would be more appropriate when the
goal is the synthesis, rather than the analysis, of behaviour.?

This expectation is easily borne out. With the precipitous drop in the cost of
Iaw computing power, computers are now available that are capable of simu-
lating physical systems from first principles. This means that it has become
possible, for example, to model turbulent flow in a fluid by simulating the
motions of its constituent particles—not Just approximating changes in concen-
trations. of particles at particular points, but actually computing their motions
exactly (Frisch er al. 1986; Wolfram 1986; Toffoli and Margolus 1987).

What does all this have to do with the study of life? The most surprising
lesson we have learned from simulating complex physical systems on computers
is that complex behaviour need not have complex roots. Indeed, tremendously
interesting and beguilingly complex behaviour can emerge from collections of

® See Toffoli (1984) for a good exposition,
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FIG. 1.4. The bottom-up versus the top-down approach to modelling complex systems.
From Langton (1989a)

extremely simple components. This leads directly to the excitipg possibility that
much of the complex behaviour exhibited by nature——espe‘mall‘y t-he complex
behaviour that we call life—also has simple generators. Since it is very hard
to work backwards from a complex behaviour to its‘ generator, b'uF very simple
to create generators and synthesize complex behaviour, a promising approa;:lh
to the study of complex natural systems is to unde‘rtake the general stu<.iy‘of the
kinds of behaviour that can emerge from distributed systems consisting of

simple components (Fig. 1.4).

4. NON-LINEARITY AND LOCAL DETERMINATION
OF BEHAVIOUR

4.1. Linear vs. Non-linear Systems

As mentioned briefly above, the distinction between lir_lear and non—lin?m.sys-
tems is fundamental, and provides excellent insight into why‘the principles
underlying the dynamics of life should be so hard to find. The s%mplest way tF)
state the distinction is to say that linear systems are tho_se for wh1ch‘the behavi-
our of the whole is just the sum of the behaviour of its parts, while ‘for non-
linear systems, the behaviour of the whole is more than the sum F)f its parts.

Linear systems are those which obey the principle of superposition. We can
break up complicated linear systems into simpler constituent parts, and analy§e
these parts independently. Once we have reached an understanding of the part§ in
isolation, we can achieve a full understanding of the whole system by composing
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our understandings of the isolated parts. This is the key feature of linear systems:
by studying the parts in isolation, we can learn everything we need to know
about the complete system.

This is not possible for non-linear systems, which do not obey the principle
of superposition. Even if we could break such systems up into simpler constitu-
ent parts, and even if we could reach a complete understanding of the parts in
isolation, we would not be able to compose our understandings of the indi-
vidual parts into an understanding of the whole system. The key feature of non-
linear systems is that their primary behaviours of interest are properties of the
interactions between parts, rather than being properties of the parts themselves,
and these interaction-based properties necessarily disappear when the parts are
studied independently.

Thus analysis is most fruitfully applied to linear systems. Analysis has not
proved anywhere near as effective when applied to non-linear systems: the non-
linear system must be treated as a whole.

A different approach to the study of non-linear systems involves the inverse
of analysis: synthesis. Rather than start with the behaviour of interest and
attempting to analyse it into its constituent parts, we start with constituent parts
and put them together in the attempt to synthesize the behaviour of interest.

Life is a property of form, not maiter, a result of the organization of matter
rather than something that inheres in the matter itself, Neither nucleotides nor
amino acids nor any other carbon-chain molecule is alive—yet put them to-
gether in the right way, and the dynamic behaviour that emerges out of their
interactions is what we call life. It is effects, not things, upon which life is
based—life is a kind of behaviour, not a kind of stuff—and as such, it is
constituted of simpler behaviours, not simpler stuff. Behaviours themselves can
constitute the fundamental parts of non-linear systems—virtual parts, which
depend on non-linear interactions between physical parts for their very exist-
ence. Isolate the physical parts and the virtual parts cease to exist. It is the
virtual parts of living systems that Artificial Life is after, and synthesis is its
primary methodological tool.

4.2. The Parsimony of Local Determination of Behaviour

It is easier to generate complex behaviour from the application of simple, local
rules than it is to generate complex behaviour from the application of complex,
8lobal rules. This is because complex global behaviour is usually due to non-
linear interactions occurring at the local level. With bottom-up specifications,
the system computes the local, non-linear interactions explicitly and the global
behaviour, which was implicit in the local rules, emerges Spontaneously without
being treated explicitly.
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With top-down specifications, however, local behaviour must be implicit in
global rules! This is reaily putting the cart before the horse! T%le glgbal rule§ must
‘predict’ the effects on global structure of many local, nqn—lmear interactions—
something which we have seen is intractable, even impossible, in the ger.le‘ral case.
Thus top-down systems must take computational short cuts and exphmdy ‘deal
with special cases, which results in inflexible, brittle, and unnatural _behavmur.

Furthermore, in a system of any complexity, the number o.f poss1b.Ie global
states is astronomically enormous, and grows exponentially with thg size .of the
system., Systems that attempt to supply global rules for global behaviour simply
cannot provide a different rule for every global s.tate‘ Tl:lus the global st.ates
must be classified in some manner, and categorized using a coaxse?grz'un‘ed
scheme according to which the global states within a category are mdlstlm-
guishable. The rules of the system can only be appliec.l at the level of re.soluqon
of these categories. There are many possible ways to m'lplement a classification
scheme, most of which will yield different partitionings of the global-.state
space. Any rule-based system must necessarily assume that f‘mer-gramed c%1ffer-
ences do not matter, or must include a finite set of tests for ‘special cases’, and
then must assume that no other special cases are releva.nt.

For most complex systems, however, fine differences in the global state can
result in enormous differences in global behaviour,. and there may be no way
in principle to partition the space of global states in such a way that specific
fine differences have the appropriate global impact. .

On the other hand, systems that supply local rul.es for local behaviours
can provide a different rule for each and every possible 1gcal state. Further-
more, the size of the local-state space can be completely independent of the
size of the system. In local rule-governed systems, each local. state, apd conse-
quently the global state, can be determined exactly .and prems'ely. Fine differ-
ences in the global state will result in very specific differences in the llocal state
and, consequently, will affect the invocation of local rules. A§ fine differences
affect local behaviour, the difference will be felt in an expandmg patch of local
states, and in this manner—propagating from local nelgt.lbourhood. to local
neighbourhood—fine differences in global state can. r‘esult in large d%fferences
in global behaviour. The only ‘special cases’ explicitly dealt with in locally

determined systems are exactly the set of all possible local states, and the rules

for these are just exactly the set of all local rules governing the system.

5. BIOLOGICAL AUTOMATA

Organisms have been compared to exiremely complicated and finely tuged
biochemical machines. Since we know that it is possible to abstract the logical
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form of a machine from its physical hardware, it is natural to ask whether it is
possible to abstract the logical form of an organism from its biochemical wetware.
The field of Artificial Life is devoted to the investigation of this question.

In the following sections we shall look at the manner in which behaviour is
generated in a bottom-up fashion in living systems. We then generalize the mech-
anisms by which this behaviour generation is accomplished, so that we may
apply them to the task of generating behaviour in artificial systems.

We shall find that the essential machinery of living organisms is quite a bit
different from the machinery of our own invention, and we would be quite
mistaken to attempt to force our preconceived notions of abstract machines on
to the machinery of life. The difference, once again, lies in the exceedingly
parallel and distributed nature of the operation of the machinery of life, as
contrasted with the singularly serial and centralized control structures associ-
ated with the machines of our invention.

3.1. Genotypes and Phenotypes

The most salient characteristic of living systems, from the behaviour generation
point of view, is the genotype/phenotype distinction. The distinction is essen-
tially one between a specification of machinery—ithe genotype—and the behav-
iour of that machinery—the phenotype,

The genotype is the complete set of genetic instructions encoded in the linear
sequence of nucleotide bases that makes up an organism’s DNA. The phenotype
is the physical organism itself—the structures that emerge in space and time as
the result of the interpretation of the genotype in the context of a particular
environment. The process by which the phenotype develops through time under
the direction of the genotype is called morphogenesis. The individual genetic
instructions are called genes and consist of short stretches of DNA. These
instructions are ‘executed’—or expressed—when their DNA sequence is used
as a template for transcription. In the case of protein synthesis, transcription
results in a duplicate nucleotide strand known as a messenger RNA—or mRNA—
constructed by the process of base-pairing. This mRNA strand may then be
modified in various ways before it makes its way out to the cytoplasm where,
at bodies known as ribosomes, it serves as a template for the construction of
a linear chain of amino acids. The resulting Ppolypeptide chain will fold up on
itself in a complex manner, forming a tightly packed molecule known as a
protein. The finished protein detaches from the ribosome and may go on to serve
as a passive structural element in the cell, or may have a more active role as an
enzyme. Enzymes are the functional molecular ‘operators’ in the logic of life.

One may consider the genotype as a largely unordered ‘bag’ of instructions,
each one of which is essentially the specification for a ‘machine’ of some sort—
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passive or active. When instantiated, each such ‘machine’ will en.ter into‘ the
ongoing logical ‘fray’ in the cytoplasm, consisting largely of local mteracuops
between other such machines. Bach such instruction will be ‘executed’ when its
own triggering conditions are met and will have specific, local efféct.s on struc-
tures in the cell. Furthermore, each such instruction will operate within the con-
text of all the other instructions that have been—or are being.—executed.

The phenotype, then, consists of the structures and dyngmlf:s that‘emerge
through time in the course of the execution of the parall.el, dlstnbutfed compu-
tation’ controlled by this genetic ‘bag’ of instructions. Since genes’ mteracﬂgns
with one another are highly non-linear, the phenotype is a non-linear function
of the genotype.

5.2. Generalized Genotypes and Phenotypes

In the context of Artificial Life, we need to generalize the notions of .genotype
and phenotype, so that we may apply them in non-biological situations. We
shall use the term generalized genotype—ot GTYPE—to refer to any largely
unordered set of low-level rules, and we shall use the term generalized pheno-
type—or PTYPE—to refer to the behaviours and/or structures tha.t emerge ogt
of the interactions among these low-level rules when they are activated within
the context of a specific environment. The GTYPE, essentially, is the specifi-
cation for a set of machines, while the PTYPE is the behaviour that results as
the machines are run and interact with one another.

This is the bottom-up approach to the generation of behaviour. A set of
entities is defined, and each entity is endowed with a specification for a sir.np_le
behavioural repertoire—a GTYPE—that contains instractions which detail .1ts
reactions to a wide range of local encounters with other such entities or with
specific features of the environment. Nowhere is the behaviour of the set of
entities as a whole specified. The global behaviour of the aggregate——-t}.le PTYPE
—emerges out of the collective interactions among individual entities.

It should be noted that the PTYPE is a multi-level phenomenon. First, there
is the PTYPE associated with each particular instruction—the effect which that
instruction has on an entity’s behaviour when it is expressed. Second, there is
the PTYPE associated with each individual entity—its individual behaviour
within the aggregate. Third, there is the PTYPE associated with the behaviour
of the aggregate as a whole. . .

This is true for natural systems as well. We can talk about the phenotypic trait
associated with a particular gene, we can identify the phenotype of an individ-
ual cell, and we can identify the phenotype of an entire multi-cellular organism—
its body, in effect. PTYPES should be complex and multi-level. If we want
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‘Global behaviours and structures
emerge at this level

DEVELOPMENT

Local rules govern simple
non-linear interactions
at this level

F1c. 1.5. The relationship between GTYPE and PTYPE. From Langton (1989a)

to simulate life, we should expect to see hierarchical structures emerge in our
simulations. In general, phenotypic traits at the level of the whole organism will
be the result of many non-linear interactions between genes, and there will be
no single gene to which one can assign responsibility for the vast majority of
phenotypic traits.

In summary, GTYPES are low-level rules for behavors—i.e. abstract speci-
fications for ‘machines’—which will engage in local interactions within a large
aggregate of other such behavors. PTYPES are the behaviours—the structures

in time and space—that develop out of these non-linear, local interactions
(Fig. 1.5).

5.3. Unpredictability of PTYPE from GTYPE

Non-linear interactions between the objects specified by the GTYPE provide
the basis for an extremely rich variety of possible PTYPES. PTYPES draw on
the full combinatorial potential implicit in the set of possible interactions between
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low-level rules. The other side of the coin, however, is that we cannot predict
the PTYPES that will emerge from specific GTYPES, due to the general
unpredictability of non-linear systems. If we wish to maintain the property of
predictability, then we must restrict severely the non-linear dependence of PTYPE
on GTYPE, but this forces us to give up the combinatorial richness of possible
PTYPES. Therefore, a trade-off exists between behavioural richness and pre-
dictability (or ‘programmability’). We shall see in the section on evolution that
the lack of programmability is adequately compensated for by the increased
capacity for adaptiveness provided by a rich behavioural repertoire.

As discussed previously, we know that it is impossible in the general case
to determine any non-trivial property of the future behaviour of a sufficiently
powerful computer from a mere inspection of its program and its initial state
alone (Hopcroft and Ullman 1979). A Turing machine—the formal equivalent
of a general-purpose computer—can be captured within the scheme of GTYPE/
PTYPE systems by identifying the machine’s transition table as the GTYPE
and the resulting computation as the PTYPE. From this we can deduce that in
the general case it will not be possible to determine, by inspection alone, any
non-trivial feature of the PTYPE that will emerge from a given GTYPE in the
context of a particular initial configuration. In general, the only way to find out
anything about the PTYPE is to start the system up and watch what happens
as the PTYPE develops under control of the GTYPE and the environment.

Similarly, it is not possible in the general case to determine what specific
alterations must be made to a GTYPE to effect a desired change in the PTYPE.
The problem is that any specific PTYPE trait is, in general, an effect of many,
many non-linear interactions between the behavioural primitives of the system
(an ‘epistatic trait’ in biological terms). Consequently, given an arbitrary pro-
posed change to the PTYPE, it may be impossible to determine by any formal
procedure exactly what changes would have to be made to the GTYPE to effect
that—and only that—change in the PTYPE. It is not a practically computable
problem. There is no way to calculate the answer—short of exhaustive search—
even though there may be an answer!”

The only way to proceed in the face of such an unpredictability result is by
a process of trial and error. However, some processes of trial and error are more
efficient than others. In natural systems, trial and error are interlinked in such
a way that error guides the choice of trials under the process of evolution by
natural selection. It is quite likely that this is the only efficient, general procedure
that could find GTYPES with specific PTYPE traits when non-linear functions
are involved.

" An example in biology would be: What changes would have to be made to the genome in order
to produce six fingers on each hand rather than five?
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6. RECURSIVELY GENERATED OBJECTS

In the previous section, we described the distinction between genotype and
phenotype, and we introduced their generalizations in the form of GTYPES and
PTYPES. In this section, we shall review a general approach to building GTYPE/
PTYPE systems based on the methodology of recu}‘sively generated objects.

A major appeal of this approach is that it arises naturally from the GTYPE/
PTYPE distinction: the local developmental rules—the recursive description
itself—constitute the GTYPE, and the developing structure—the recursively
generated object or behaviour itself—constitutes the PTYPE.

Under the methodology of recursively generated objects, the ‘object’ is a
structure that has sub-parts. The rules of the system specify how to modify the
most elementary, ‘atomic’ sub-parts, and are usually sensitive to the context in
which these atomic sub-parts are embedded. That is, the state of the ‘neigh-
bourhood’ of an atomic sub-part is taken into account in determining which
rule to apply in order to modify that sub-part, It is usually the case that there
are no rules in the system whose context is the entire structure; that is, there
is no use made of global information. Each piece is modified solely on the basis
of its own state and the state of the pieces ‘nearby’,

Of course, if the initial structure consists of a single part—as might be the
case with the initial seed—then the context for applying a rule is necessarily
global. The usual sitaation is that a structure consists of many parts, only a local
subset of which determine the rule that will be used to modify any one sub-part
of the structure.

A recursively generated object, then, is a kind of PTYPE, and the recursive
description that generates it is a kind of GTYPE. The PTYPE will emerge
under the action of the GTYPE, developing through time via a process akin to
morphogenesis.

We shall illustrate the notion of recursively generated objects with examples
taken from the literature on L-systems, cellular automata, and computer animation,

6.1. Example 1: Lindenmayer Systems

Lindenmayer systems (L-systems) consist of sets of rules for rewriting strings
of symbols, and bear strong relationships to the formal grammars treated by
Chomsky. We shall give several examples of L-systems illustrating the meth-
odology of recursively generated objects.®

In the following ‘X — ¥’ means that one replaces every occurrence of

# For a more detailed review, see Prusinkiewicz (1991).
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symbol X in the structure with string Y. Since the symbol X may appear on the
right as well as the left sides of some rules, the set of rules can be applied
‘recursively’ to the newly rewritten structures. The process can be continued ad
infinitum although some sets of rules will result in a ‘final’ configuration when
no more changes occur.

Simple Linear Growth. Here is an example of the simplest kind of L-system.
The rules are context free, meaning that the context in which a particular part
is situated is not considered when altering it. There must be only one rule per
part if the system is to be deterministic.

The rules (the ‘recursive description’ or GTYPE):

HA—-CB
2)B—-A
3) C > DA
4 D->C

When applied to the initial seed structure ‘A’, the following structural history
develops (each successive line is a successive time-step):

time structure rules applied (L to R)
0 A (initial ‘seed’)
i CB (rule 1 replaces A with CB)
2 DAA (rule 3 replaces C with DA and rule 2 replaces B

with A)
(rule 4 replaces D with C and rule 1 replaces the two
As with CBs)

3 CCBCB

4 ... (ete) ...
And so forth.

The ‘PTYPE’ that emerges from this kind of recursive application of a sim-
ple, local rewriting rule can get extremely complex. These kinds of grammars
(whose rules replace single symbols) have been shown to be equivalent to the
operation of finite-state machines, With appropriate restrictions, they are also
equivalent to the ‘regular languages’ defined by Chomsky.

Branching Growth. L-systems incorporate meta-symbols to represent branch-
ing points, allowing a new line of symbols to branch off from the main ‘stem’
(see Fig. 1.6).

The following grammar produces branching structures. The ‘()" and ‘[ I’
notations indicate left and right branches, respectively, and the strings within
them indicate the structure of the branches themselves.
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n=5, §=18°

@ : plant
p, : plant - internode + [ plant + flower ] ~ -/ /
[— — leaf ] internode [ + + leaf ] ~
' [ plant flower ] + + plant flower
P, internode — Fseg [ // & & leaf ] [// AN leaf ] Fseg
p; :seg — seg F seg
pstleaf — [ { +f-ffft | +fFEF ) |
ps « flower — [ & & & pedicel * /wedge // [/ wedge /] ]/
. wedge / / /[ wedge / / / / wedge ]
Ps : pedicel — FF
priwedge > [“AF][{ & & & & —f4f | 41} ]

F16. 1.6. An L-system plant grown from rules incorporati i ing i
L in, h -
ation. From Prusinkiewicz (1991) ® g graphical rendering inform
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is the entire universe: a lattice of finite automata. The local rule set—the
GTYPE—in this case is the transition function obeyed homogeneously by every
automaton in the lattice. The local context taken into account in updating the
state of each automaton is the state of the automata in its immediate neighbour-
hood. The transition function for the automata constitutes a local physics for a
simple, discrete space/time universe. The universe is updated by applying the
local physics to each local ‘cell” of its structure over and over again. Thus,
although the physical structure itself does not develop over time, its state does.

Within such universes, one can embed all manner of processes, relying on
the context sensitivity of the rules to local neighbourhood conditions to propa-
gate information around within the universe ‘meaningfully’. In particular, one
can embed general-purpose computers. Since these computers are simply par-
ticular configurations of states within the lattice of automata, they can compute
over the very set of symbols out of which they are constructed. Thus, structures
in this universe can compute and construct other structures, which also may
compute and construct.

For example, here is the simplest known structure that can reproduce itself:

22222222
2170140142
2022222202

272 212
212 212
202 212
272 212

21222222122222
207107107111112
2222222222222

Fach number is the state of one automaton in the lattice. Blank space is
presumed to be in state ‘0’. The ‘2’-states form a sheath around the ‘1’-state
data path. The *7 0" and ‘4 0’ state pairs constitute signals embedded within the
data path. They will propagate counter-clockwise around the loop, cloning off
copies which propagate down the extended tail as they pass the T-junction
between loop and tail. When the signals reach the end of the tail, they have the
following effects: each *7 0’ signal extends the tail by one unit, and the two
‘4 (0’ signals construct a left-hand corner at the end of the tail. Thus for each
full cycle of the instructions around the loop, another side and corner of an
‘offspring-loop’ will be constructed. When the tail finally runs into itself after
four cycles, the collision of signals results in the disconnection of the two loops
as well as the construction of a tail on each of the loops.

After 151 time-steps, this system will evolve to the following configuration:
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212

272

202

212
222222272
2111701702
2122222212

22222222
2170140142
2022222202
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212 272 272 212
212 202 212 212
242 212 202 212
212 272 272 212

2022222202 21222222122222
2410710712 207107107111112
22222222 2222222222222

Thus, the initial configuration has succeeded in reproducing itself.

Each of these loops will go on to reproduce itself in a similar manner, giving
rise to an expanding colony of loops, growing out into the array.

These embedded self-reproducing loops are the result of the recursive appli-
cation of a rule to a seed structure. In this case, the primary rule that is being
recursively applied constitutes the ‘physics’ of the universe. The initial state of
the loop itself constitutes a little ‘computer’ under the recursively applied physics
of the universe: a computer whose program causes it to construct a copy of
itself. The ‘program’ within the loop computer is also applied recursively to the
growing structure. Thus, this system really involves a double level of recursively
applied rules. The mechanics of applying one recursive rule within a universe
whose physics is governed by another recursive rule had to be worked out by
frial and error. This system makes use of the signal propagation capacity to
embed a structure that itself computes the resulting structure, rather than having
the ‘physics’ directly responsible for developing the final structure from a passive
seed.

This captures the flavour of what goes on in natural biological development:
the genotype codes for the constituents of a dynamic process in the cell, and
it is this dynamic process that is primarily responsible for mediating—or ‘com-
puting’—the expression of the genotype in the course of development.

6.3. Example 3: Flocking ‘Boids’
The previous examples were largely concerned with the growth and develop-

ment of structural PTYPES. Here, we give an example of the development of
a behavioural PTYPE.
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Craig Reynolds (1987) has implemented a simulation of flocking behaviour.
In this model—which is meant to be a general platform for studying the qual-
itatively similar phenomena of flocking, herding, and schooling—one has a
large collection of autonomous but interacting objects (which Reynolds refers
to as ‘Boids’), inhabiting a common simulated environment.

The modeller can specify the manner in which the individual Boids will
respond to local events or conditions. The global behaviour of the aggregate of
Boids is strictly an emergent phenomenon, none of the rules for the individual
Boids depends on global information, and the only updating of the global state
is done on the basis of individual Boids responding to local conditions.

Each Boid in the aggregate shares the same behavioural ‘tendencies’:

e to maintain a minimum distance from other objects in the environment,
including other Boids,

« to match velocities with Boids in its neighbourhood, and

» to move towards the perceived centre of mass of the Boids in its neigh-
bourhood.

These are the only rules governing the behaviour of the aggregate.

These rules, then, constitute the generalized genotype (GTYPE) of the Boids
system. They say nothing about structure, or growth and development, but they
determine the behaviour of a set of interacting objects, out of which very
natural motion emerges.

With the right settings for the parameters of the system, a collection of Boids
released at random positions within a volume will collect into a dynamic flock,
which flies around environmental obstacles in a very fluid and natural manner,
occasionally breaking up into sub-flocks as the flock flows around both sides
of an obstacle. Once broken up into sub-flocks, the sub-flocks reorganize around
their own, now distinct and isolated centres of mass, only to re-merge into a
single flock again when both sub-flocks emerge at the far side of the obstacle
and each sub-flock feels anew the ‘mass’ of the other sub-flock (Fig. 1.7).

The flocking behaviour itself constitutes the generalized phenotype (PTYPE)
of the Boids syster. It bears the same relation to the GTYPE as an organism’s
morphological phenotype bears to its molecular genotype. The same distinction
between the specification of machinery and the behaviour of machinery is
evident.

6.4. Discussion of Examples

In all the above examples, the recursive rules apply to local structures only, and
the PTYPE-—structural or behavioural—that results at the global level emerges
out of all local activit_y taken collectively. Nowhere in the system are there rules
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F1G. 1.7. A flock of ‘Boids’ negotiating a field of columns. Sequence generated by Craig
Reynolds. From Langton (19894)

for the behaviour of the system at the global level. This is a much more
powerful and simple approach to the generation of complex behaviour than that
typicaily taken in Al, for instance, where ‘expert systemus’ attempt to provide
global rules for global behaviour. Recursive, ‘bottom up’ specifications yield
much more natural, fluid, and flexible behaviour at the global level than typical
‘top down’ specifications, and they do so much more parsimoniously.

Importance of Context Sensitivity. 1t is worth while to note that context-sensitive
rules in GTYPE/PTYPE systems provide the possibility for non-linear interactions
among the parts. Without context sensitivity, the systems would be linearly
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decomposable, information could not ‘flow’ throughout the system in any mean-
ingful manner, and complex long-range dependencies between remote parts of
the structures could not develop.

Feedback between the Local and the Global Levels. There is also a very im-
portant feedback mechanism between levels in such systems: the interactions
among the low-level entities give rise to the global-level dynamics which, in
turn, affects the lower levels by setting the local context within which each
entity’s rules are invoked. Thus, local behaviour supports global dynamics, which
shapes local context, which affects local behaviour, which supports global
dynamics, and so forth.

6.5. Genuine Life in Artificial Systems

It is important to distinguish the ontological status of the various levels of
behaviour in such systems. At the level of the individual behavors, we have a
clear difference in kind: Boids are nor birds, they are not even remotely like
birds, they have no cohesive physical structure, but rather they exist as informa-
tion structures—processes—within a computer. But—and this is the critical
‘But’—at the level of behaviours, flocking Boids and flocking birds are two
instances of the same phenomenon: flocking.

The behaviour of a flock as a whole does not depend critically on the internal
details of the entities of which it is constituted, only on the details of the way
in which these entities behave in each other’s presence. Thus, flocking in Boids
is true flocking, and may be counted as another empirical data point in the
study of flocking behaviour in general, right up there with flocks of geese and
flocks of starlings. :

This is not to say that flocking Boids capture all the nuances upon which
flocking behaviour depends, or that the Boids® behavioural repertoire is suffi-
cient to exhibit all the different modes of flocking that have been observed—
such as the classic ‘V’ formation of flocking geese. The crucial point is that we
have captured, within an aggregate of artificial entities, a bona fide lifelike
behaviour, and that the behaviour emerges within the artificial system in the
same way that it emerges in the natural system.

The same is true for L-systems and the self-reproducing loops. The constitu-
ent parts of the artificial systems are different kinds of things from their natural
counterparts, but the emergent behaviours that they support are the same kinds
of thing as their natural counterparts: genuine morphogenesis and differentia-
tion for L-systems, and genuine self-reproduction in the case of the loops.

The claim is the following. The ‘artificial’ in Artificial Life refers to the com-
ponent parts, not the emergent processes. If the component parts are implemented
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correctly, the processes they support are genuine—every bit as genuine as the
natural processes they imitate.

The big claim is that a properly organized set of artificial primitives carrying
out the same functional roles as the biomolecules in natural living systems will
support a process that will be ‘alive’ in the same way that natural organisms
are alive. Artificial Life will therefore be genuine life—it will simply be made
of different stuff than the life that has evolved here on Earth.

7. EVOLUTION @

7.1. Evolution: From Artificial Selection to Natural Selection

Modern organisms owe their structure to the complex process of biological
evolution, and it is very difficult to discern which of their properties are due to
chance and which to necessity. If biologists could ‘rewind the tape’ of evolu-
tion and start it over, again and again, from different initial conditions, or under
different regimes of external perturbations along the way, they would have a
full ensemble of evolutionary pathways to generalize over. Such an ensemble
would allow them to distinguish universal, necessary properties (those which
were observed in all the pathways in the ensemble) from accidental, chance
properties (those which were unique to individual pathways). However, biolo-
gists cannot rewind the tape of evolution, and are stuck with a single, actual
evolutionary trace out of a vast, intuited ensemble of possible traces.

Although studying computer models of evolution is not the same as studying
the ‘real thing’, the ability to freely manipulate computer experiments—to ‘re-
wind the tape’, perturb the initial conditions, and so forth—can more than
make up for their ‘lack’ of reality.

It has been known for some time that one can evolve computer programs by
the process of natural selection among a population of variant programs. Each
individual program in a population of programs is evaluated for its performance
on some task. The programs that perform best are allowed to ‘breed’ with one
another via Genetic Algorithms (Holland 1975; Goldberg 1989). The offspring
of these better-performing parent programs replace the worst-performing pro-
grams in the population, and the cycle s iterated. Such evolutionary approaches
to program improvement have been applied primarily to the tasks of function
optimization and machine learning.

However, such evolutionary models have rarely been used to study evolution
itself (Wilson 1989). Researchers have primarily concentrated on the results,
rather than on the process, of evolution. In the spirit of von Neumann’s research
on self-reproduction via the study of self-reproducing automata, the following


LynnHankinson Nelson
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&. CONCLUSION

This article is intended to provide a broad overview of the field of Artificial
Life, its motivations, history, theory, and practice. In such a short space, it
cannot hope to go into depth in any one of these areas. Rather, it attempts to
convey the ‘spirit’ of the Artificial Life enterprise via several illustrative exam-
ples coupled with a good deal of motivating explanation and discussion.

The field of Artificial Life is in its infancy, and is currently engaged in a
period of extremely rapid growth, which is producing many new converts to the
principles detailed here. However, it is also raising a significant amount of
controversy, and is not without its critics. The notion of studying biology via
the study of patently non-biclogical things is an idea that is hard for the tradi-
tional biological community to accept, The acceptance of Artificial Life tech-
niques within the biological community will be directly proportional to the
coniributions it makes to our understanding of biological phenomena.

That these contributions are forthcoming, T have no doubt. However, high-
quality research in Artificial Life is difficult, because it requires that its prac-
-titioners be experts in both the computational sciences and the biological sciences.
Either of these alone is a full-time career, and so the danger lurks of doing
either masterful biology but trivial computing, or doing masterful computing
but trivial biology.

Therefore, I strongly suggest incorporating a trick from nature: cooperatel
As is amply illustrated in many of the examples discussed in this article, nature
often discovers that collections of individuaals easily sclve problems that would
be extremely difficult or even impossible for individuals to solve on their own.
Collaborations between biologists and computer scientists are quite likely to be
the most appropriate vehicles for making significant contributions to cur under-
standing of biclogy via the pursuit of Artificial Life.

So, if you are a computer expert dying to hack together an evolution pro-
gram, go find yourself a top-notch evolutionary biologist to collaborate with,
one who will bring to the enterprise an in-depth understanding of the subtleties
of the evolutionary process plus a proper set of open questions about evolution
towards which your evolution program might be addressed.

On the other hand, if you are a field biologist interested in doing some
numerical simulations in order to understand the ecological dynamics you are
observing in the field, hook up with a top-notch parallel-computing expert, who
will bring to the enterprise a thorough knowledge of the subtleties involved in
multi-agent interactions, and will be in possession of an equally open set of
questions, which you very well might find to be strikingly related to your own.
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Above all, when in doubt, turn to Mother Nature, After all, she is smarter
than you!'
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