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Search missions are often complex and difficult operations due to dynamics in the envi-

ronment. Targets may not be stationary and observations become less reliable as time

progresses. In addition, searches are often initiated with only a rough idea of the target’s

location. This work considers using a team of heterogeneous agents to search for targets

based on their magnetic signatures. The system maintains a world model which includes

the estimate of possible target states and state of the environment. The issue of compelling

agents to converge on possibly moving targets and continuing to search new regions is for-

mulated as a model predictive control problem. The world model is propagated forward in

time and autonomous strategic decisions are made based on the predicted future state of the

world. Agents formulate control decisions for a fixed number of time steps by optimizing a

team based objective function which allows for control and timing constraints.
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Chapter 1

INTRODUCTION

1.1 Background and Motivation

Concurrent operation of multiple vehicles is currently limited by the number of operators

required and the associated operator workload. Lack of autonomy of the vehicles in per-

forming tasks such as path planning and target identification in the face of rapidly changing

conditions severely increases operator workload. In many situations, the size of the crew

required to operate these “unmanned” systems exceed that of traditional manned systems.

Adaptive real-time mission planning algorithms onboard miniature unmanned aerial vehicle

(UAV) platforms give the agents greater autonomy, thereby significantly reducing opera-

tor requirements. Algorithms for solving real-time task and path planning (TPP) problems

were developed at the University of Washington under Defense Advanced Research Projects

Agency (DARPA) funding. Target tracking algorithms have also been developed under UW

RRF funding.

The specific mission of interest for demonstration is cooperative magnetic tracking of

submarines in shallow waters. The functionality of this system will be extendible to a wide

variety of intelligence, surveillance, and reconnaissance (ISR) missions and UAV configura-

tions (e.g. forestry patrol, pipeline patrol, border patrol, maritime search, fishery patrol).

In the Homeland Security Presidential Directive (HSPD)-5, President Bush directed the

development of a National Response Plan for response to domestic incident management of

radiological or hazardous chemical or biological release incidents. The algorithms developed

for the magnetic anomaly detection and tracking have direct application to hazardous sub-

stance detection and tracking. The Environmental Protection Agency (EPA) and Depart-

ment of Energy (DOE) have indicated interest in evaluation of UAVs for these applications.
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The development of these autonomous algorithms will increase the performance of these

agents, thus providing a direct outlet for military and commercial market demands requir-

ing multiple vehicles. Currently, these types of operations are restricted to the experimental

robotics research community.

1.2 Problem Statement

The overall objective of this work is to develop a robust and scalable control laws to apply

to groups of agents so that they operate in a cooperative fashion to achieve a common

goal. The specific goal in this application is coordinating a group of agents to search a two

dimensional space for a target based on its magnetic signature. Although this goal may

seem narrow in scope, many of the technologies developed for this application are easily

adaptable to other more general tasks encountered in autonomous systems.

The autonomous algorithms developed in this endeavor fall into many different cate-

gories. The algorithms are differentiated by their complexity and level of autonomy involved.

The three levels of autonomy are shown below in Figure 1.1.

Figure 1.1: Different levels of autonomy.
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Figure 1.1 shows the first level of autonomy as the strategic level. These algorithms

often operate at a low bandwidth and may be in charge of tasks such as mission planning.

They are sometimes referred to as “high level control schemes”. Next, the tactical level

of control operates underneath the strategic level. This level of control is concerned with

more specialized tasks such as path following or orbit coordination. Lastly, the dynamics

and control level consists of the classical control problems such as state stabilization or

signal tracking. These are the most specialized and “narrow-minded” and operate at a high

bandwidth. A successful autonomous system uses algorithms from all different levels that

work together to achieve a common goal.

1.3 Document Layout

This proposal is partitioned into two main sections. Chapter 2 covers previous developments

and research performed while Chapter 3 discusses future endeavors.

In Section 2.1, other pertinent work is reviewed including other academic contributions

towards this research. Section 2.2 details a feasibility study of this problem is conducted to

ensure that this problem is reasonable and possible to solve using currently existing tech-

nology. The target identification algorithm is described in Section 2.3. A genetic algorithm

which is used to solve a subset of standard optimization problems is then covered in Sec-

tion 2.4. The concept of an occupancy map and its uses in the algorithm is introduced

in Section 2.5. A simple example of a multi-agent search mission using these method is

described in Section 2.6. This simple behavior is expanded to a more sophisticated search

strategy for a single vehicle in Section 2.7. Finally, a list of publications based on previous

research is presented in Section 2.8.

Chapter 3 details where the project is headed in terms of ideas to pursue and develop.

Section 3.1 describes how some of the previous developments regarding the searching system

can be improved to increase functionality or efficiency of the system. Section 3.2 specifies

how the world model can be updated to take into account time varying effects. Section 3.3

covers how an aeromagnetic survey could be carried out autonomously using a team of

agents. Section 3.4 covers the difficulty in obtaining true magnetic signature of a target
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and how this can be accomplished. Section 3.5 talks about the possibility of using game

theory and emergent behavior ideas in order to have single agents solve simple problems

which yield more complicated behavior of the overall system. Section 3.6 looks at some of

the possible problems and solutions regarding communications in a large sensor network.

Section 3.7 discusses how an actual flight test might be implemented along with some of the

goals of such a test. Finally, Section 3.8 gives an expected time line for some of the major

tasks.
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Chapter 2

PREVIOUS WORK

2.1 Literature Review

The target identification algorithm utilizes a method known as a particle filter. This builds

on the ideas presented by Fox et al. [6] where a particle filter is used to localize a vehicle

in an environment. Other groups such as Durrant-Whyte et al. [2] studied the problem of

searching for a target using a Bayesian probabilistic approach and investigated some of the

communication issues involved in such a search. Polycarpou et al. [5] applied optimization

techniques to generate search patterns over a finite number of steps. The search strategy

presented here follows a similar approach and investigates the effect of incorporating a

predictive world estimate to the problem of finding an optimal search pattern.

Previous work at the University of Washington established a framework for the integra-

tion of various tasks in an autonomous system. This involves classifying tasks as either a

strategic, tactical, or dynamics and control problem. These correspond to low bandwidth

tasks such as path planning [12], medium bandwidth tasks such as target identification

[11], and high bandwidth tasks such as state stabilization, respectively. This work focuses

on integrating the strategic task of coordinating multiple agents to search an area with the

tactical task of performing target identification on unknown anomalies that are encountered

during a search.

2.2 Feasibility Study

As stated previously, the goal of this work is to enable a team of agents to autonomously

search and identify a target based on its magnetic signature. In order to do this, certain

technologies must be in place to allow this to be feasible. Before devoting significant effort

towards this goal, it is pertinent to perform a feasibility study to determine if this goal is
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achievable with currently existing technology.

2.2.1 Magnetometer Capabilities

One of the most important pieces of equipment for this application is the sensor that is used

to measure magnetic field strength. In this work, each agent is assumed to be equipped

with a cesium-vapor scalar magnetometer and a fluxgate vectored magnetometer. These

sensors measure the absolute field strength and the three component magnetic field vector,

respectively. A typical fluxgate vectored magnetometer can measure fields in the range of 0

to 2,000,000nT with a resolution of better than 1nT. Furthermore, the measurement signal

is expected to have a noise profile of 0.1nT.

A reasonable model of the magnetic field measured by an agent is given by the linear

superposition of various sources [4].

B = btgt + bm + buav + bvar (2.1)

The magnetic field at the sensor, B, is a linear combination of several different magnetic

fields. The magnetic field predicted by an analytical model such as the International Geo-

magnetic Reference Field (IGRF) or the 2000 World Magnetic Model (WMM-2000) is given

by bm; the magnetic field created by the target is given by btgt; the magnetic field induced

by the agent itself is given by buav; and unaccountable magnetic field variations are given

by bvar. One of the main goals of this work is to be able to discern the magnetic signature

of the target, btgt from the other sources. In order to do this, each term must be analyzed

and compared to the capabilities of the sensors.

2.2.2 Target Magnetic Signature

The magnetic field intensity created by the target is the most interest and also is the

signature which is the most difficult to model. Modeling the submarine as an ellipsoid 80m

long, 10m in diameter, at depth of 25 meters, and the sensor at an altitude of 25m above the

surface, the expected peak magnetic anomaly is approximately 115nT [8]. The profile falls

off quickly and at 100m to either side of the submarine, the magnetic anomaly is reduced to
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roughly 6nT. An example profile with the expected level sets is shown below in Figure 2.1.

(a) Magnetic intensity of sub ||btgt|| (b) Level sets of magnetic profile

Figure 2.1: Magnetic signature of submarine.

Currently, the submarine signature is only a function of the (x, y) coordinate (f : <2 →
<). A more sophisticated model would take depth and altitude into account. The function

would then be a function of four parameters. This formulation is easily taken into account

in the target identification algorithm described in Section 2.3.

2.2.3 Mean Magnetic Intensity

The magnetic field at all points on the earth is modeled fairly accurately using analytical

models such as the IGRF or WMM-2000. These models provide the three component esti-

mated magnetic vector at any coordinate on the planet. The mean magnetic intensity of the

magnetic field varies from roughly 30,000nT to 65,000nT. An example of the output of one

of these models at the Boardman, OR bombing range (coordinates 47.780◦N, 119.708◦W)

is shown below in Figure 2.2.
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Figure 2.2: Predicted magnetic field at the Boardman, OR bombing range.

2.2.4 Self Induced Magnetic Field

The agent creates its own magnetic field which is measured by the sensor. The static effect

of the agent can easily be calibrated and subtracted from the sensor readings. It is more

difficult to characterize the dynamic effects of actions such as changing engine RPM or servo

actuation on the magnetic field. These effects are shown below in Figure 2.3. In this figure,

the effects of different actions on the magnetic field are shown for different sensor locations.

The red line denotes data collected when the magnetometer was closest to the agent’s core

whereas the purple line corresponds to moving the magnetometer as far away as possible

on the agent. Due to proprietary concerns, the scale of these readings are not shown; but

this suffices to show that this self-induced magnetic field is present and may have an effect

on the measured magnetic field. If an agent is optimized to make magnetic readings, these

dynamic effects can be minimized.
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Figure 2.3: Self induced magnetic field effects.

2.2.5 Magnetic Field Variation

The magnetic field also has variations due to other unaccountable factors. These can include

effects such as short period magnetic fluctuations ( 1-2nT), long term drift ( 60nT/year), and

unaccounted magnetic signatures of structures or land formations. The effect of the short

period magnetic fluctuations can be satisfactorily modeled as white noise with amplitude 1-

2nT. The long term drift is addressed in Section 3.3. The unaccounted magnetic signatures

of structures and land formations are characterized by a total magnetic intensity (TMI)

map. This map is function which maps an (x, y) coordinate to an scalar which represents

the deviation from the predicted magnetic field strength (T : <2 → <). The graph of this

function is essentially the resultant field after correcting the observed field for a regional

gradient field (i.e. IGRF or WMM-2000).

T (x) = ||Bobserved(x)− bm(x)|| (2.2)

Two examples of actual TMI maps are shown below in Figure 2.4. Since these surveys are

obtained using specialized vehicles, the self-induced magnetic field is negligible (buav ≈ 0)

and there are assumed to be no targets present during the survey (btgt = 0) so the TMI map

gives and measure of accuracy of the predictive models. The areas of light blue are where

the magnetic anomaly is near zero. This implies that the measured magnetic field measured
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is very close to the the field predicted by a regional model. However there are many regions

where the measured field is significantly different than the predicted field. In Figure 2.4(b),

the magnetic anomaly ranges from roughly -600nT to 900nT. Since the peak anomaly of

the target is expected to be around 115nT, the predictive regional models cannot be relied

upon and an actual survey of an area must be obtained in order to discern the btgt from

bvar.

(a) 76.4km by 57km map near the Gulf of Mexico (b) 62.5km by 48.2km map over Puget Sound

Figure 2.4: Total magnetic intensity maps.

Once again, this map is only a function of two variables (namely the (x, y) coordinates).

This forces the agents to fly at the same altitude that the original survey vehicle flew at

when the map was acquired. This map would need to be corrected for altitude variations or

multiple maps at different altitudes would need to be obtained. This makes this map more

complicated (a function of three or more variables) but would increase the functionality and

versatility of the system.

2.3 Target Identification

Magnetic anomalies can be caused by many factors such as temporal variations in the

magnetic field or false targets encounters (i.e. boats/vessels). Once a magnetic anomaly is

encountered, it must be identified and classified.
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(a) Total magnetic intensity map. (b) Associated magnetic traces.

Figure 2.5: The total magnetic intensity map and trajectory over area with corresponding
magnetometer readings.

When an actual search is executed, differences between the ground station map of the

magnetic field and the actual magnetic field will appear as magnetic anomalies. A TMI

map of a region in the Gulf of Mexico and a simple grid search trajectory are shown below

in Figure 2.5(a). Here, the data is acquired in an approximate 60x50 km grid. The regions

of uniform color denote areas where survey data is not available, creating the “staircase”

appearance. Assuming that there are only permanent fixtures in the region when the map

is acquired, this map (in combination with the predictive magnetic model used to correct

it) now constitutes the reference set of data.

If the agent does not fly over any objects, the magnetic anomaly should be near zero.

Small non-zero anomaly encounters can be attributed to temporal variations in magnetic

field and sensor noise. A simple grid search pattern is shown in Figure 2.5(a). The location

of the target is shown as a dashed red box and the trajectory of the agent is shown in the solid

red line (starting in the lower left corner). The associated total magnetic intensity trace and

differential measurement trace is displayed in Figure 2.5(b). The total magnetic intensity

reading as the agent flies over this trajectory is shown in the upper trace and the differential

measurement is shown in the lower trace. As the agent flies this search trajectory, the sensor

measurement is constantly compared to the reference data set to generate a differential
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measurement. As Figure 2.5(b) demonstrates, given the differential magnetometer reading,

it is obvious how to detect where the anomaly occurred (two spikes at approximately 2700

and 3700 seconds) even though the actual range of absolute measurements may be large.

The goal now is to either classify the anomaly as the desired target or a false anomaly.

Obviously, it would be simple to identify the anomaly if the entire magnetic signature of

the anomaly is obtained (i.e. the UAV flies over the entire boxed region in Figure 2.5(a)).

However, this requires many passes over a potential target, and significant time to make

the necessary measurements. If the anomaly is moving or evading, this may not be feasible.

The question now becomes: given only one or two passes over the target, is it possible to

correctly identify or provide a probability that this anomaly is indeed the target in question?

To address this issue, a particle filter method is used.

A particle filter is a recursive, non-parametric Bayes filter technique which estimates

the states of a system using a finite number of state hypotheses [16]. In this situation,

the state vector that is being estimated is the position of the agent with respect to the

target, expressed in the target’s frame of reference and the relative heading of the agent

with respect to the target.

x
[m]
t =




xtgt
uav/tgt

ytgt
uav/tgt

ψuav/tgt


 (2.3)

Each individual state hypothesis, x
[m]
t , is referred to as a particle, and together they

make up the particle filter set, χt.

χt =
⋃

M

x
[m]
t =

{
x

[1]
t , x

[2]
t , . . . , x

[M ]
t

}
(2.4)

GPS allows the position of the agent in the earth frame to be computed, but the target

location and orientation in the earth frame is not always known. The goal of the particle

filter is to estimate the state of the agent (position and orientation with respect to the

target, expressed in the target’s frame of reference). The true location of the agent with

respect to the target expressed in the target’s frame of reference at a time t is denoted as x∗t .
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The particle filter performs this estimate using two main steps, a prediction and correction

step.

2.3.1 Prediction

In the prediction step, each particle is propagated forward in time using a motion model of

the individual agent.

x
[m]
t = g

(
p

(
x

[m]
t |u∗t , x[m]

t−1

))
(2.5)

In Eq. 2.5, g is a sampling function which simply chooses a sample from a probability

density function. Each new particle is created from the old particle and the current control

(applied to transition particle at time t−1 to time t). The term p
(
x

[m]
t |u∗t , x[m]

t−1

)
is a multi-

dimensional probability density function of the new state given the old state and current

control. Notice that in this formulation, the state transition is not a deterministic process.

This stochastic aspect actually has important implications regarding the robustness of the

particle filter [16].

Although p
(
x

[m]
t |u∗t , x[m]

t−1

)
may be difficult to compute analytically, Eq. 2.5 is imple-

mented in simulation by simply adding noise to the control and then propagating the state

forward using a deterministic motion model (a simple kinematic model in this case). The

control vector for the model is simply

ut =


 Va

∆ψ


 (2.6)

In simulation, the noise added to each element of the control vector is obtained by

sampling from a normal, Gaussian distribution with a variable standard deviation, σ. The

standard deviation is a function of the actual control applied to the agent, u∗t . In effect, as

||u∗t || increases, so does σ. Physically, this translates into a model whose state transition

becomes more uncertain as the agent moves faster or executes larger heading changes.

In addition to the control input at each time step, the actual sensor measurement ob-

served by the agent, z∗t , is made available to the particle filter. Each particle is then assigned



14

a weight, w
[m]
t , based on how likely it is to generate the same sensor measurement at its

current state.

w
[m]
t = p

(
z∗t |x[m]

t

)
(2.7)

In effect, this assigns high weights to particles whose states are close to the actual state,

x∗t . Notice that Eq. 2.7 does not require a sampling function like Eq. 2.5 because z∗t and

x
[m]
t are known at this point. Eq. 2.7 describes the sensor model of the agent. It allows for

the fact that even though a particle’s state may be vastly different than the true state of

the agent, if the sensor is poor or unreliable, it has the possibility of still making the same

sensor reading as the agent.

The sensor model used in simulation calculates w
[m]
t by creating an error between the

particle sensor measurement and the true sensor measurement and then using this as the

argument of a Gaussian distribution with zero mean and a standard deviation σ.

w
[m]
t = f

(
z∗t − z

[m]
t

)
(2.8)

In Eq. 2.8, z
[m]
t is the predicted sensor measurement made by particle m. In simulation,

z
[m]
t is only a function of the first two states and is generated using the target’s magnetic

signature function (Figure 2.1(a)) to obtain z
[m]
t = h(xtgt

uav/tgt, y
tgt
uav/tgt). As stated previously

f is a Gaussian distribution with zero mean and standard deviation σ which be adjusted

based on the sensor model. A larger σ implies an unreliable sensor; therefore, particles

that do not make the same measurement as the true agent still receive high weights. Note

that the weights are not probabilities; however this still achieves the goal of assigning high

weights to particles that are more likely to have states which are similar to the true agent

state.

The majority of this section has discussed the state estimation problem. Historically,

particle filters have been employed in this manner to perform tasks such as localization [10]

and state estimation [6]. These are certainly important tasks in this problem; however, to

perform target identification, a closer look at the weights, w
[m]
t , is warranted.

A scalar quantity which collectively measures the overall accuracy of the particle filter
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can be obtained by simply summing all the weights. If most of the particles are in locations

that are similar to the true state, then the sum of the overall weights should be large. Traces

of Ct for two different situations are shown later in Figure 2.8.

Ct =
M∑

m=1

w
[m]
t (2.9)

This trace of a Ct vs. t might be considered a side-effect of estimating x∗t , but as will

be shown later, this is the main piece of information that will be used to address the target

identification problem.

2.3.2 Correction

Now that each particle has been propagated forward and assigned a weight, it becomes

necessary to correct the particle filter set so that it converges to the actual state of the

agent. This process is known as resampling.

As stated before, the particle filter’s estimate of the state is represented by the distribu-

tion of all the particles. Currently, the particle filter set contains particles which have both

high and low weights. As more and more sensor measurements are acquired, it is desired

that high scoring particles are replicated and retained in the next generation population

whereas low scoring particles are discarded. The important feature in this evolutionary

process is that the particles are resampled with replacement so that the total number of

particles remains constant at each cycle. Any type of evolutionary scheme, such as survival

of the fittest, can be used to evolve the current population to the next.

In simulation, a roulette wheel method is used. In this method, M bins are created (one

for each particle). The size of each bin is directly proportional to the weight of the associated

particle. The bins are placed next to each other and a random number is generated. The bin

in which the random number falls has its associated particle included in the next population.

This process is repeated M times and is synonymous to spinning a roulette wheel M times

where the number and size of the slots on the wheel are directly proportional to M and the

weights, respectively.

Using the roulette wheel method yields resampling proportional to the weights. This
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allows for a particle to be copied multiple times in the next generation. This also generates

a small probability that particles with low weights have the possibility to survive to the

next generation as well.

One important feature of the particle filter is the ability to use different motion and

sensor models. This allows for a team of agents to be comprised of different types of

vehicles and sensors. This simply requires modifying the motion and sensor models of each

particle filter for each member of the heterogeneous team.

2.3.3 Execution

When an agent encounters an anomaly whose magnitude exceeds the noise threshold (ap-

proximately 1 nT in this case), the particle filter is initiated in an attempt to estimate the

state of the agent with respect to the target. In addition, recall that the trace of Ct vs. t is

the true end-product of the particle filter that is used for target identification. The particle

filter’s progression as the agent flies diagonally over the target is displayed over a top down

view of the target signature (Figure 2.1(a)) and is shown below in Figure 2.6.

In this sequence, the large red circle represents the actual location of the agent and

the solid red line represents the agent’s trajectory over the target. The smaller purple

dots represent the particle filter’s many different hypotheses of the possible state of the

agent (position north, position east, and heading). The actual agent crosses over the target

starting in the lower left corner and flies over it to the upper right corner. Also note

that the initial distribution of particles is not simply random over the domain. Since the

algorithm is recursive, the number of iterations before convergence is based on its initial

condition. Incorporating a priori knowledge that the particle filter is started when the

anomaly magnitude exceeds 1 nT suggests that the particles be clustered along the level

curves where the target signature is 1 nT.

As the agent obtains more and more sensor measurements (at a simulated rate of 1

Hz), the particle filter is able to eliminate particles which are inconsistent with the current

measurement and resample these particles to regions which have a higher probability of

producing the actual sensor reading, z∗t . This is why as time progresses, the particles
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(a) (b)

(c) (d)

Figure 2.6: Particle filter progression during a target encounter. The solid line indicates
actual aircraft position relative to target signature, while the particles concentrate about
possible positions.

become concentrated around the actual UAV location. Near the end of the simulation,

there are four distinct groups of particles. This is due to the symmetry of the underlying

target signature. Each of these four groups of particles are equally likely because each group

would produce the correct actual sensor readings (a trajectory from SW to NE looks the

same as a trajectory from NE to SW which looks the same as a trajectory form NW to SE,

etc.). In effect, z
[m]
t ≈ z∗t ∀m. Because of this symmetry, the particle filter is not able to
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uniquely identify the position of the agent with respect to the target. This would require

multiple passes over the target and more sensor measurements.

Although the goal of the particle filter is to estimate the position of the agent with

respect to the target in the target frame of reference, in the larger picture, the location of

the target with respect to the agent in the agent frame of reference is more useful because

it then becomes simple to locate the target in the earth frame of reference (agent’s position

and orientation in the earth frame of reference is known from GPS). Each particle can be

transformed using Eq. 2.10.




xuav
tgt/uav

yuav
tgt/uav

ψtgt/uav


 =




− cos(ψuav/tgt) sin(ψuav/tgt) 0

− sin(ψuav/tgt) − cos(ψuav/tgt) 0

0 0 −1







xtgt
uav/tgt

ytgt
uav/tgt

ψuav/tgt


 (2.10)

When each particle is transformed in this fashion, the distribution of the target location

with respect to the agent in the agent’s frame of reference is shown in Figure 2.7.

(a) Distribution of transformed particles (b) Histogram distribution of xuav
tgt/uav, yuav

tgt/uav, and

ψtgt/uav

Figure 2.7: Particles now represent position and orientation of target with respect to the
agent in the agent’s frame of reference.

As shown in the first two plots in Figure 2.7(b), it appears that the particle filter now

has a somewhat unique estimate of the location of the target relative to the agent as shown
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by an approximate unimodal distribution in xuav
tgt/uav and yuav

tgt/uav centered at approximately

0 and -2250, respectively. However, notice that the distribution of ψtgt/uav is obviously a

multimodal distribution. This distribution is actually the sum of four peaks which should

ideally be centered at ±11.3 degrees and ±168.7 degrees. Since the number of particles

was not large enough and since the motion and sensor models of the particle filter were

not highly accurate, the two peaks centered at ±11.3 degrees appears as a single peak at 0

degrees.

This multimodal distribution in ψtgt/uav reflects the four distinct state hypotheses shown

previously in Figure 2.6(d). However, if the orientation of the target is not desired, then

by transforming the particles, it is possible to obtain a unique estimate of simply xuav
tgt/uav

and yuav
tgt/uav. Note that this is only the case when the agent happens to fly directly over

the target (as shown in this example). In a more general case, agents may pass over the

target off-centered. In this case, even with the transformation of the particles, the location

of the target cannot be determined uniquely (but the number of possible locations may be

reduced).

The previously described algorithm will perform regardless if the anomaly encountered

is the actual target or a false anomaly. A method to identify the target is now required.

The sum of all the particle weights, Ct, provides a qualitative measure of how confident the

particle filter is that the anomaly encountered is the actual target. If all or most of the

particles are resampled to areas which are near the actual state of the agent, then most of

the weights will be fairly high. The sum of the particle weights for an encounter with the

actual target and an encounter with a false anomaly are shown below in Figure 2.8.

In Figure 2.8, the difference between a true target encounter and a false anomaly en-

counter is fairly clear. In the situation where the agent encounters the true target, the

confidence measure increases initially as the particles are quickly resampled to locations

which are consistent with the actual sensor measurements and then stays fairly constant.

However, in the case where the agent encounters a false anomaly, the particle filter regularly

“loses confidence” as inconsistent sensor measurements are obtained. This is characterized

by the sharp drops in the sum of the particle weights. Current research is directed towards

training a neural net to recognize these features and thus provide a qualitative measure to
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(a) True target encounter (b) False anomaly encounter

Figure 2.8: Sum of all particle weights during a true target encounter and a false anomaly
encounter.

the target identification problem. In the end, the particle filter will provide the trace of

the sum of the weights over time (Figure 2.8) and the neural net will process this trace.

In combination, the particle filter and neural network provide a mapping from magnetic

sensor measurements to a single scalar value which represents a measure of how confident

the particle filter is that the encountered anomaly is the desired target.

2.4 Optimization Using Probability Collectives

The searching method is described in Section 2.5. Some of the ideas that are used in

the searching strategy are described here. The method described here is an optimization

method and is presented in its most general form. The specialization of this technique to

the searching application is described in Section 2.7.2.

The algorithm proposed here attempts to solve a class of optimization problems using

ideas of probability collectives [9] and particle filters [6]. This provides a algorithm which

attempts to find a minimizer to the following problem

(℘) minimize f0(x)
x∈X=a box

(2.11)
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The set X is a box. Recall that a box is defined by each element xk of x ∈ X ⊆ <n

being in a certain interval Ik = [lk, uk].

X =





x

∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ I1 = [l1, u1]

x2 ∈ I2 = [l2, u2]
...

xn ∈ In = [ln, un]





(2.12)

The difficultly in solving Eq. 2.11 arises from the fact that the objective function may

not be well behaved (i.e. non-convex, non-differentiable, etc.). This is especially true in our

case. It may be difficult or impossible to find an optimal solution. An algorithm to find a

quasi-optimal, feasible solution is proposed below.

1. Generate M particles (instances of x ∈ X) distributed over X in some fashion.

2. Assign weights to each particle based on its objective function value.

3. Resample the particles proportional to the weights.

4. Repeat step 2 and 3 until some stopping criterion is reached.

Let us examine each step in detail.

2.4.1 Initial Particle Distribution

To find a quasi-optimal minimizer of f0(x), a finite set of possible minimizers are used. Each

individual guess of a minimizer, x[m](t) is called a particle and together the particles make

up the particle set, χ(t).

χ(t) =
⋃

M

x[m](t) =
{

x[1](t), x[2](t), . . . , x[M ](t)
}

(2.13)

To initialize the algorithm, we need to assign actual values to the initial particle set.

Since there is no a priori knowledge regarding the minimizer of f0(x), the initial distribution

of the particles is chosen as a uniform distribution over the set X
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x
[m]
k (0) = rand(uk, lk) for

m = 1, . . . ,M

k = 1, . . . , n
(2.14)

2.4.2 Assign Particle Weights

We now assign a weight to each particle.

w[m](t) = −f0(x[m](t)) for m = 1, . . . , M (2.15)

Note that this formulation assigns a higher weight to particles which yields a smaller

objective function value.

2.4.3 Resample Particles

In order to generate the next particle set, we sample from the current particle set propor-

tional to the weights.

x̃[m](t) = g(χ(t), w(t)) for m = 1, . . . , M (2.16)

Here, g is a sampling function which samples elements from χ(t) proportional to the

weights w(t). One popular sampling method is the roulette wheel method. In this method

a roulette wheel with M slots is created. The weights are normalized so that they sum

to 1. Each normalized weight then represents the angular percentage that this particle

occupies on the roulette wheel. The wheel is spun and depending on where it lands, the

corresponding particle x[m](t) ∈ χ(t) is selected as x̃[m](t). This process is repeated M

times.

As with many genetic algorithms, a mutation process must be included when evolving

one population to another. This is true here as well and the mutation operation is repre-

sented by simply adding noise to each sample x̃[m]. Feasibility requires that each particle

satisfy x[m](t) ∈ X ∀t. Care must be taken so that the noise added does not “push the

particle out of X”. The noise must therefore be in the interval

n[m](t) ∈ [l − x̃[m](t), u− x̃[m](t)] for m = 1, . . . , M (2.17)
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Finally, the new particle set is determined by

x[m](t + 1) = x̃[m](t) + n[m](t) for m = 1, . . . , M (2.18)

This formulation guarantees that each particle x[m](t) ∈ X ∀ t (each particle represents

a feasible solution to (℘)). It has the feature that as the particle set evolves from generation

to generation, the particles with a higher weight (i.e. lower objective function value) are

more likely to continue on to the next population.

2.4.4 Stopping Criterion

Step 2 and 3 are repeated until some stopping criterion is reached. One possible criterion is

to stop when the variance of the particles is reduced below some threshold. Another simple

method is to simply repeat for T steps. The quasi-optimal minimizer is computed from the

average of the final particle set.

x̄? =
1
M

M∑

m=1

x[m](T ) (2.19)

2.5 Occupancy Map Based Searching

In order to effectively search a two dimensional domain for a target, the system must keep

track of the state of the world in terms of possible target locations. To do this, an occupancy

based map is employed. In this scheme, the search domain is discretized into rectangular

cells. Each cell is assigned a score based on the probability that the target is located in

that grid. This is similar to a two-dimensional, discretized probability density function [3].

This centralized occupancy based map is shared and updated by all agents involved in the

search. At each time step, guidance decisions for each agent are chosen based on this map.

An example is shown below in Figure 2.9.

In Figure 2.9(b), the blue sections represent areas with zero scores whereas the green

represents scores of 1/2. This is the initial state of the occupancy based map. It represents

having no a priori knowledge of the targets location, other than it cannot be in a section

where no real data exists (i.e. the sections of uniform blue in Figure 2.9(a)).
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(a) Total magnetic intensity map of region (b) Initial Occupancy Based Map

Figure 2.9: Discretization of search region into an occupancy based map.

There are several advantages to representing the target location belief in this fashion.

One advantage is that it is simple to add time varying behavior into this map. This is

addressed in Section 3.2.

2.6 Greedy Occupancy Map Based Search

Simulation using this greedy algorithm (d = 1) and a planar kinematic plant model where

the agents only look 1 step ahead is shown below in Figure 2.10.

In this situation, the target location is shown as the dashed, red box and the agents are

represented by red x’s. Figure 2.10(a) shows the initial location of the agents relative to the

target. In Figure 2.10(b), one of the agents is about to encounter an anomaly. In this case,

the anomaly happens to be the target and therefore the particle filter is able to identify and

classify this anomaly as the target and the agent makes a positive ID at its current cell.

This updates the nearby occupancy map cells with increased scores. This causes the second

agent to converge and investigate this location as shown in Figure 2.10(c). However, the

third agent continues searching the other regions of the map as seen in Figure 2.10(d). This

can be later compared to the system using the optimizing algorithm with the predictive

world model.
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(a) (b)

(c) (d)

Figure 2.10: Occupancy based map search with three agents.

2.7 Single Agent Search Strategy

This section does not focus on how the occupancy based map is updated but instead con-

centrates on how to find a optimal cell to search using an occupancy based map. The overall

goal for the agent is to attempt to converge on regions of high scores (a high probability

that the target is located there). Of course, the problem of finding an (x, y) coordinate

which maximizes xw(t) may not be simple. From an optimization standpoint, xw(t) is in

general non-convex, discontinuous, and has gradient equal to either zero or infinity. We now
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propose a method which yields a quasi-optimal solution which is feasible and is formulated

as a convex optimization problem.

The overall flow of the system is shown below in Figure 2.11. The process is comprised

of three main problems which are referred to as (℘1), (℘2), and (℘3).

Figure 2.11: Flow diagram for optimization process.

The process starts by finding the agent’s state at the current time, zuav(t). Next, (℘1)

is solved to obtain the estimated world state at time t + d. Next, (℘2) is solved to find the

coordinates of the cell with the maximum score in the reachable cells (these are the cells

that the agent can reach in d steps). Once this quasi-optimal solution, z∗, is found, (℘3)

consists of finding an optimal set of waypoints/controls, z, which will take the agent from

its current state to the quasi-optimal state. This is formulated as a convex optimization

problem.

2.7.1 (℘1) Predictive World Model

The first problem (℘1) involves creating an estimate of the world state at a given time and

then projecting this estimate forward in time to obtain the estimated state of the world at
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time t + d. The block diagram for the world estimator is shown below in Figure 2.12.

Figure 2.12: Block diagram for world estimator.

The inputs are the estimated state of the target (position and velocity) at the current

time, x̂(t) and the current state of the occupancy based map, xw(t). In order to propagate

an estimate of the target state, we assume simple dynamics of the form

x̂tgt(t + 1) = Atgtx̂tgt(t) + Btgtûtgt(t) (2.20)

The world estimate at time t+ p is then a function of the estimated target state at time

t + p and the world state at the original time t.

x̂w(t + p) = h(x̂tgt(t + p), xw(t)) for p = 0, ..., d (2.21)

In our example, the function h() simply adds a two-dimensional Gaussian centered about

x̂tgt(t + d) to xw(t). An example of this is shown below when the estimated target state is

observed to be moving to the left at a constant velocity.

Now that the state of the world can be estimated at time t + d, we can attempt to find

the coordinates of a cell with a high score in the reachable cells, z̄?. This is addressed in

(℘2).

2.7.2 (℘2) Find Feasible Area of High Score

Each agent can only reach certain cells in d time steps. These cells are known as the

“reachable cells” for each agent.

We can apply the above method of finding a quasi-optimal solution to (℘2). We define

this problem as
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(d) x̂w(t + 10)

Figure 2.13: Estimated world states at different times for estimated target moving to the
left.

(℘2) minimize
z∈Z

f0(z) (2.22)

Parameterizing X

Here, the set Z is comprised of all the locations the agent is able to reach in d steps (reachable

states).
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Z =



z

∣∣∣∣∣∣
z = zuav + r


cos(π/2− ψ)

sin(π/2− ψ)


 ,

r ∈ Ir

ψ ∈ Iψ



 (2.23)

In Eq. 2.23, the intervals describe the maximum radius and heading angle that the agent

can achieve. Since we assume a simple model, we have Ir = [0, d·∆T ·Vmax] and Iψ = [0, 2π].

An example of this set Z is shown below in Figure 2.14.
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Figure 2.14: Reachable locations Z shown inside purple circle

Note that the set Z is not a box. So to utilize the method above, the reachable cells are

parameterized using r and ψ, namely

x =


r

ψ


 =


x1

x2


 (2.24)

So the set X is simply

X =



x

∣∣∣∣∣∣
x1 ∈ Ir = [0, d ·∆T · Vmax],

x2 ∈ Iψ = [0, 2π]



 (2.25)

Using Eq. 2.23, we see that the conversion between x ∈ X and z ∈ Z is simply

z = zuav + x1


cos(π/2− x2)

sin(π/2− x2)


 (2.26)



30

Define f0(x)

The objective function f0(x) is now defined. The scores are a function of the position z.

The maximum score is equivalent to the minimum of the negative scores. Furthermore, in

the context of model predictive control, instead of minimizing over the current world state

at time t, the objective function is minimized over the projected world state at time t + d.

Eq. 2.26 can be used to convert between z and x, so the objective function can be defined

as

f0(x) := −x̂w(t + d) (2.27)

Combining Eq. 2.25 and 2.27, it can be seen that (℘2) is a specialized version of (℘).

Therefore, the methods described above can be used to find a quasi-optimal minimizer

x̄? which can be converted into z̄?. A block diagram showing inputs and outputs for the

probability collective minimization routine is shown below in Figure 2.15.

Figure 2.15: Block diagram for Probability Collective minimization.

An example of progression of this process is shown below in Figure 2.16.

The particles are shown as red circles. The centroid of the particles (green triangle)

eventually centers near the true optimal solution. Note that it does not achieve the true

optimal but it does achieve a feasible solution.

Computing Average (Accounting for Wrap Around)

In this context, Eq. 2.19 cannot be used to compute the centroid of the particles. This

is because the second element of the state vector is an angle with the property that the

angle wraps around from 0 to 2π. Eq. 2.19 simply computes the average of the particles. If



31

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

Reachable Cells

 t = 0 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) χ(0)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 11

 t = 11 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(b) χ(11)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 24

 t = 24 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) χ(24)

8.5 8.6 8.7 8.8 8.9 9

x 10
5

3.175

3.18

3.185

3.19

3.195

3.2

3.205

3.21

3.215

x 10
6

x

t = 40

 t = 40 

y

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(d) χ(40)

Figure 2.16: Progression of probability collective process. The true minimum is located in
the upper left corner of the reachable cells.

there were only two particles and they had angles of 1 and 359 degrees, the correct optimal

solution should be 0 degrees but Eq. 2.19 would return an optimal solution of 180 degrees.

This wrap around is taken into account by instead transforming from r and ψ back to x

and y and then applying Eq. 2.19. This yields the correct quasi-optimal solution.



32

2.7.3 (℘3) Convex Formulation

The final problem (℘3) is now addressed. This concerns finding feasible waypoints which

take the agent from the current state z0 = zuav to the quasi-optimal state found in (℘2).

From an optimization standpoint, the corresponding decision vector z ∈ <2·d is

z =




z1

z2

z3

z4

...

z2·d−1

z2·d




=




z1(1)

z2(1)

z1(2)

z2(2)
...

z1(d)

z2(d)




(2.28)

Using Eq. 2.26, the quasi-optimal solution x̄? obtained by the probability collectives

method can be converted to an (x, y) coordinate z̄?. The objective function for (℘3) can

then be formulated as

f0(z) :=
d∑

t=1

||z(t)− z̄?||22 (2.29)

Here, each coordinate z(k) is a waypoint that dictates where the agent should be located

at time k. Obviously, the minimum of this function is zero. This corresponds to all the

waypoints being placed at the quasi-optimal solution z̄?. However this would not be feasible

in general. The agent can only travel a distance rmax = ∆T · Vmax in a single step. So in

order for the waypoints to be feasible, constraints are introduced of the form

f1(z) := ||z(1)− z0||22 − r2
max ≤ 0 (2.30)

fi(z) := ||z(i)− z(i− 1)||22 − r2
max ≤ 0 for i = 2, . . . , d (2.31)

Physically, these constraints enforce that each waypoint must be within a distance rmax

of the previous waypoint. This ensures that the waypoints generated are feasible ones.

The problem can now be formally stated as
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(℘3) minimize f0(z) over z ∈ <2·d (2.32)

subject tofi(z) ≤ 0 for i = 1, . . . , d

In order to analyze what type of optimization problem this is, a closer look at the

objective function and constraint functions is required. The objective function can be

written as

f0(z) =
1
2
zT Hz + fT z + r (2.33)

where H = 2Id×d

fT = 2
(
z̄?
1 z̄?

2 z̄?
1 z̄?

2 . . .
)

r = d||z̄?||22

This is a strictly convex function since it is in a quadratic form and the Hessian is equal

to H which is positive definite (all eigenvalues are equal to 2).

The constraint functions can be analyzed in a similar fashion. The first constraint f1(z)

can be written as

f1(z) =
1
2
zT H1z + fT

1 z + r1 (2.34)

where H1 = diag(2I2×2, 0d−2×d−2)

fT
1 =

(
−2z1,0 −2z2,0 0 . . . 0

)

r1 = −r2
max + ||z0||22

And the constraint functions f2(z) through fd(z) can be written as

fi(z) =
1
2
zT Hiz + fT

i z + ri for i = 2, . . . , d (2.35)
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where Hi = diag(Ni, A, Mi)

fT
i =

(
0 . . . 0

)

ri = −r2
max

Ni = zeros(2(i− 2))

Mi = zeros(2d− 4− 2(i− 2))

A =




2 0 −2 0

0 2 0 −2

−2 0 2 0

0 −2 0 2




In Eq. 2.34 and 2.35, diag(x, y) represents a block diagonal matrix with submatrix x in

the upper left block and submatrix y in the lower right corner. Similarly, zeros(p) represents

a square zero matrix of size p× p. Although this appears to be a complicated formulation,

note that only Hi is a function of i. Therefore H2 is a block diagonal matrix with A in the

upper left corner and zeros elsewhere. H3 is a block diagonal matrix where the submatrix

A moves two columns to the right and two rows down. This process of moving the A matrix

by 2 rows and columns with each i is described by the Ni and Mi submatrices.

One can now see that the constraint functions fi(z) for i = 1, . . . , d are convex functions

because they are quadratic forms and their respective Hessians are all positive semi-definite.

Therefore, (℘3) consists of a strictly convex objective function over a convex set. The

resulting optimization problem is a convex programming problem. It can be showed that

this problem is well posed and the feasible set is non-empty, so a unique optimal solution

exists. In a similar fashion to the previous two problems, (℘3) can be packaged nicely into

a system shown in Figure 2.17.

Figure 2.17: Block diagram for convex optimization solver.
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An example of the solution for the situation with d = 10 is shown below in Figure 2.18.
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Figure 2.18: Optimal solution z̄ to (℘3) zoomed into area of interest with d = 10.

In Figure 2.18, the red x represents the location of the agent, the green triangle is the

desired destination z̄?, and the red circles represent waypoints z̄. Notice that although

d = 10, there are only 8 visible waypoints. This is because waypoints 8, 9, and 10 are

overlapping and all are equal to z̄?. Furthermore, constraints f1(z) through f7(z) are active.

This shows that the formulation of the objective function yields waypoints which place the

agent at the optimal solution in the shortest possible time. This is the desired behavior

during a searching type application where it is desired that the agent locate and verify the

target as soon as possible.

2.8 Publications

Much of this work has been converted into conference papers and presentations. Some of

these include

• Lum, C.W., Rysdyk, R.T., and Pongpunwattana, A., ”Autonomous Airborne Geo-

magnetic Surveying and Target Identification,” Proceedings of the 2005 Infotech@Aerospace

Conference, Arlington, VA, September 2005
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• Lum, C.W., ”A Single Agent Search of a Two Dimensional Space Using Probabil-

ity Collectives and Convex Optimization”, Tech. rep., Autonomous Flight Systems

Laboratory, Seattle, WA 2005

• Lum, C.W., Rysdyk, R.T., and Pongpunwattana, A., ”Occupancy Based Map Searches

Using Heterogeneous Teams,” To be presented at the 2006 AIAA Guidance, Naviga-

tion, and Control Conference, Keystone, CO, August 2006
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Chapter 3

PROPOSED RESEARCH

3.1 Submarine Detection and Searching

The main focus of this work is to develop efficient methods to search for and locate a target.

Currently there are several improvements to the current scheme that are being considered.

3.1.1 Modifying Reachable Cells

Different agents might have different capabilities and are able to reach different regions at

time k + d. This set of reachable cells might be based on the agent’s capabilities such as

saturation limits or environmental variables such as wind. For example, an agent with the

ability to instantaneously change heading in no wind would have a reachable set of cells

as a circle with radius r = d ∗ ∆t ∗ v. However, an agent which has a severely limited

turn rate would have more of a flower-shaped reachable set of cells. This is shown below

in Figure 3.1(a). The reachable cells become patrol regions of sorts for each agent. These

patrol regions could still overlap and would dictate which possible trajectories are feasible

[7]. A set of overlapping reachable sets is illustrated below in Figure 3.1(b).

3.1.2 Benefits of Using a Finite Horizon Window

There are several situations where this type of predictive world model becomes useful. One

example is in the situation of a moving target. Without the predictive world model, the

agent will simply try to “catch” the target by trying to converge on its present location.

This leads to a slow convergence. However, with the predictive world estimate, it would be

possible to converge on likely future state of the target. This idea is illustrated below in

Figure 3.2(a). In this situation, the curved trajectory represents what might happen if the

agent did not have the capability to predict where the target would be at time k + d. It
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(a) Different feasible set for different agents (b) Multi agent team with individual patrol areas

Figure 3.1: Reachable cells and patrol regions.

would simply try to do what was best for itself only 1 step ahead. However, the straight line

represents what might occur if the optimization routine was able to access the predictive

world model. The agent would then be planning trajectories which would benefit it d steps

in the future rather than just focusing on the immediate future.

Another situation where this benefits the agent is if the target is hidden behind a “wall”

of low scores as shown below in Figure 3.2(b). In this situation, with the ability to look

ahead more than 1 step, the agent would choose a long and indirect trajectory to the target.

But with the predictive world model, it would be possible for the agent to plan d steps ahead

and then swiftly converge to the target.

3.1.3 Multi-Agent Search

All of these ideas presented previously would be scalable to teams of agents. Each agent

would follow control laws previously described in Section 2.7. In this formulation, each

agent does not have explicit knowledge of the other agents in the team but there is still

coupling between the agents. The coordination is implicitly built into the algorithms and
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(a) Agent converging to target (b) Target hidden behind wall of low scores

Figure 3.2: Potential situations with and without predictive world estimate.

all agents are weakly coupled through the centralized occupancy map. More explicit team

cooperation is discussed in Section 3.5.

3.2 Time Varying World Model

The system maintains a current estimate of the world using the sensor measurements from

each agent at each time step k. Since a connected communication topology is assumed, a

group consensus concerning the current state of the world can be reached and the centralized

occupancy based map can be updated. The scores are allowed to be time varying to model

the fact that the target location estimate becomes more uncertain as time progresses. This

is modeled as a simple linear dynamic model of the form

Bij(k + 1) = τBij(k) + Bnom − τBnom (3.1)

Bnom is the nominal score and τ is the time constant governing how fast the score decays

back to the nominal. This effect is shown below in Figure 3.3. There is no estimate of

target velocity so the regions of high probability do not translate in the x and y directions.



40

However, as time progresses, the estimates return to their nominal values to model the

phenomenon that old measurements cannot be relied upon to judge if the target is located

in a certain cell or not.
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(c) B(k + 2)

Figure 3.3: World estimate propagation.

3.3 Autonomous Geomagnetic Surveying and Mapping

As shown previously, the need to acquire the TMI map of an area is crucial to the execution

of an accurate search-and-detect mission. The survey flown to obtain Figure 2.4(b) was

flown at an altitude of 800 ft and along parallel lines spaced 0.25 miles apart [1]. The total

distance flown was over 43,000 miles. Assuming the aircraft cruises at 100 MPH, obtaining

this survey requires over 430 hours (almost 3 weeks) of continuous flight time to perform.

Optimally, surveys which are used for target identification purposes would be flown much

closer to the surface of the water (less than 75 ft). This task of long endurance, low altitude

flight over water environments is a dull and dangerous task best suited for autonomous

systems.

In the application of searching for a target in a marine environment, flights over land

are not required and the survey time can be drastically reduced if the agents conducting

the survey can be controlled in a fashion which directs them only over marine areas. The

use of the occupancy map can be exploited in order to achieve this goal. The occupancy

map can have scores set to zero over regions which are over land. This is shown below in

Figure 3.4.
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(a) Geographical map over survey area
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(b) Occupancy map over survey area

Figure 3.4: Occupancy and Geographical map over survey areas with non-zero scores only
over marine sections.

The control laws which guide a team of autonomous survey vehicles can use this occu-

pancy map in order to guide the team to only survey the areas which have non-zero scores

(i.e. over marine environments). The benefits of this become more evident over areas which

have large sections of land and water mixed together. Areas such as ports and inlets are

areas which can benefit significantly from this modified autonomous survey.

3.4 Realistic Magnetic Models

As stated in Section 2.2, accurate magnetic maps and target signatures are necessary for a

successful target identification process. Based on our limited knowledge at the current time,

the submarine signature is modeled as an oblong, two-dimensional Gaussian with peak of

approximately 115nT. The function’s level sets are roughly ellipsoids. The rate of decay

from the peak can be tailored using the covariance matrix. Undoubtedly, this profile differs

from a true submarine signature. Furthermore, this profile is a function of depth and sensor

altitude. An accurate magnetic signature of the target is required in order to predict the

target signature in different conditions. Some modeling has been done by engineers at Fugro

Airborne surveys. One of the models is shown in Figure 3.5.

If modeling the complex target signature is not accurate enough or impractical, another
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Figure 3.5: Submarine signature modeled with ModelVision Pro.

option is to obtain this data experimentally. This would involve first obtaining a TMI map

of the test area without the target and then mapping the same area again with the target

present in a known position and orientation. By Eq. 2.1, the difference of the two maps

should be the magnetic signature of the target.

If obtaining this model or data is not practical, other options for demonstrating the

target identification algorithms is discussed in section 3.7.2.

3.5 Multi-Agent Emergent Behavior

In the current setup, the agents are somewhat greedy; each agent executes its control laws

and performs actions while oblivious to the existence of other agents in the environment.

They perform actions which optimize their own objective function, but these actions may

not be beneficial to the overall mission. The agents are weakly coupled because they all
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share a centralized occupancy map. A more sophisticated and effective system would be a

move towards a decentralized control scheme where there is explicit cooperation between

agents.

The overall goal would be to have each agent solve their own simpler problems but have

the overall system display more complex behavior. The agents would be more strongly

coupled either through a centralized coordinator or through peer-to-peer communication

(some communications issues are addressed in Section 3.6). This leads into the subjects of

emergent behavior, decentralized control, and cooperative games.

3.5.1 Emergent Behavior

Systems displaying emergent behavior properties are ones where each individual in the

system follows a simple set of control laws. Although the individual behavior of each agent

is simple, the overall system may able to achieve more complicated goals. An advantage

of this approach is that the individual control laws are usually somewhat simple and easy

to analyze. The main drawback is that it is difficult to predict the behavior of the overall

system.

Often, the agents are not coupled or weakly coupled with limited communication. The

current setup can be classified as an emergent behavior algorithm since there is no explicit

communication between the agents and the behavior of searching an area is achieve implicitly

through the occupancy map rather than explicitly through cooperation or control laws.

3.5.2 Decentralized Control

In systems utilizing many agents, algorithms which govern the teams actions can be classified

as either centralized or decentralized control schemes. A centralized scheme refers to an

architecture where all agents are connected to a single node. This node may be a ground

station or another agent. Agents may transmit information about their own state, but this

centralized node does the computation of the actual control laws and dictates the actions to

be taken by the other agents. A decentralized architecture implies that each agent computes

its own control laws and actions. These agents may be connected to a centralized node or
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to each other, but this is merely to obtain information which may increase performance.

Each agent in a decentralized scheme is able to independently decide on its own actions

regardless of the communication topology. A general architecture showing the difference

between the centralized and decentralized control schemes is shown in Figure 3.6.

(a) Centralized architecture (b) Decentralized architecture

Figure 3.6: Centralized and decentralized architecture.

Teams which rely on centralized control schemes enjoy many benefits such as increased

performance and efficiency between its agents. However, these schemes are generally compu-

tationally intensive and not scalable. In order to address these shortcomings, decentralized

control schemes are used. Although these types of algorithms are generally more compli-

cated and may not produce globally optimal solutions, they have several notable advantages

that make them more attractive to a team of autonomous systems. One of these advan-

tages is that a team operating under a decentralized control scheme can be made robust to

single points of failure in the system. In other words, it is possible for agents in the team

to be removed from the mission and the team can adapt and continue [12]. Another main

advantage is that these types of algorithms are scalable to larger systems.

In a searching mission over a large area, the communication topology of the system may

change continuously (Section 3.6). Agents are able to communicate only with other nearby
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agents. In general, this communication topography is not strongly connected (i.e. every

agent is not connected to every other agent). Decentralized control algorithms have groups

of connected agents working together to achieve a team specific mission. These groups are

dynamic and vary as the communication topology changes. One decentralized method to

coordinate multiple agents is a market based protocol which elects a coordinator agent to

direct the actions of the other agents in the team [13]. Each group has a single coordinator

agent and one or more vehicle agents. This formulation allows for groups to be formed

depending on the current communication topology. An example of this is shown below in

Figure 3.7.

Figure 3.7: An example of forming two groups based on communication topology.

3.5.3 Cooperative Games

In addition to market based protocol, there are other methods to control groups of agents.

One such method would be to formulate the problem as a special type of optimization

problem. In this scenario, the team of agents could be seen as one player whereas the
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environment could be seen as another player. The two players are playing a type of game

against each other. This is the setting for a classic two player game. There has been

significant research and developments in the field of game theory, particularly with two

player games [15]. The problem consists of the team of agents selecting an action x ∈ X

which benefits itself, whereas the environment would select actions y ∈ Y which would try

to hinder the team. This is often analyzed as a type of worst-case scenario using minimax

theory.

Evaluating the cost of choosing x ∈ X and y ∈ Y is not an easy task. There are complex

predictive models that must be used in order to evaluate the consequences of these choices.

The value of choosing yi ∈ Y and xj ∈ X make up the ijth entry of a payoff matrix for this

system. A possible architecture for formulating the payoff matrix and an example payoff

matrix are shown below in Figure 3.8.

(a) Coordinator agent architecture (b) Payoff matrix

Figure 3.8: Architecture for coordinator agent used to generate payoff matrix.

3.6 Communication Issues

In a system with heterogeneous agents spread out over large distances, communication

becomes an issue of concern. For example, suppose an agent makes an observation of a

target and wishes to relay that information back to the base of operations as shown below
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in Figure 3.9.

Figure 3.9: A potential situation showing different agents forming a directed graph.

If the agent is far away from the base, direct transmission of data may not be possible.

A feasible option would be to transmit data instead to another agent located closer to base

and therefore have a better chance of successfully transmitting the data. If approached from

a combinatorial standpoint, the problem becomes an NP-hard problem which becomes very

difficult to solve in real time with a large number of agents. To exacerbate matters, the

network changes continuously as some agents move out of range of others. As more agents

become involved in this relaying process, a method of routing the data efficiently becomes

necessary.

One such formulation would be to view the heterogeneous team of agents as a directed

graph, or network. Each agent would be represented by a node i ∈ N , and each connection

between agents would be represented by an arc j ∈ A. Formulating this problem as a

network optimization problem allows many tools to be applied. For example, the well

known min-path algorithm can be applied [14]. This requires the specification of the network

structure which can be formulated as specified above. It also requires starting nodes, N+
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and ending nodes, N−.

The length of an arc, l(j), can be formulated to be inversely proportional to the proba-

bility of a successful packet transmission over the arc, pk.

l(jk) = 1/pk (3.2)

The min path algorithm solves

P ∗ = arg min
P

∑

j∈P

l(j) (3.3)

This formulation yields a path which has the shortest path and also the highest proba-

bility that the packet will be successfully routed from N+ to N−.

Eq. 3.2 can be modified in order to influence the routing if other goals are desired. This

can be thought of as a tuning parameter in a cost function in an attempt to influence the

solution P ∗.

3.7 Implementation and Flight Tests

3.7.1 Hardware-in-the-Loop Simulation

The Insitu group has provided a high-fidelity Hardware-in-the-Loop (HiL) simulator. This

simulator serves to bridge the gap between pure computer simulation and an actual flight

test.

The HiL includes both a simulated and actual subsystem for an actual GeoRanger UAV

as show in Figure 3.10(b). In addition, the HiL includes a payload processor expansion slot

where an embedded processor can be attached to interface with UAV avionics and sensors.

Previously developed searching and target identification algorithms can be loaded onto this

embedded processor which will interface with the UAV avionics and sensors in order to

provide high level guidance commands to the UAV’s autopilot. This entire system will

simulate an actual flight test of a single vehicle with a high degree of accuracy.
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(a) HiL simulator (b) Simulated and actual subsystems

Figure 3.10: Insitu provided HiL at the University of Washington AFSL.

3.7.2 Flight Test

Once a successful HiL simulation is performed, the next step is to validate these algorithms

using a flight test. The Insitu Group has access to a secure airspace arena in Boardman,

OR where flight tests are regularly performed. The same embedded architecture used in the

HiL simulation can be easily transferred to an actual UAV during an actual flight test. The

primary purpose of the flight test would be to evaluate the algorithms while using an actual

magnetometer instead of a simulated sensor. This allows an accurate characterization of the

sensor noise profiles and accuracy. This has a significant effect on the previously described

target identification algorithm.

For an initial flight test, it is not prudent to fly a searching scenario with an actual

submarine. A more logistically feasible target would be a ground based target such as a

car or structure. Its magnetic signature could be obtained by the same methods described

in section 3.4 (flying a survey over area with no target and then flying same survey with

target present and then looking at the difference).

Yet another possibility for a flight test would be to create an artificial target by simply

removing a section of the magnetic map.

Figure 3.11(a) shows the true TMI map of a region where a flight test might take place.
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(a) True TMI map of survey area (b) TMI map used by agents (c) Desired target signature

Figure 3.11: Images showing how an artificial target can be introduced into simulation.

The purple dashed lines indicate the areas where the target is to be located. To simulate

the presence of the target, this section of the TMI map is removed (all values set to zero).

Figure 3.11(b) shows the result of this removal and this is the TMI map that is provided to

the agents during the mission. Finally, Figure 3.11(c) shows the target signature that the

agents are now searching for.

The flight test would also serve to exercise both the task and path planning algorithms

along with the search and target identification algorithms in a real environment for a single

UAV. Due to safety concerns, simultaneous flight of multiple autonomous flight vehicles

operating in close proximity requires significantly more design and preparation. Additional

tasks to extend the flight testing towards demonstration of multi-vehicle flight are described

in the next section.

3.7.3 Distributed Simulation

Due to their high cost, multiple vehicle simulation using multiple HiL systems is not prac-

tical. Therefore, simulations for teams of agents will be carried out using the UW AFSL

Distributed Computing Facility (DCF). This test bed consists of multiple networked com-

puters running software for simulating the distributed system environment for multiple

vehicles and their intercommunication. It is meant to be a high-fidelity testing environ-

ment, accurately simulating the timing and data transfer required for cooperative planning.

The DCF can be networked to run in parallel with the HiL and even with actual UAVs in
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the field. Using the DCF, it becomes possible to simulate a scenario involving a team of

autonomous agents. The team can be comprised of all GeoRanger UAVs or a combination

of UAVs and other vehicles (such as autonomous ground vehicles). The architecture for

such a distributed simulation is shown below in Figure 3.12.

Figure 3.12: Multi-vehicle implementation using HiL and Distributed Computing Facility
(DCF).

3.8 Proposed Timeline

A proposed timeline showing major milestones is shown below in Figure 3.13. This reflects

work desired to be accomplished under WTC Phase II (extended) and Phase III funding.
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Figure 3.13: Milestone chart showing projected major accomplishments.
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Chapter 4

SUMMARY

In the most general sense, this work investigates methods to coordinate a group of

autonomous systems to accomplish a common goal. Specifically, this goal is to search for

a target in a region using the magnetic field of the target and the environment. This

work has alternative uses in the fields of obscured vision, night-time operations, radiological

hotspot detection, and many other useful applications. The occupancy based map provides

the framework to represent probable target locations and also to coordinate the agents in

the team. The particle filter method allows the magnetic anomalies to be detected and

classified. Simulation has been completed using this framework an a greedy one-step ahead

algorithm. These ideas are currently being extended to multi-agent systems with a finite

receding horizon window. Although the framework for the system has been established,

many more advances and developments are required in order to make this a viable system.

As mission demands become increasingly complicated, the requirement for greater levels

of autonomy becomes necessary. It is generally not efficient to have large number of human

operator or pilots perform dull, dirty, and dangerous tasks. These operations are better

suited for unmanned systems which will require significant advances in autonomy in order

to become practical. This project strives to make a contribution towards making teams of

autonomous systems an efficient and practical solution to advance mission problems.
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