Christopher Lum
lum@u.washington.edu

Matlab Class Tutorial (DEPRECATED)
Introduction

This document is designed to act as a tutoriatfeating a class object in Matlab. The
user should be fairly comfortable with Matlab.

Note that this method of creating classes in Madabmewhat deprecated. Matlab now
supports a more traditional method of creatingsgagsimilar to C++ and C#) which is
more flexible and should be used instead. Theegetbis document should only serve as
a reference for those that are interested in anotle¢hod of declaring a class.

Christopher Lum
lum@u.washington.edu

Creating the Object

The class is similar to a structure in the fact this an object with one or more fields. In
this example, let's create an object of type 'plafti This will have three fields

. X = X position of particle
Y =y position of particle
time = current tinme

In order to do this, we need to create a particlestructor. This must be a file called
particl e. mand located in the directo@ar ti cl e. The directory which has the
folder @ar ti cl e must be in the Matlab path, but the actual fol@ear ti cl e
should not be in the path. This directory struetisrshown below in Figure 1.

© Christopher W. Lum lum@u.washington.edu Page 1/9




— This directory is in path

particle object constructor

7= Sirnolinle T |l-nvi=I

<

|5 Matlab_Tutorial_Beginner
[ Matlab_Tutorial_Intermedia

te
-
_>I_I <

24 E:'matlab‘tutorials’,Class_Tutorial,@particle ;Igl il
File Edit View Fawvarites Tools  Help | :f
- €Y - P = -
G Back. \_‘_HJ Lﬂ 7 Search Il =] Faolders
Address Ilﬁ E:ymatlabitutorialstClass_Tutorial@particle ﬂ Go
Faolders ® | Mame | Size | Tvpe -~ | Date Modified
) RiBlockeet — ¢ Jparticle.m €&—1  2KB  MATLAB M-file 4/25/2006 11131 AM
() testing
=l 15 bukarials =
> =I5 Class_Tutorial
> ] @particle

The constructopar ti cl e. mis a function which must do three things

—— @particle folder is not in path
Figure 1: Directory structure and class constnucto

1. Create a default particle object when it is calkgth no arguments
2. If passed a particle object, simply return it.
3. Create a particle object when called with the appate number of

arguments.

An examplepar ti cl e. mconstructor is shown below in Figure 2.

© Christopher W. Lum

lum@u.washington.edu

Page 2/9




function 4 = particle (varargin)

switch nargin
case 0O
(No input, create default object

b.x = 0;
A.owy = 0;
A.otime = 0O;

L = olass(k, 'particle'):

case 1
(3If a zingle argument of class particle, return it
if (isai(varargini{l},'particle'])
L = warargin{l}:
else
error (' Input arguient 1= not ah particle object')
ernd

case 3
(Create object using specified walues
bh.x = wvarargin{l}:
L.v = warargin{a:;

L.time = wvarargin{i}:
L = plass(h, 'particle'):

otherwise
error (' Invalid number of input arguoents')

end

Figure 2: Sample particle.m file (particle objeohstructor)

With par ti cl e. mfunctioning correctly, we can create a particlgeobby either
callingparticle(), particle(A), or particle(x,y,tinme). Letsuse the
last option (calling particle with three argumeatsresponding to x, y, and time) as
shown in Figure 3.

© Christopher W. Lum lum@u.washington.edu Page 3/9




Command Window A X

*» particle L = particle(l,1,0]
particle L =

particle object: 1-hv-1

i

Workspace X
': ETE§|>E|' S‘tack:lEﬂase VI

Mame £ | Walue I Size | By... | Clazs

] particle_A =1x1 particle= 131 396 particle

particle object created

Figure 3: Creating a particle object

Adding Methods (Member Functions)

Just like C++, in order for a data object to befuis& must have member functions
which manipulate data in its fields and perfornmseotuseful operations with the data
object. In Matlab, these member functions are kma#/"methods".

display.m

Notice in Figure 3 that we did not suppress th@uivith a semi-colon. When the semi-
colon is left off, Matlab calls the functiati spl ay with the object as its only argument
to print the output to the screen. Just like Gthis function can be overloaded and the
version of the function to call is based on thestgpthe argument. In order to overload
the function so it is called when its argument gaéticle object, place the file

di spl ay. minthe@arti cl e directory. An exampldi spl ay. mfile is shown

below in Figure 4.

function displayii)

dispi(['.=x: 'ynum2str (A.x)])
dispi(['.¥: 'ynum2str (ALl
dispi['.time: ',numZstr (LA.Cime]])

Figure 4. Sample display.m function

© Christopher W. Lum lum@u.washington.edu Page 4/9




Now when the semi-colon is left off, the particlgext is displayed to the screen in a
more intelligent fashion (compare Figure 3 withufm5).

Command Window A
*» particle L = particle(l,1,0]
LH 1
LT 1
.Eime: O
o
Workspace A X
': ET E % | g | b Stau:k:lEiase VI
Matme £ | Walue I Size | BEy... | Class
5] particle_A =1%1 particles 1x1 396 particle
Figure 5: Now display.m in the @particle direct@\called when semi-colon is omitted on a particle
object
subsref.m

In Matlab, when you would like to access data iesidnatrix or a structure, you would
use the () or . operators. For example to actesg,8 element of a matrix, you would
useA( 2, 3) . Likewise, to access a certain field, one cosldAl f i el d_nane.

When you use syntax like this, Matlab actuallys#tie functiorsubsr ef with the
object as its only argument. Just like C++, thisction can be overloaded and the
version of the function to call is based on thestgpthe argument. In order to overload
the function so it is called when its argument gasticle object, place the file

subsref . min the@ar ti cl e directory. This function should do 3 things

1. Return the appropriate value when indexing is dieg ()
2. Return the appropriate value when indexing is dgsiag .
3. Return the appropriate value when indexing is desieg {}

An examplesubsr ef . mfile is shown below in Figure 6.

© Christopher W. Lum lum@u.washington.edu Page 5/9




function b = subsref (a, index)

switch index.type
case ']
switch index.subs{:}
cazse 1

case 3
h = a.time;

otherwise
error (' Invalid index')
end

case L'
switch index.subs
case 'x!

bh = a.x;

case 'yl
h = a.x:

case 'time!

bh = a.time;

otherwi=se
error (' Invalid field name')
end

case '{}!

error (' Cell array indexing not supported by particle obhjects')
end

Figure 6: Sample subsref function

Writing thesubsr ef function in this fashion means that the user béllable to access
all the data fields of the particle object usintper () or . indexing (but not {} indexing).

Note that by default, data fields of a data obgret"private”. This means that if they are

not included in the subsref function, then onlytigéx methods (member functions) will
have access to them. This may or may not be tésidepending on your application.

© Christopher W. Lum lum@u.washington.edu Page 6/9




subsasgn.m

In addition to accessing data fields, we would tik@lso be able to assign values to data
fields. In a matrix case, if we would like to agsia value of 6.2 to the 2,3 element, we
would useA( 2, 3) = 6. 2. Likewise, to write a certain field, one couldeus

A field_name = 6. 2. When you use syntax like this, Matlab actuadilsthe
functionsubsasgn with the object as its only argument. Just like+Cthis function

can be overloaded and the version of the functazatl is based on the type of the
argument. In order to overload the function ge ¢alled when its argument is a particle
object, place the filsubsasgn. min the@arti cl e directory. This function should
do 3 things

4. Assign the appropriate value when indexing is dagiag ()
5. Assign the appropriate value when indexing is dasieg .
6. Assign the appropriate value when indexing is dasiag {}

An examplesubsasgn. mfile is shown below in Figure 7.

© Christopher W. Lum lum@u.washington.edu Page 7/9




function a = subsazsgnia, index,val)

switch index.type
case '[!
switch index.subs{:}
cazse 1
a.x = wal:

a.y = wal:

case 3
a.time = wal:

otherwise
error (' Invalid index')
end

cazse '.!
zwitch index.subs
case 'x!
a.x = wal:

case 'y!
a.v = wal:;

case 'time!
a.time = wal;

otherwise
error ' Invalid field name')

end

cazse '{}'
error ('Cell arravy index assigmment not supported for particle objects')

Figure 7: Sample subsasgn function

Other User Defined M ethods

The four previously mentioned methogs(ti cl e. m di splay. m

subsref.m and subsasgn. m are the most crucial to having a working class.
Onlyparti cl e. mis required, the others are merely recommended.

© Christopher W. Lum lum@u.washington.edu Page 8/9




Table 1: Crucial methods for class

Name Purpose

particle.m Creates data object (constructor)

display.m Displays data object

subsref.m Allows functions other than particle nogihito access data fields.
subsasgn.m Allows functions other than particlehoés to write to data fields

Other user defined methods (member functions) eazobstructed in a similar fashion to
add functionality to the class. All of these methdmember functions) must all be
placed in thegpar ti cl e directory.

Version History:  04/25/06: Created:
04/12/12: Updated: Added note that this is effedyi a deprecated
technigue to generate classes.

© Christopher W. Lum lum@u.washington.edu Page 9/9



