
© Christopher W. Lum lum@u.washington.edu Page 1/9

Christopher Lum
lum@u.washington.edu

Matlab Class Tutorial (DEPRECATED)

Introduction

This document is designed to act as a tutorial for creating a class object in Matlab. The
user should be fairly comfortable with Matlab.

Note that this method of creating classes in Matlab is somewhat deprecated. Matlab now
supports a more traditional method of creating classes (similar to C++ and C#) which is
more flexible and should be used instead. Therefore, this document should only serve as
a reference for those that are interested in another method of declaring a class.

 Christopher Lum
 lum@u.washington.edu

Creating the Object

The class is similar to a structure in the fact that it is an object with one or more fields. In
this example, let's create an object of type 'particle'. This will have three fields

 .x = x position of particle
 .y = y position of particle
 .time = current time

In order to do this, we need to create a particle constructor. This must be a file called
particle.m and located in the directory @particle. The directory which has the
folder @particle must be in the Matlab path, but the actual folder @particle
should not be in the path. This directory structure is shown below in Figure 1.

© Christopher W. Lum lum@u.washington.edu Page 2/9

Figure 1: Directory structure and class constructor

The constructor particle.m is a function which must do three things

1. Create a default particle object when it is called with no arguments
2. If passed a particle object, simply return it.
3. Create a particle object when called with the appropriate number of

arguments.

An example particle.m constructor is shown below in Figure 2.

© Christopher W. Lum lum@u.washington.edu Page 3/9

Figure 2: Sample particle.m file (particle object constructor)

With particle.m functioning correctly, we can create a particle object by either
calling particle(), particle(A), or particle(x,y,time). Let's use the
last option (calling particle with three arguments corresponding to x, y, and time) as
shown in Figure 3.

© Christopher W. Lum lum@u.washington.edu Page 4/9

Figure 3: Creating a particle object

Adding Methods (Member Functions)

Just like C++, in order for a data object to be useful, it must have member functions
which manipulate data in its fields and performs other useful operations with the data
object. In Matlab, these member functions are known as "methods".

display.m
Notice in Figure 3 that we did not suppress the output with a semi-colon. When the semi-
colon is left off, Matlab calls the function display with the object as its only argument
to print the output to the screen. Just like C++, this function can be overloaded and the
version of the function to call is based on the type of the argument. In order to overload
the function so it is called when its argument is a particle object, place the file
display.m in the @particle directory. An example display.m file is shown
below in Figure 4.

Figure 4: Sample display.m function

© Christopher W. Lum lum@u.washington.edu Page 5/9

Now when the semi-colon is left off, the particle object is displayed to the screen in a
more intelligent fashion (compare Figure 3 with Figure 5).

Figure 5: Now display.m in the @particle directory is called when semi-colon is omitted on a particle

object

subsref.m
In Matlab, when you would like to access data inside a matrix or a structure, you would
use the () or . operators. For example to access the 2,3 element of a matrix, you would
use A(2,3). Likewise, to access a certain field, one could use A.field_name.
When you use syntax like this, Matlab actually calls the function subsref with the
object as its only argument. Just like C++, this function can be overloaded and the
version of the function to call is based on the type of the argument. In order to overload
the function so it is called when its argument is a particle object, place the file
subsref.m in the @particle directory. This function should do 3 things

1. Return the appropriate value when indexing is done using ()
2. Return the appropriate value when indexing is done using .
3. Return the appropriate value when indexing is done using {}

An example subsref.m file is shown below in Figure 6.

© Christopher W. Lum lum@u.washington.edu Page 6/9

Figure 6: Sample subsref function

Writing the subsref function in this fashion means that the user will be able to access
all the data fields of the particle object using either () or . indexing (but not {} indexing).

Note that by default, data fields of a data object are "private". This means that if they are
not included in the subsref function, then only particle methods (member functions) will
have access to them. This may or may not be desirable depending on your application.

© Christopher W. Lum lum@u.washington.edu Page 7/9

subsasgn.m
In addition to accessing data fields, we would like to also be able to assign values to data
fields. In a matrix case, if we would like to assign a value of 6.2 to the 2,3 element, we
would use A(2,3) = 6.2. Likewise, to write a certain field, one could use
A.field_name = 6.2. When you use syntax like this, Matlab actually calls the
function subsasgn with the object as its only argument. Just like C++, this function
can be overloaded and the version of the function to call is based on the type of the
argument. In order to overload the function so it is called when its argument is a particle
object, place the file subsasgn.m in the @particle directory. This function should
do 3 things

4. Assign the appropriate value when indexing is done using ()
5. Assign the appropriate value when indexing is done using .
6. Assign the appropriate value when indexing is done using {}

An example subsasgn.m file is shown below in Figure 7.

© Christopher W. Lum lum@u.washington.edu Page 8/9

Figure 7: Sample subsasgn function

Other User Defined Methods
The four previously mentioned methods (particle.m, display.m,
subsref.m, and subsasgn.m) are the most crucial to having a working class.
Only particle.m is required, the others are merely recommended.

© Christopher W. Lum lum@u.washington.edu Page 9/9

Table 1: Crucial methods for class

Name Purpose
particle.m Creates data object (constructor)
display.m Displays data object
subsref.m Allows functions other than particle methods to access data fields.
subsasgn.m Allows functions other than particle methods to write to data fields

Other user defined methods (member functions) can be constructed in a similar fashion to
add functionality to the class. All of these methods (member functions) must all be
placed in the @particle directory.

Version History: 04/25/06: Created:
 04/12/12: Updated: Added note that this is effectively a deprecated

technique to generate classes.

