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OBJECTIVE 

Several authors have described ways to introduce artificial outbreaks into time 
series for the purpose of developing, testing, and evaluating the effectiveness and 
timeliness of anomaly detection algorithms, and more generally, early event detec-
tion systems.  While the statistical anomaly detection methods take into account 
baseline characteristics of the time series, these simulated outbreaks are introduced 
on an ad hoc basis and do not take into account those baseline characteristics.  Our 
objective was to develop statistical-based procedures to introduce artificial anoma-
lies into time series, which thus would have wide applicability for evaluation of 
anomaly detection algorithms against widely different data streams. 

METHODS 
Extending earlier approaches in the literature, we identify several key features of a 
system for introducing artificial outbreaks into time series.  These are the shape of 
each outbreak, the size of each outbreak, and the spacing of the outbreaks.  For 
each combination of features, we introduce multiple outbreaks into a given time 
series multiple times, with different offsets for the first artificial outbreak. 

SHAPE OF OUTBREAKS 

The shape of the artificial outbreak should follow one of several templates, or 
epicurves; these epicurves are based on epidemiological and infectious disease 
models for the progression of an outbreak through a population [Sartwell].   Figure 
1 shows, in red, the shapes of epicurves with durations 14, 6, 4, 4, 1, and 4 days 
respectively from a set with 9 different durations. 

SIZE OF OUTBREAKS 

The size of the artificial outbreak, measured by its maximum count in any time 
interval (amplitude), should be calibrated automatically to the data sequences. 
Motivated by principles of robust and resistant data analysis, we calculated the size 
Y of the outbreak from the time series using a rule derived from the formula for 
the boxplot, 

Y = Round[ α × IQR + ( Q3 – Med )/2 × E ] 

where E = epicurve normalized to have maximum height 1, Med is the median of 
the time series, and Q3 and IQR its upper (third) quartile and interquartile range 
respectively.  α is a parameter controlled by the user to give artificial outbreaks of 
varying sizes. 

SPACING OF OUTBREAKS 

Multiple artificial outbreaks introduced into the same time series at random sepa-
rated points can increase the efficiency of using time series data several fold com-
pared to when just a single artificial outbreak is introduced into a time series.  The 
spacing of the artificial outbreaks should not distort measurements in the testing 
and evaluation of anomaly detection algorithms derived from these simulations. 

We provide a protocol to measure the effect of the interaction of the presence of an 
earlier outbreak on the detection of a later outbreak introduced into the data se-
quence.  Additional outbreaks can be introduced when the interaction is measura-
bly negligible.   For example, we can measure the effect of changing spacing on 
sensitivity and specificity. 

 

Figure 1: Comparative Time Series of Emergency Department Visits with 
Artificial Outbreaks 

RESULTS 
Data sequences differ according to the typical count (0-10, 10-100, 100-1000, etc), 
their variability, their skewness, autocorrelation or spikiness, the proportion of 
zero values, and other measures of their distribution. A selection of 4 different 
time series from two hospital ED’s and 3 syndromes is shown in Figure 1 (blue 
lines).  The artificial outbreaks are shown alone (red lines) and added to the time 
series (black triangles). The size parameter is α = 1.5 and 2.0 (middle panels) and 
otherwise 1.75.  These are all challenging choices.  We added artificial outbreaks 
at spacing 57 days (top panels), 39 days (middle panels), and 57 and 22 days 
(lower panels).  

Next we ran HWR (see companion poster), C3, and Cusum 7 anomaly detection 
algorithms on time series with artificial outbreaks with spacing 22, 39, 57, and 89 
days.  The variability in sensitivity with spacing is shown in Figure 2, and the 
variability of specificity with spacing is shown in Figure 3. 

With the settings used here the moving average-based HWR has higher average 
sensitivity and specificity than C3 or Cusum 7, but HWR loses some of its speci-
ficity when the outbreaks were placed very close.   This loss is strongest for the 1 
day outbreak and 22 day spacing. 

 

Figure 2: Sensitivity as a function of spacing for HWR, C3, and Cusum 7; 4 
(upper), 6 (middle) & 1 (lower) day; smaller (left) & larger (right) outbreaks 

 
Figure 3: Specificity as a function of spacing for HWR, C3, and Cusum 7; 4 
day; smaller (left) & larger (right) outbreaks 

CONCLUSIONS 
• We have demonstrated that, as part of a simulation system for syndromic 

surveillance, we can introduce artificial outbreaks into data sequences robus-
tly and efficiently.  We provide explicit formulae.  This allows effective 
comparisons of algorithms and processes across multiple types of data se-
quences. 

• We have developed a statistical framework for introducing artificial out-
breaks, where the size is statistically related to the underlying time series. 

• We are showing a method which is applicable uniformly, and also to data 
that is not normally distributed. 

• We have shown that the specificity and sensitivity depend on the spacing of 
the outbreaks introduced and for the algorithms studied they stay close to 
constant as the spacing increases beyond a certain value (about 57 days). 
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