
General Relativity Solution #4 Dec. 3, 2016

1. Diffeomorphisms

We want to show that, under infinitesimal diffeomorphisms, a rank (0, 2)-tensor can be equiv-
alently expressed using either covariant or partial derivatives, i.e.

δFαβ = Fαβ;γ ξ
γ + Fγβ ξ

γ
;α + Fαγ ξ

γ
;β = Fαβ,γ ξ

γ + Fγβ ξ
γ
,α + Fαγ ξ

γ
,β

To do so, we express the covariant derivatives in terms of partial derivatives and Christoffel
symbols

Fαβ;γ = Fαβ,γ − ΓδαγFδβ − ΓδβγFαδ,

ξγ;α = ξγ,α − Γδγαξδ

ξγ;α = ξγ,α + Γγδαξ
δ.

Then the variation can be expressed as

δFαβ = Fαβ,γ ξ
γ + Fγβ ξ

γ
,α + Fαγ ξ

γ
,β − ΓδαγFδβ ξ

γ − ΓδβδFαδ ξ
γ + FγβΓγδα ξ

δ + FαγΓγδβ ξ
δ

= Fαβ,γ ξ
γ + Fγβ ξ

γ
,α + Fαγ ξ

γ
,β + (FγβΓγδα ξ

δ − ΓδαγFδβ ξ
γ) + (FαγΓγδβ ξ

δ − ΓδβδFαδ ξ
γ).

After using the symmetry of the Christoffel symbols and renaming dummy indices, the terms
in parenthesis cancel; demonstrating that using covariant derivatives in infinitesimal diffeo-
morphisms is equivalent to using partial derivatives. If we specialize to the case where Fαβ is
the metric tensor gαβ, and use metric compatibility of the connection gαβ;γ = 0, we find

δgαβ = gαβ;γξ
γ + gγβξ

γ
;α + gαγξ

γ
;β = ξα;β + ξβ;α.

2. EM in curved space

a. Field Strength

We want to see that, much like the previous problem, we can replace the partial deriva-
tives in the definition of the field strength tensor, Fαβ = Aα,β − Aβ,α, with covariant
derivatives. We can use the above expression for the covariant derivative acting on a
rank (0, 1)-tensor to see that

Aα;β −Aβ;α = Aα,β − ΓγαβAδ −Aβ,α + ΓγβαAγ .

Now using the symmetry of the Christoffel symbols, we see that the terms involving Γγαβ
cancel. Thus,

Fαβ = Aα,β −Aβ,α = Aα;β −Aβ;α .

b. Action and Maxwell’s equations

Given the Lagrangian density L = −1
4FαβF

αβ, the action can be written as (for con-
creteness specifying a Lorentzian d = 4 manifold),

S = −1
4

∫
d4x
√
−g FαβFαβ .

To derive Maxwell’s equations in curved space, we vary the above action:

δS = −1
2

∫
d4x
√
−g Fαβ δFαβ = −1

2

∫
d4x
√
−g Fαβ (δAβ;α − δAα;β)

= −
∫
d4x
√
−g Fαβ∇αδAβ =

∫
d4x
√
−g∇αFαβ δAβ .
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Here we used the result of part (a) to write the variation of the field strength in terms
of the variation of the gauge field (which is unconstrained). In the last step, we inte-
grated the covariant derivative by parts (which implicitly uses the fact that the covariant
derivative of the metric vanishes), assuming that the variation δAµ vanishes sufficiently
rapidly so that surface terms vanish. Demanding that the variation of the action vanish
for arbitrary δAµ (of compact support) requires that the integrand vanish identically.
Thus, the equations of motion — Maxwell’s equations (in vacuum) — are

∇αFαβ = 0 .

c. Stress-Energy Tensor

Use the standard definition of the stress-energy tensor as a metric variation,

Tαβ ≡ −
2√
−g

δ
√
−gL
δgαβ

.

Applying this to the Maxwell Lagrangian, and using δ
√
−g = −1

2gαβ δg
αβ gives

Tαβ = 1
2

(
FµνFρσ

δ(gµρgνσ)

δgαβ
− 1

2gαβFδγF
δγ

)
.

Computing the remaining variations produces

Tαβ = FαγF
γ

β −
1
4gαβFδγF

δγ .

To establish covariant conservation, we want to see that ∇αTαβ = 0. Computing the
divergence, using metric compatibility

∇αTαβ = (∇αFαγ)F βγ + Fαγ(∇αF βγ)− 1
2g
αβFγδ(∇αF γδ) .

The first term on the right hand side vanishes by the equations of motion. Suitably
renaming indices and using the antisymmetry of the field strength, the remaining terms
can be written

∇αTαβ = FαγF
βγ;α − 1

2FγδF
γδ;β = FαγF

βγ;α + 1
2FαγF

γα;β

= 1
2 Fαγ(F βγ;α − F βα;γ + F γα;β) = 1

2 Fαγ(F βγ;α + Fαβ;γ + F γα;β) = 0 ,

where the last step is the Bianchi identity.

d. Sources

If we couple the gauge field to a background current density, jα(x), the change at the
level of the action is

S → Sj = S +

∫
d4x
√
−g jαAα.

The resultant change in the equations of motion for Aα are found from using the results
in part [b.] for the variation of S as

δSj
δAγ

=
δS

δAγ
+

∫
d4x
√
−g jγ = 0 ⇒ ∇βF γβ = jγ .
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As long as the current density is treated as a fixed background field, with some prescribed
spacetime dependence, then it is natural to use the original (sourceless) definition of Tαβ

and just recompute its divergence. The only change from the result in part [c.] is that
the field strength is no longer divergence-free. Consequently, the stress-energy tensor
also acquires a non-zero divergence,

∇αTαβ = F βγFαγ;α = jγF
γβ . (1)

The right-hand side can (and should) be interpreted as the electromagnetic force density
— i.e., the force per unit volume exerted by the electromagnetic field on the whatever
charges are producing the given current density. The time component of this force
density is the power (density), or the rate at which the EM field is doing work (per unit
volume) on the external current.

If one were doing a more complete treatment where the charges giving rise to the current
density are treated as fully dynamical, with the action containing both EM and matter

terms, then it would be appropriate to reapply the definition Tαβ ≡ − 2√
−g

δ
√
−gL

δgαβ . to

the complete action, leading to a stress-energy tensor with both EM field contributions
and matter contributions. This complete theory is, once again, diffeomorphism invariant
which implies that the complete stress-energy tensor will be divergence free.

3. Deflection of light by Sol

We want to analyze how a massive body deforms incoming null geodesics. Even though the
Sun is massive, it still weakly curves the space around it, and so we want to consider the
deviation of the path of a photon incoming into the solar system from a distant source. To
simplify the model, we consider the Sun to be a static, spherically symmetric object with mass
M and radius R such that the external geometry is described by the isotropic Schwarzschild
metric

ds2 = −
(

1− 2M

r

)
dt2 +

(
1 +

2M

r

)
(dx2 + dy2 + dz2),

where r ≡ |~x|. The photon trajectory follows a null geodesic with affine parameter s and
tangent vector p ≡ dx

ds , which is the 4−momentum of the photon. We orient our coordinate
system such that the path of the photon lies on the equatorial plane z = 0, and approaches
the Sun with impact parameter y = b. That is, our initial spatial momentum is in the x̂-
direction. To measure the deflection of the incoming photon by the gravitational field of the
Sun, we want to look at how the geodesic path changes from a straight line trajectory in the
x̂-direction as measured by an asymptotic observer. The relevant component of the geodesic
equation to study is

d
ds p

y + Γyαβ p
αpβ = 0 .

From the metric above, we can calculate the connection coefficients as

Γ0
0i =

Mxi
r2(r − 2M)

≈ Mxi
r3

,

Γijj = Γi00 =
Mxi

r2(r + 2M)
≈ Mxi

r3
, i 6= j

Γiij = − Mxj
r2(r + 2M)

≈ Mxj
r3

,
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where the final forms use the approximation r � 2M relevant for physics at (or outside) the
surface of the sun. Since the 4-momentum will be dominated by px ≈ p0 (with |py| � px),
we may approximate:

d
ds p

y + (Γy00 + Γyxx)(px)2 ≈ 0.

where terms like (py)2 and pxpy were dropped. Using the initial condition y = b, and the
above listed connection coefficients, we have

d
ds p

y = − 2Mb (px)2

(x2 + b2)3/2
.

For small deflection (which will be the case since 2M� � R�), the x-component of momentum
is nearly constant, px ≈ p̄, and hence x(s) = p̄ s. Thus, our equation for py becomes

py(+∞) = −2Mb p̄

∫ ∞
−∞

dx

(x2 + b2)3/2
⇒ py(+∞) = −4p̄M

b
.

So the deflection angle is given by

∆φ =
py(+∞)

px(+∞)
≈ py(+∞)

p̄
= −4M

b
,

which was the desired result. (The minus sign indicates deflection toward the sun.) In our
geometrized units, M�/R� ≈ 2.1× 10−6, and so

|∆φ| ≈ 8.4× 10−6
R�
b
.

4. Gravitational red shift

To derive the gravitational redshift from the surface of the sun, we first wish to establish
that p0 = p · e0 is a constant along the null geodesic followed by a solar photon. Consider
the one-form p̃ with components pµ = gµν p

ν . With an affine parameter s defined such that
p = dx/ds, the vector p satisfies the geodesic equation ∇pp = 0, and hence the one-form p̃
satisfies ∇pp̃ = 0 which, in components, reads

dpµ
ds
− Γαµβ pα p

β = 0 .

So dp0/ds = Γα0β pα p
β = Γα0β p

α pβ. Now use the Christoffel symbol definition, Γα0β =
1
2(gα0,β + gαβ,0 − g0β,α), and the weak field approximation to the Schwarzschild geometry
outside the solar surface (again choosing isotropic coordinates),

ds2 = −
(

1− 2M

r

)
dt2 +

(
1 +

2M

r

)
(dx2 + dy2 + dz2) ,

where r ≡ |~x|. The off-diagonal metric components g0i vanish identically, and all components
are time-independent. Hence, each term in Γα0β vanishes, proving that dp0/ds = 0.

So the (lowered) component of a photon momentum, p0 = p ·e0, is unchanged from when the
photon is emitted at the solar surface to when it is detected by an asymptotic observer. The
frequency of photon as measured by an observer with 4-velocity u is given by ω = −u · p.
This assumes, of course, that the 4-velocity satisfies its proper normalization, u · u = −1.
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The 4-velocity of a static observer at infinity is just u∞ = e0 = ∂/∂t while the 4-velocity of
a static observer at the solar surface is uR� = (1− 2M�

R�
)−1/2 e0 ≈ (1 + M�

R�
) e0. Hence

λobs
λemit

=
ωemit

λobs
=

uR� · p
u∞ · p

= (1 +M�/R�)
e0 · p
e0 · p

= (1 +M�/R�) .

So the redshift

z ≡ λobs − λemit

λemit
=
M�
R�

,

and numerically this is about 2 × 10−6. This fractional loss of energy may be viewed as the
conversion of photon kinetic energy into gravitational potential energy as the photon climbs
out of the gravitational potential well of the sun and escapes to the asymptotic detector.
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