General Relativity Solution #4 Dec. 3, 2016

1. Diffeomorphisms

We want to show that, under infinitesimal diffeomorphisms, a rank (0, 2)-tensor can be equiv-
alently expressed using either covariant or partial derivatives, i.e.

0Fap = Fapry € + Fyp&la + Fan €5 = Fapy & + Fip o+ Fay &7

To do so, we express the covariant derivatives in terms of partial derivatives and Christoffel
symbols

Fopry = Fapy = Doy Fog — I, Fas,
Evia = Eya = T
€0 =0 +T75,8.
Then the variation can be expressed as
0Fap = Fapn & + Fyg &l o+ Fan & 5 =T Fog &1 — o5 Fas &7 + FypT, &0 + Far T4 €
=Fapy & + Fyg f’y,oa + Fay {Y,B + (FV/J’FWM 55 - Féochéﬁ §") + (FCWF’YM? 56 - F‘SB(;FM; ).

After using the symmetry of the Christoffel symbols and renaming dummy indices, the terms
in parenthesis cancel; demonstrating that using covariant derivatives in infinitesimal diffeo-
morphisms is equivalent to using partial derivatives. If we specialize to the case where F,3 is
the metric tensor g,g, and use metric compatibility of the connection g,g,, = 0, we find

69&5 = gaﬂwg’y + g’yﬂgy;a + gavg’y;ﬁ = éa;ﬁ + gﬁ;a'
2. EM in curved space

a. Field Strength
We want to see that, much like the previous problem, we can replace the partial deriva-
tives in the definition of the field strength tensor, F,,3 = Ay — Apq, With covariant
derivatives. We can use the above expression for the covariant derivative acting on a
rank (0, 1)-tensor to see that

Aoig = Apa = Aap = Tgds — Apa + 17,4,

Now using the symmetry of the Christoffel symbols, we see that the terms involving I'?| 5
cancel. Thus,

Fap = Aap — Apa = Aaip — Agia -

b. Action and Maxwell’s equations
Given the Lagrangian density £ = —% apl’ o8 the action can be written as (for con-
creteness specifying a Lorentzian d = 4 manifold),

S = —}1/d4x V=g FapF”.

To derive Maxwell’s equations in curved space, we vary the above action:

88 = —;/d‘lx V—gF* §F,5=-1 /d% V=g F*? (§Ap.0 — 0Anp)

= /d4az —g F°P VabdAg = /d4x V=g Vo F 0Ag.
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Here we used the result of part (a) to write the variation of the field strength in terms
of the variation of the gauge field (which is unconstrained). In the last step, we inte-
grated the covariant derivative by parts (which implicitly uses the fact that the covariant
derivative of the metric vanishes), assuming that the variation 6A, vanishes sufficiently
rapidly so that surface terms vanish. Demanding that the variation of the action vanish
for arbitrary dA, (of compact support) requires that the integrand vanish identically.
Thus, the equations of motion — Maxwell’s equations (in vacuum) — are

Vo F*? =0.

c. Stress-Energy Tensor
Use the standard definition of the stress-energy tensor as a metric variation,

T E_LLV_M.
RVEE

Applying this to the Maxwell Lagrangian, and using 6/—¢g = —% Jap 5g°P gives

5(gHPge
Top = % (FMVFPU((;gaﬁ) - 5ga[3F57FM> .

Computing the remaining variations produces
Top = FornFy' — 190pF5, F*.

To establish covariant conservation, we want to see that Vo7’ = 0. Computing the
divergence, using metric compatibility

Vol = (VoF2)FP + FU(VoFP) — Lg°PF 5(Vo F?) .

The first term on the right hand side vanishes by the equations of motion. Suitably
renaming indices and using the antisymmetry of the field strength, the remaining terms
can be written

VaTaﬁ — F(WFBW;Q _ %prv&ﬁ — FayFﬁ%a + %FOWFW&;B
- %FM(FBW“ — sy Fva;ﬁ) - %FM(FM”’ 4 FaBry Fva;ﬁ) =0,

where the last step is the Bianchi identity.

d. Sources

If we couple the gauge field to a background current density, j¢(x), the change at the
level of the action is

S —S; =S+ /d‘lx\ﬁ—g % Aq.

The resultant change in the equations of motion for A, are found from using the results
in part [b.] for the variation of S as

0S; 0S 4 ~ .
_— = — — = 18— i
SA, 5A7+/d$\/ gJ 0 = Vg J
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As long as the current density is treated as a fixed background field, with some prescribed
spacetime dependence, then it is natural to use the original (sourceless) definition of 7%
and just recompute its divergence. The only change from the result in part [c.] is that
the field strength is no longer divergence-free. Consequently, the stress-energy tensor
also acquires a non-zero divergence,

Vol = FOVFe., =, FP. (1)

The right-hand side can (and should) be interpreted as the electromagnetic force density
— i.e., the force per unit volume exerted by the electromagnetic field on the whatever
charges are producing the given current density. The time component of this force
density is the power (density), or the rate at which the EM field is doing work (per unit
volume) on the external current.

If one were doing a more complete treatment where the charges giving rise to the current
density are treated as fully dynamical, with the action containing both EM and matter

2 6v/—gL
— 5904[3
the complete action, leading to a stress-energy tensor with both EM field contributions
and matter contributions. This complete theory is, once again, diffeomorphism invariant

which implies that the complete stress-energy tensor will be divergence free.

. to

terms, then it would be appropriate to reapply the definition T,,5 = —

3. Deflection of light by Sol

We want to analyze how a massive body deforms incoming null geodesics. Even though the
Sun is massive, it still weakly curves the space around it, and so we want to consider the
deviation of the path of a photon incoming into the solar system from a distant source. To
simplify the model, we consider the Sun to be a static, spherically symmetric object with mass
M and radius R such that the external geometry is described by the isotropic Schwarzschild

metric
2M 2M
ds? = — <1 - > dt> + <1 + ) (da? + dy? + dz?),
r r
where » = |Z|. The photon trajectory follows a null geodesic with affine parameter s and
tangent vector p = %’ which is the 4—momentum of the photon. We orient our coordinate

system such that the path of the photon lies on the equatorial plane z = 0, and approaches
the Sun with impact parameter y = b. That is, our initial spatial momentum is in the 2-
direction. To measure the deflection of the incoming photon by the gravitational field of the
Sun, we want to look at how the geodesic path changes from a straight line trajectory in the
Z-direction as measured by an asymptotic observer. The relevant component of the geodesic
equation to study is

4y 1Y Bpo‘p’g =0.

«

From the metric above, we can calculate the connection coefficients as

OZ_TQ(T—2M)N r3
Iy =Tl = - Y

r2(r 4 2M) 3
Y r2(r +2M) o3
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where the final forms use the approximation r > 2M relevant for physics at (or outside) the
surface of the sun. Since the 4-momentum will be dominated by p® =~ p® (with |p¥| < p®),
we may approximate:

LY+ (T + T%,) (p")? = 0.

where terms like (p¥)? and p®pY were dropped. Using the initial condition y = b, and the
above listed connection coeflicients, we have

d ,y __ 2Mb (pr)2

ds P (22 + b2)3/2°
For small deflection (which will be the case since 2Mg < Rg), the z-component of momentum

is nearly constant, p* ~ p, and hence x(s) = ps. Thus, our equation for p¥ becomes

S ApM
Y prg —2 ) —_— Y = -
pY(400) Mbp/Oo RN = pY(400) ;

So the deflection angle is given by

v v AM
P00 P
¢ PE(+00) D b’

which was the desired result. (The minus sign indicates deflection toward the sun.) In our
geometrized units, Mg /R ~ 2.1 x 1075, and so

|A¢| ~ 8.4 x107° % :

4. Gravitational red shift

To derive the gravitational redshift from the surface of the sun, we first wish to establish
that pop = p - eg is a constant along the null geodesic followed by a solar photon. Consider
the one-form p with components p, = g,, p”. With an affine parameter s defined such that
p = dx/ds, the vector p satisfies the geodesic equation Vpp = 0, and hence the one-form p
satisfies Vpp = 0 which, in components, reads

dp

disu ~I%spap’ =0.

So dpo/ds = T'*yg pa pP = LCoop p®p®. Now use the Christoffel symbol definition, Loopg =
%(gao,ﬁ + 9ap.0 — 908,), and the weak field approximation to the Schwarzschild geometry
outside the solar surface (again choosing isotropic coordinates),

oM oM
ds® = — (1 — T) dt* + <1 + r) (dz? + dy® + d2?),

where r = |Z|. The off-diagonal metric components go; vanish identically, and all components
are time-independent. Hence, each term in I'y0g vanishes, proving that dpy/ds = 0.

So the (lowered) component of a photon momentum, py = p - €, is unchanged from when the
photon is emitted at the solar surface to when it is detected by an asymptotic observer. The
frequency of photon as measured by an observer with 4-velocity u is given by w = —u - p.
This assumes, of course, that the 4-velocity satisfies its proper normalization, u-u = —1.
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The 4-velocity of a static observer at infinity is just us, = eg = 9/9t while the 4-velocity of
a static observer at the solar surface is ug, = (1 — %)_1/2 e~ (1+ %) eo. Hence

)‘obs Wemit UpRr, ' P €-p
)\emit >\0bs uOO . p ( + @/RQ) eO . p ( + @/R@)

So the redshift

>\0bs - )\emit _ %
)\emit R@ ’
and numerically this is about 2 x 1076, This fractional loss of energy may be viewed as the

conversion of photon kinetic energy into gravitational potential energy as the photon climbs
out of the gravitational potential well of the sun and escapes to the asymptotic detector.

z



