
General Relativity Solution #3 11/1/2016

1. Null Infalling Coordinates
We start with the metric in the form

ds2 = g̃µν(x, r)dxµdxν + 2dx0dr.

We want to see that curves parameterized by r are null. The obvious place to start is looking
at the line element and asking what the proper distance along such curves would be. Since
gµν contains no rr-component and the only place dr enters is in the off-diagonal term dx0dr,
we can conclude that if we hold fixed the values of all other coordinates and parameterize
curves by how they vary along r, then ds2 = 0. So radial curves are indeed null. To put it
another way, the tangent vector ξ ∝ er = ∂/∂r is null since the only non-zero component of
this tangent vector is ξr and ξ2 = ξMξM = grr ξ

rξr = 0. (Here and below, capital letters
are being used as spacetime indices running from 0 to D−1, to distinguish them from “radial
slice” indices µ, ν running from 0 to D−2.) To show that these null curves are geodesics, one
needs to solve (for some affine parameter λ along the curve),

dξM

dλ
+ ΓMNP ξ

N ξP = 0,

with ξM = dxM/dλ. If the only non-zero component of the tangent vector is ξr, then this
becomes

dξM

dλ
+ ΓMrr (ξr)2 = 0.

So one only needs to evaluate connection coefficients with the last two indices equal to r. We
have

ΓMrr = 1
2g
MN
(
2gNr,r − grr,N

)
= gM0∂r(gr0) = 0 ,

since grr vanishes and gr0 = 1. Thus, the geodesic equation reduces to dξM/dλ = 0, which is
trivially solved by ξr = const., ξµ = 0, and λ = r. So the curves xM (λ), with xr = A + Bλ
and all other components constant, are geodesics with r itself as an affine parameter.

If instead one holds fixed the coordinate x0, how should the resulting hypersurface be de-
scribed? Going back to the line element, fixing x0 means

ds2
∣∣
const. x0

= g̃ab(x, r)dx
adxb,

where the indices a, b = 1, · · ·, D−2. The radial-slice metric g̃ = g̃µν dx
µ dxν is, by assump-

tion, a Lorentzian signature D−1 dimensional metric — meaning that (at every point) one
may define a basis with one basis vector timelike and the other D−2 are spacelike. Although
not stated explicitly, assume that e0 = ∂/∂t is always timelike. Then the D−2 spacelike basis
vectors ea = ∂/∂xa are all tangent to the x0 = const. surface. The full tangent space to
any point on the surface x0 = const. is spanned by these D−2 basis vectors plus the vector
er = ∂/∂r. As noted above, er is null, not spacelike. Hence, the x0 = const. surface is not
a spacelike surface (for which all tangent vectors are spacelike) but rather a null surface. An
appropriate definition of a null surface is a surface for which, at every point, there exists one
tangent vector to the surface which is null, with all other linearly independent tangent vectors
spacelike. (And an appropriate definition of a timelike surface is a surface for which, at every
point, one may choose an orthogonal basis for the tangent space with one timelike basis vector
and all orthogonal vectors spacelike.) For a null surface, note that the null tangent vector, er
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in our example here, is also a normal vector to the surface, since this vector is orthogonal to
all tangent vectors to the surface! This is a special peculiarity associated with null surfaces.
At every point on a D−1 dimensional null surface (lying within a D dimensional geometry)
the space of normal vectors is 2 dimensional, while the tangent space is D−1 dimensional!

2. Static, Spherically Symmetric Geometry in Infalling Coordinates
Our general metric ansatz for a D-dimensional, static, spherically symmetric spacetime de-
scribed by in-falling (or “Eddington-Finklestein”) coordinates is

ds2 = −A(r)dt2 + Σ(r)2dΩ2
D−2 + 2dt dr.

The condition of a static metric means that there is no explicit t dependence in the components
of our metric tensor, or in other words t → t + const. leaves the above metric invariant.
Spherical symmetry implies no angular dependence in any of the components of the metric
tensor, and hence the unknown metric functions A and Σ can only depend on the radial
coordinate r. The infalling coordinate system manifests itself in the same way discussed
(more generally) in the previous problem: curves along which r varies, with t and the D−2
angles of the D−2 sphere fixed, are null geodesics. Fixing t and r, we are left with the metric
of just a D−2 unit sphere, scaled by Σ2. So the volume of the hypersurface at fixed t, r is
just that of a sphere of radius Σ(r), namely Σ(r)D−2SD−2 where Sn−1 = 2πn/2/Γ(n/2) is the
surface area of a unit n−1 sphere (equal to 2π, 4π, 2π2, · · · for n = 2, 3, 4, · · · ).
Our first goal is to understand the residual diffeomorphism freedom after imposing the above
form on the metric. Let θa (a = 1, · · · , D−2) denote some set of angular coordinates for
the D−2 dimensional unit sphere, say standard spherical coordinates as in the previous
problem set. If one introduces new coordinates t̃, θ̃a, r̃ related to the original coordinates in
some fashion, t = t(t̃, θ̃a, r̃), θb = θb(t̃, θ̃a, r̃), r = r(t̃, θ̃a, r̃), under what conditions will the
transformed metric have the form

ds2 = −Ã(r̃)dt̃2 + Σ̃(r̃)2 dΩ2
D−2 + 2dt̃ dr̃,

for some new functions Ã and Σ̃ depending only on r̃? Note that if, for example, ∂t/∂r̃ is
non-zero then dt, when reexpressed in terms of the new variables, will contain a dr̃ piece. And
that means that the dt2 term in the original metric will induce dt̃ dr̃ and dr̃2 terms in the
transformed metric. Preserving the given form of the metric means that there can be no dr̃2

term in the result, and the coefficient of the dt̃dr̃ must remain fixed at 2. Any dependence of
t on r̃ will mess this up. Similarly, the metric ansatz contains no dt dθa cross-terms, and this
will be messed up if ∂t/∂θ̃a is non-zero. And if ∂t/∂t̃ is not a constant, then this will mess-up
the fixed dt̃dr̃ coefficient (and will also be inconsistent with rigid shifts t̃→ t̃+ const. being a
symmetry of the transformed metric). So t and t̃ must be related by a linear transformation,
independent of θ̃a and r̃. Continuing with this style of reasoning, one ends up with the
following changes of coordinates which do preserve the form of the ansatz:

(a) Rescalings of t and r which are inversely related: t = κt̃, r = r̃/κ;

(b) Constant shifts of t and r: t = t̃+ δt, r = r̃ + δr;

(c) Static, r-independent transformations of the angular coordinates which correspond to
rotations of the sphere.

Now examine the differential equations which must be satisfied by A and Σ in order for
this metric to describe a vacuum solution to Einstein’s equations. Vacuum solutions are
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defined such that Gµν ≡ Rµν − 1
2gµνR = 0. Given the highly restrictive spherical and time

translational symmetry, one can greatly reduce the number of independent components which
must be considered. At this point, one can perform the needed calculations by hand in all
generality, but equally acceptable is looking at a sequence of test cases with D = 3, 4, 5, · · ·
in your favorite differential geometry package and establishing a pattern. One can quickly see
that no matter the value of D ≥ 3,

Grr = −(D − 2) Σ′′/Σ = 0

where primes (′) denote radial derivatives. Thus, Σ(r) must be a linear function of r and
one may, without loss of generality, set Σ(r) = r as constant radial shifts and rescalings are
trivial reparameterizations. Feeding Σ = r into the rest of the equations, one finds that

Gtt = −1
2(D−2) r−2A

[
(D−3)(A− 1) + rA′

]
Gtr = −A−1Gtt
Gaa = 1

2 r
−2 gaa

[
(D−3)(D−4)(A− 1) + 2(D−3)rA′ + r2A′′

]
where a runs over the directions on the SD−2. This isn’t so bad, thanks to spherical symmetry!
Setting Gtt = 0 and solving for A yields either A = 0 (physically unacceptable, as this would
make the metric degenerate) or A(r) = 1− C/rD−3. For later convenience, let’s rename the
constant of integration: C → 2M . Inserting this form of A into Gaa yields zero, so we have
succeeded in finding a vacuum solution to Einstein’s equations:

A(r) = 1− 2M/rD−3, Σ(r) = r.

(One may check that the Gaa equation is a linear combination of the Gtt equation and the
radial derivative of this equation.)

Given this solution, is the metric describing asymptotically flat spacetime? For D > 3,
sending r →∞ makes A→ −1, so consider the large-r form of the line element:

ds2 = −dt2 + r2dΩ2
D−2 + 2 dt dr .

One may directly calculate the Riemann curvature for this asymptotic form of the metric,
and find that it vanishes. Alternatively, one can eliminate the dt dr term by making a simple
change of variables, t = t̃ + r. Using this redefined time coordinate, the asymptotic form of
the line element becomes

ds2 = −dt̃2 + r2dΩ2
D−2 + dr2 ,

which is immediately recognizable as describing flat Minkowski space (with spherical spatial
coordinates). For our complete solution, one may check that all components of the Riemann
curvature tensor RMNPQ vanish as r →∞ at least as fast as 1/rD−3, but this is a coordinate-
dependent statement. A much better, coordinate independent test is to calculate the simplest
non-vanishing scalar built out of the curvature, RMNPQR

MNPQ. One finds

RMNPQR
MNPQ = 4(D−1)(D−2)2(D−3)

/
r2(D−1),

which does indeed vanish as r →∞.

The case of three dimensions is special. If D = 3, then the metric function A is an arbitrary
constant. For any value of A the Riemann curvature vanishes identically. The change of
variables t = A−1/2 t̃+A−1 r turns our D=3 line element, ds2 = −Adt2 + 2dt dr+ r2dθ2, into

ds2 = −dt̃2 +A−1dr2 + r2dθ2 .
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If A 6= 1, then this is the metric of a cone — a locally flat space with a conical singularity
at r = 0 (so this is not a smooth manifold). To see this, note that the circumference of the
circle r = r0 is 2πr0 (given that θ is a periodic angle running from 0 to 2π), but the radius
of this circle, defined by integrating the line element from r = 0 to r = r0, is r0/

√
A. So if

A 6= 1, then the circumference does not equal 2π times the radius, exactly as occurs when
you curl a flat sheet of paper up into a cone.

Moving on to the question of radial geodesics, we start with the line element for fixed values
of the angular coordinates,

ds2 = −A(r) dt2 + 2dt dr,

with A(r) determined above. Null curves are solutions to ds2 = 0. There are two roots,

dt = 0,
dt

dr
=

2

A(r)
.

The first solution, t = const., gives the same infalling null geodesics as we saw in the previous
problem. The second solution describes curves moving outward with a slope which varies
according to the inverse of the metric function A(r). Integrating, for arbitrary D gives a (not
very illuminating) expression involving a hypergeometric function,

t(r) = 2r 2F1

(
1,

1

3−D
,
D−4

D−3
,

2M

rD−3
)
,

up to an additive constant. In the specific case of D = 4 this becomes

t(r)
∣∣
D=4

= 2r + 4M log(r − 2M).

Finally, one may check that these null curves are, in fact, geodesics. For the infalling curves
with dt/dr = 0, this was already done in the previous problem. Given the spherical symmetry,
it should be clear (or at least plausible) that there will exist null geodesics (“radial null
geodesics”) for which every point on the geodesic lies at the same position on the unit D−2
sphere, and that such geodesics must be the just discussed null curves with dt/dr = 2/A(r).
To test this analytically, construct the tangent vector to these outgoing curves (parameterized
by r), namely ξ = (dt/dr)et + er = 2A(r)−1et = er. A short exercise verifies that dξM/dr +
ΓMPQ ξ

P ξQ = 0, showing that these curves are geodesics with r as an affine parameter. Finally,
the only integration constant in the solution for the metric is the parameter M which was
introduced in such a way that, for D = 4, this is precisely the total mass of the spacetime as
discussed in lecture.
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