
General Relativity Solution #2 10/18/2016

1. Diffeomorphisms
We start by asking how the components of a vector field transform under the arbitrary
reparameterizations xµ = fµ(x̃) for a differentiable set of functions {fµ}. We are given that
the coordinate basis vectors follow ẽα(x̃) = ∂xµ

∂x̃αeµ(x).

Starting from the definition of a vector field v = vαeα, we see that since the abstract vector
field is ignorant of the particular coordinatization used on the manifold:

v = ṽ = ṽα(x̃)ẽα(x̃) =
(∂xµ
∂x̃α

)
ṽαeµ(x) ⇒ ṽα(x̃) =

∂x̃α

∂xµ
vµ(x).

From this point we can easily ascertain the transformation law for a 1-form, ω ∈ T 1(M). We
start with the fact that the dual basis dx̃α = ∂x̃α

∂xµ dx
µ. The components thus transform as

ω = ω̃ = ω̃α(x̃)dx̃α =
(∂x̃α
∂xµ

)
ω̃α(x̃)dxµ ⇒ ω̃α(x̃) =

∂xµ

∂x̃α
ωµ(x)

Moving one step up the tensorial ladder, we can ask how the components of the metric, gαβ,
transform. Let us take a lesson from above and write metric g = gαβdx

α ⊗ dxβ. Then from
the rules governing the transformation of the dual basis:

g = g̃ = g̃αβ

(∂x̃α
∂xµ

)(∂x̃β
∂xν

)
dxµ ⊗ dxν ⇒ g̃αβ =

∂xµ

∂x̃α
∂xν

∂x̃β
gµν

What is key here is that the arbitrary relabeling of points on M does not change g. What
does this mean for the change of the determinant of the metric g = det ||gµν ||? We know that
the detAB = detAdetB, and so, we can see that

g̃ = det ||g̃αβ|| = det
∣∣∣∣∣∣∂xµ
∂x̃α

∂xν

∂x̃β
gµν

∣∣∣∣∣∣ ⇒ g̃ = J2g

where the transformation in the last step was written as a product of Jacobians given by

J =
∣∣∣ det

(
∂xµ

∂x̃α

) ∣∣∣.
Lastly, we want to know why the spacetime volume element on M is

√
|g|. First, we note

that what we desire is that the volume of M is invariant under reparameterizations

ṼM = VM =

∫
M
ddx · (?)

What should fill in for ‘?’ is something built out of the metric, since we need a notion of the
‘size’ of regions ofM, and can compensate for how the dual basis transforms. We know from
basic multivariate calculus that

ddx = Jddx̃

for J given above. Now given the transformation rules above, we see that what should fill
in for the volume element must have a transformation like J−1 to keep VM invariant under
diffeomorphisms. The previous calculation shows that√

|g| =
√
|J−2g̃| = J−1

√
|g̃|,
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which is precisely what we want. Thus, demanding that the volume element be built out
of the metric and that the total volume is diffeomorphism invariant leads to

√
|g| being the

unique candidate for the volume element. Simply demanding the transformation of J−1 is
not sufficient as any the square root of the determinant of any (0, 2)-tensor transforms this
way.

This above discussion can be rephrased in the language of differential forms. The components
of a k-form are totally anti-symmetric covariant tensors of rank k. On a d-dimensional mani-
foldM, differentiable functions f are 0-forms and d-forms, or top forms, are all proportional
to the Levi-Civita tensor

ε =
1

d!
εα1...αddx

α1 ∧ · · · ∧ dxαd

and

εα1...αd =
√
|g|[α1 . . . αd].

The beauty of the language of forms is that k-forms can be viewed as integrands of k-
dimensional integrals. Thus, ε is the volume form, and integrating a scalar function (0-form),
f , over the manifold is the same as integrating against ε∫

M
ddx
√
|g|f =

∫
M
fε

Put in other language seen with differential forms, the volume form is given in terms of the
Hodge-? operation, which maps p-forms to (d− p)-forms on a d-dimensional manifold, by

?1 =

√
|g|
d!

[α1 . . . αd]dx
α1 ∧ . . . ∧ dxαd

2. Derivatives and Such

a. ∂α log g:

For calculations involving variations of the metric determinant, it is convenient to use
the identity detA = exp(Tr logA). As such, it becomes clear that

∂a(log detA) = ∂aTr logA = TrA−1∂aA,

and so affecting the trace, we see

∂α(log g) = gβδgβδ, α.

b. Γααβ = ∂β log
√
|g|:

In a coordinate basis, lets recall the definition of the Christoffel symbols

Γαβδ =
gαγ

2

(
gβγ, δ + gδγ, β − gβδ, γ

)
,
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and trace over the first two indices

Γααβ =
gαγ

2

(
gγα, β + gβγ,α − gγβ, α

)
=

1

2
gαγgαγ, β.

The last equality used the symmetry of the metric to cancel the last two terms. From
part [a.],

∂β log
√
|g| = 1

2
gαγgαγ, β.

c. ∇αAα:

Starting with the definition of the covariant derivative of a vector

∇βAα = ∂βA
α + ΓαβγA

γ .

Affecting the trace, over α, β

∇αAα = ∂αA
α + ΓααγA

γ ,

and using the result in part [b.]

∇αAα = ∂αA
α + ∂γ(log

√
g)Aγ = ∂αA

α +
1
√
g
Aα∂α

√
g,

which can be rearranged to give

∇αAα = |g|−
1
2 (
√
gAα),α.

d. �φ:

First, we rewrite � ≡ ∇α∇α, and use the results from part [c.]

∇α
(
∇αφ

)
= g−

1
2

(√
g∇αφ),α = g−

1
2

(√
ggαβ∂βφ),α

where in the last equality we used metric compatibility of the Christoffel connection
∇agbc = 0 and that ∇af = ∂af for any f ∈ Ω0(M).

3. Fun with Sd

To begin, we want to understand the particular coordinatization, i.e. the round metric, of
the unit d-dimensional sphere, Sd, such that the angles {αi} cover the sphere with

ds2 = dα2
1 + sin2 α1dα

2
2 + . . .+

d−1∏
i=1

sin2 αidα
2
d. (1)

That is we want to study the embedding Sd ↪→ Rd+1. Let us define coordinates on Rd+1,
{x0, . . . , xd} with the flat Euclidean metric

ds2R = δabdx
adxb.
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We want to find the unit Sd embedded in this space, which can be found by defining the
co-dimension 1 hypersurface in Rd+1 such that each point on the surface is unit distance
away from the origin {0, . . . , 0}. This is found by the restriction

x20 + x21 + . . .+ x2d = 1.

Any coordinatization of a unit Sd ↪→ Rd+1 must satisfy this relation. We can use a general-
ization of the familiar parameterization of the S2 ↪→ R3:

x0 = cosα1, x1 = sinα1 cosα2, . . . , xd−1 =

d−1∏
i=1

sinαi cosαd, xd =

d∏
i=1

sinαi.

If we compute the line element on this surface, pullback the standard Euclidean metric on
Rd+1 to get the desired form as in eq. (1). To illustrate this, lets use a low dimensional
example, S2 ↪→ R3, and compute the line element. Note that, with the above coordinates on
the d=2 hypersurface

dx20 = sin2 α1dα
2
1

dx21 = cos2 α1 cos2 α2dα
2
1 + sin2 α1 sin2 α2dα

2
2 − 2 cosα1 sinα1 cosα2 sinα2dα1dα2

dx22 = cos2 α1 sin2 α2dα
2
1 + sin2 α1 cos2 α2dα

2
2 + 2 cosα1 sinα1 cosα2 sinα2dα1dα2.

Plugging this into δabdx
adxb, we see that

ds2 = δabdx
adxb = dα2

1 + sin2 α1dα
2
2 X.

What are the ranges for the αi? To cover the sphere, {αi ∈ [0, π]
∣∣ 1 ≤ i ≤ d − 1} and

αd ∈ [0, 2π]. Note that you can visualize this as a nested fibration of an S1 over d − 1
intervals I = [0, π]. In this coordinate system if we had chosen αd ∈ [0, π] and another
αk ∈ [0, 2π], then we would not have covered the entirety of the sphere (check this again with
a low dimensional example). Alternatively if we had chosen multiple αk ∈ [0, 2π], then we
would have ended up with a multiple covering of the sphere.

For brevity, label Γαiαjαk ≡ Γijk. Using your favorite package for differential geometry, the

calculation of Γijk over a number of dimensions is done quickly, and from there a pattern
quickly emerges:

Γjij = Γjji = cotαi, i < j

Γijj = −gjj cotαi

i−1∏
k=1

csc2 αk, i < j

with the rest vanishing identically. So, the geodesic equation with affine parameter λ becomes,
with α̇i = dαi(λ)

dλ ,

α̈i + 2Γijiα̇
jα̇i + Γikk(α̇

k)2 = 0, j < i, k > i.

We can note that the αd equation can always be written as

α̇d = cd

d−1∏
k=1

csc2αk(λ)
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for some constant cd.

How are we going to solve this? We can exploit the symmetry of the background and affect
an SO(d+ 1) rotation such that any solution we wish to find passes through the ‘north pole’
defined by α1(0) = 0. If from this point we only allow α1 to vary such that α̇j = 0 for j > 1,
then the geodesic equations reduce to

α̈i = 0

for all i. The solution to this is obviously α1(λ) = c1λ and αj = cj for j > 1 and ci constant,
which is the parameterization of a great circle.

Lastly, calculating the Riemann curvature tensor, Ricci tensor, and Ricci scalar for the Sd

(see the Mathematica notebook posted along with the solutions), one finds that

Rijkl = gikgjl − gilgjk
Rij = (d− 1)gij

R = d(d− 1)

In particular, this shows that the arbitrary constant used in the problem statement K = 1.
A manifold whose curvatures can be expressed in this way, for any K, is called a ‘symmetric
space’.
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