General Relativity Solution #2 10/18/2016

1. Diffeomorphisms
We start by asking how the components of a vector field transform under the arbitrary
reparameterizations z# = f#(z) for a differentiable set of functions {f#}. We are given that
the coordinate basis vectors follow €,(Z) = gi@ eu(x).

Starting from the definition of a vector field v = v®e,, we see that since the abstract vector
field is ignorant of the particular coordinatization used on the manifold:
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From this point we can easily ascertain the transformation law for a 1-form, w € T1(M). We
start with the fact that the dual basis dz¢ 8“” odz*. The components thus transform as

. o 0T*N . . o ozt
Ww=w=0T)dz :<%)wa(a))d:ﬁ“ = wa(x):@wu(:ﬁ)

Moving one step up the tensorial ladder, we can ask how the components of the metric, g.g,
transform. Let us take a lesson from above and write metric g = gogdz® ® dz”. Then from
the rules governing the transformation of the dual basis:

What is key here is that the arbitrary relabeling of points on M does not change g. What
does this mean for the change of the determinant of the metric g = det ||g,.||? We know that
the det AB = det Adet B, and so, we can see that

l/

detHgaﬁH—detHa 8/59’“/ = g=J%

where the transformation in the last step was written as a product of Jacobians given by

= ‘det (8x2> ‘
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Lastly, we want to know why the spacetime volume element on M is 4/|g|. First, we note
that what we desire is that the volume of M is invariant under reparameterizations

VMZVMZ/ ddz - (?)
M

What should fill in for ‘?’ is something built out of the metric, since we need a notion of the
‘size’ of regions of M, and can compensate for how the dual basis transforms. We know from
basic multivariate calculus that

d% = Jd%

for J given above. Now given the transformation rules above, we see that what should fill
in for the volume element must have a transformation like J~! to keep Vi invariant under
diffeomorphisms. The previous calculation shows that

Vi = V1775 =
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which is precisely what we want. Thus, demanding that the volume element be built out
of the metric and that the total volume is diffeomorphism invariant leads to \/m being the
unique candidate for the volume element. Simply demanding the transformation of J~1! is
not sufficient as any the square root of the determinant of any (0, 2)-tensor transforms this
way.

This above discussion can be rephrased in the language of differential forms. The components
of a k-form are totally anti-symmetric covariant tensors of rank k. On a d-dimensional mani-
fold M, differentiable functions f are O-forms and d-forms, or top forms, are all proportional
to the Levi-Civita tensor

1
€= aeal_._addxo‘l Ao Adx®d

and

Cay...ag = \/@[O&l ce. ad].

The beauty of the language of forms is that k-forms can be viewed as integrands of k-
dimensional integrals. Thus, € is the volume form, and integrating a scalar function (0-form),
f, over the manifold is the same as integrating against e

[ atavidlr = [ se

Put in other language seen with differential forms, the volume form is given in terms of the
Hodge-x operation, which maps p-forms to (d — p)-forms on a d-dimensional manifold, by

Vgl

*x1 = T[041 cooagldx®t AN dx®l

2. Derivatives and Such

a. Oy logg:

For calculations involving variations of the metric determinant, it is convenient to use
the identity det A = exp(Tr log A). As such, it becomes clear that

da(logdet A) = 9,Tr log A = Tr A9, A,

and so affecting the trace, we see

B

da(log 9) = 9% gps,a-

b. I'Y 5 = 0slog /|gl:

In a coordinate basis, lets recall the definition of the Christoffel symbols

re,=9"
b5 = 5 (98,0 + 9v.6 = 985,)
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and trace over the first two indices

« gOl’Y 1 ay
af — 7(9“/&713 + 9pya = Gy8,a) = 99 Jar. 5
The last equality used the symmetry of the metric to cancel the last two terms. From
part [a.],
L oy
aﬁ log \Y ‘g| = 59 Jav, B-
c. Vo A%

Starting with the definition of the covariant derivative of a vector
VA® = 0gA™ + T %y A7.
Affecting the trace, over a,
Vo A% = 0, A% +T%,,47,
and using the result in part [b.]

1

Vo AY = 0,A% + 9, (lo AV = 9,A% +
’Y( g\/g) \/§

A%0an/9,
which can be rearranged to give

_1 o
VaAY =19]72(/9AY) a-

d. O:
First, we rewrite J = V,V?, and use the results from part [c.]

1 1
Va(V90) =97 (VaV D)o = 97 F (Vag 050
where in the last equality we used metric compatibility of the Christoffel connection

Vagre = 0 and that V,f = 9, f for any f € Q°(M).
3. Fun with S¢

To begin, we want to understand the particular coordinatization, i.e. the round metric, of
the unit d-dimensional sphere, S, such that the angles {a;} cover the sphere with

d-1
ds* = da} + sin® ajda3 + ... + H sin® a;da. (1)
i=1

That is we want to study the embedding S* < R!. Let us define coordinates on R*t1,
{z0,..., xq} with the flat Euclidean metric

ds%& = §pdzda®.
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We want to find the unit S? embedded in this space, which can be found by defining the
co-dimension 1 hypersurface in R%t! such that each point on the surface is unit distance
away from the origin {0,...,0}. This is found by the restriction

w2l Fad=1.

Any coordinatization of a unit S¢ < R must satisfy this relation. We can use a general-
ization of the familiar parameterization of the S? < R3:

d—1 d
Tg =cosSqq, X1 =SNQjcosas, ..., Tqg_1= H sinq; cosag, Tgq= Hsinai.
i=1 i=1

If we compute the line element on this surface, pullback the standard Euclidean metric on
R to get the desired form as in eq. . To illustrate this, lets use a low dimensional
example, S? < R3, and compute the line element. Note that, with the above coordinates on
the d=2 hypersurface

2 _ 2 2
dxy = sin” apdoy
d 2 2 2 d 2 s 2 22 d 2 . : d d
2] = cos” ay cos” apda + sin” o sin® apday — 2 cos o sin oy cos ag sin asdadas

dx% = cos® aq sin® agda% + sin? o cos? agdag 4+ 2 cos aq sin v cos o Sin aodaydas.
Plugging this into d,,dz®dz?, we see that
ds® = dypdxda® = do? + sin® oy da? v

What are the ranges for the ;? To cover the sphere, {a; € [0, 7|1 < i < d — 1} and
agq € [0, 2r]. Note that you can visualize this as a nested fibration of an S! over d — 1
intervals Z = [0, 7]. In this coordinate system if we had chosen ay4 € [0, 7] and another
ay € [0, 27], then we would not have covered the entirety of the sphere (check this again with
a low dimensional example). Alternatively if we had chosen multiple ay, € [0, 27|, then we
would have ended up with a multiple covering of the sphere.

For brevity, label T'% = T - Using your favorite package for differential geometry, the
. Xk J
calculation of Fljk over a number of dimensions is done quickly, and from there a pattern

quickly emerges:

Fj..:l“j-i:cotai, 1< g

i J
i—1
I, = —gjjcot oy H esctag, 1< j
k=1
with the rest vanishing identically. So, the geodesic equation with affine parameter A becomes,
with d; = 24)

a4 20676 + T ()2 =0, j<i k>
We can note that the ay equation can always be written as

d—1

Qg = cq H csc2ak()\)
k=1



General Relativity Solution #2 10/18/2016

for some constant cg.

How are we going to solve this? We can exploit the symmetry of the background and affect
an SO(d + 1) rotation such that any solution we wish to find passes through the ‘north pole’
defined by a1(0) = 0. If from this point we only allow o to vary such that &; =0 for j > 1,
then the geodesic equations reduce to

a; =0
for all i. The solution to this is obviously a;(A) = 1A and a; = ¢; for j > 1 and ¢; constant,

which is the parameterization of a great circle.

Lastly, calculating the Riemann curvature tensor, Ricci tensor, and Ricci scalar for the S¢
(see the Mathematica notebook posted along with the solutions), one finds that

Rijri = 9ikgj1 — 9a9jk
Rij = (d — 1)92',7
R=d(d-1)
In particular, this shows that the arbitrary constant used in the problem statement K = 1.

A manifold whose curvatures can be expressed in this way, for any K, is called a ‘symmetric
space’.



