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1. Commutators and Connections
If we consider the set of basis vectors e, on an arbitrary manifold, M, equipped with coordi-
nates z*, then the commutator of [e,, eg], taking the basis such that e, simply point along
a direction with unit weight, can w.l.o.g. be expressed as

[€q, €g] = [On, 0g] = (0n03 — 030,) = 0.

The last equality follows from standard properties of mixed 0’s.

If instead, we were to take an arbitrary vector field u in the coordinate basis, which can be
expanded on the above basis u(f) = u“04(f) for any scalar function f € C*°. Then we find
that the commutator [u, v|f is given by

[, VIf = u(v(f)) = v(u(f)) = (u"0u(v"0pf) = v"9p(u*0uf)),
which defines for us a new vector field w(f) = w*0,f defined by
w(f) = (@0a(v”) = v"0a(u”))5 .
In components, this evaluates to
w? = (19 (V7)) — v¥0 (u?)).
What does this mean for the symmetry properties of the components of the connect? By
definition
Voeg = Fi‘yﬂe,\.
Now, consider f € C*°(M) and let us compute the action of [en, eg] = [V, V] on f
[V Valf = 0a(Vsf) +TogVsf = 05(Vaf) = T5Vsf
= [Ous O8] f + (Top = T30)05f = 210,505 f

In the last line, we used that for a scalar function Vf = 0f and [0n, 03] = 0. Then we see
that, F‘[Sa 4 vanishes which implies that the connection in the coordinate basis is symmetric in
its lower indices

In a spacetime with torsion, this is certainly not the case as explicitly Ffbc} = Kp #0.
2. Geodesics

a. Variational Calculus
We start with the coordinatization of R? by {r, ¢} and parameterize a curve in the plane
by s with a functional defined on the curve as

_fllr/82r2/32
f—/g ds=((r'(5))? + r2(¢/(5))?)

0 2
where ' = % and the fixed endpoints of the curve are {&y, £&1}. This functional, I,
describes the free motion of a particle in R? with the parameter s playing the role of
time.
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Extremizing the functional:

&1
oI = /5 ds((r(¢/)? —r")or — (r?¢" + 2r7'¢')5¢) + (r'dr + r2¢’(5¢)|§é

With the endpoints fixed, the boundary terms vanish, and thus stationarity of the func-
tional implies the following equations
T// _ T((Z)/)2 — O
r¢” +2r'¢' =0
b. Straight Lines
If we return to the original Cartesian coordinate system by r(s)? = z(s)? + y(s)? and

$(s) = tan~? (ggi;), then the equations of motion become
xw// _"_ yy// — 0
yr' — zy’ =0

Which after simple manipulation gives

(@ +y°)y" =0
The solution to this system is simply y(s) = ays + b, and = = a,s + b,.
c. Geodesics

We want to compare the equations of motion from part (a) with the geodesic equation
in affine parameterization by s
d?z® o dzP dx?
- 4+ 7 -
ds? P ds ds
Mercifully, for R? in polar coordinates the only non-vanishing components of the con-
nection are F2>¢> = —r and Ffd) = r~!. This means that,

TII+F;¢(¢/)2:O = T,/—T(¢/)2:0 v
¢+ =0 = v+ 2 =0 v
3. Structure constants
Note there was a typo in the assignment: eg = sin .

We can easily compute these commutators given results from the first question. The easiest
are obviously [e;, es]:

[e1, e3] = cos M—O sin ¢ (cot HM—O csce wm-o Oy €08 Y0y + Oy sinp(cot 00y, — csc1pdy)
= sin 0y + cos (cot 0y, — cscpdy) = fAsen
le1,e3] = — cos 1y + sinth(cot 0, — cscpdy) = fHser,
where f 123 = —1 and f213 = 1. A similar calculation gives
le1, e2] = =0y = fises

These f Z] ;. are just the structure constants of SU(2), but this should come as no surprise since
the isometry group of the S is SO(4) ~ SU(2) x SU(2).



