1. Commutators and Connections

If we consider the set of basis vectors \(e_\alpha \) on an arbitrary manifold, \(M \), equipped with coordinates \(x^\mu \), then the commutator of \([e_\alpha, e_\beta]\), taking the basis such that \(e_\alpha \) simply point along a direction with unit weight, can w.l.o.g. be expressed as

\[
[e_\alpha, e_\beta] = [\partial_\alpha, \partial_\beta] = (\partial_\alpha \partial_\beta - \partial_\beta \partial_\alpha) = 0.
\]

The last equality follows from standard properties of mixed \(\partial \)'s.

If instead, we were to take an arbitrary vector field \(u \) in the coordinate basis, which can be expanded on the above basis \(u(f) = u^\alpha \partial_\alpha(f) \) for any scalar function \(f \in \mathcal{C}^\infty \). Then we find that the commutator \([u, v]f\) is given by

\[
[u, v]f = u^\alpha \partial_\alpha(v^\beta \partial_\beta f) - v^\beta \partial_\beta(u^\alpha \partial_\alpha f),
\]

which defines for us a new vector field \(w(f) = u^\alpha \partial_\alpha f \) defined by

\[
w(f) = (u^\alpha \partial_\alpha(v^\beta) - v^\beta \partial_\beta(u^\alpha))(\partial_\beta f).
\]

In components, this evaluates to

\[
w_\beta = (u^\alpha \partial_\alpha(v^\beta) - v^\beta \partial_\beta(u^\alpha)).
\]

What does this mean for the symmetry properties of the components of the connect? By definition

\[
\nabla_\alpha e_\beta = \Gamma^\lambda_{\alpha\beta} e_\lambda.
\]

Now, consider \(f \in \mathcal{C}^\infty(M) \) and let us compute the action of \([e_\alpha, e_\beta] \rightarrow [\nabla_\alpha, \nabla_\beta] \) on \(f \)

\[
[\nabla_\alpha, \nabla_\beta]f = \partial_\alpha(\nabla_\beta f) + \Gamma^\delta_{\alpha\beta} \nabla_\delta f - \partial_\beta(\nabla_\alpha f) - \Gamma^\delta_{\beta\alpha} \nabla_\delta f
\]

\[
= [\partial_\alpha, \partial_\beta]f + (\Gamma^\delta_{\alpha\beta} - \Gamma^\delta_{\beta\alpha}) \partial_\delta f = 2\Gamma^\delta_{[\alpha\beta]} \partial_\delta f
\]

In the last line, we used that for a scalar function \(\nabla f = \partial f \) and \([\partial_\alpha, \partial_\beta] = 0 \). Then we see that, \(\Gamma^\delta_{[\alpha\beta]} \) vanishes which implies that the connection in the coordinate basis is symmetric in its lower indices

\[
\Gamma^a_{[bc]} = 0 \quad \Rightarrow \quad \Gamma^a_{bc} = \Gamma^a_{cb}
\]

In a spacetime with torsion, this is certainly not the case as explicitly \(\Gamma^a_{[bc]} \equiv K^a_{bc} \neq 0 \).

2. Geodesics

a. Variational Calculus

We start with the coordinatization of \(\mathbb{R}^2 \) by \(\{r, \phi\} \) and parameterize a curve in the plane by \(s \) with a functional defined on the curve as

\[
I = \int_{\xi_0}^{\xi_1} ds \left(\frac{1}{2} (r'(s))^2 + r^2(\phi'(s))^2 \right)
\]

where \(\phi' \equiv \frac{d}{ds} \) and the fixed endpoints of the curve are \(\{\xi_0, \xi_1\} \). This functional, \(I \), describes the free motion of a particle in \(\mathbb{R}^2 \) with the parameter \(s \) playing the role of time.
Extremizing the functional:

\[\delta I = \int_{\xi_0}^{\xi_1} ds \left((r(\phi')^2 - r'') \delta r - (r^2 \phi'' + 2r r' \phi') \delta \phi \right) + \left(r' \delta r + r^2 \phi' \delta \phi \right) \]

With the endpoints fixed, the boundary terms vanish, and thus stationarity of the functional implies the following equations

\[r'' - r(\phi')^2 = 0 \]
\[r \phi'' + 2 r' \phi' = 0 \]

b. Straight Lines

If we return to the original Cartesian coordinate system by

\[r(s) = x(s)^2 + y(s)^2 \quad \text{and} \quad \phi(s) = \tan^{-1} \left(\frac{y(s)}{x(s)} \right) \]

then the equations of motion become

\[xx'' + yy'' = 0 \]
\[yx'' - xy'' = 0 \]

Which after simple manipulation gives

\[x'' = \frac{xy''}{y} \]
\[(x^2 + y^2)y'' = 0 \]

The solution to this system is simply \(y(s) = a_y s + b_y \) and \(x = a_x s + b_x \).

c. Geodesics

We want to compare the equations of motion from part (a) with the geodesic equation in affine parameterization by \(s \)

\[\frac{d^2 x^\alpha}{ds^2} + \Gamma^\alpha_{\beta\gamma} \frac{dx^\beta}{ds} \frac{dx^\gamma}{ds} = 0. \]

Mercifully, for \(\mathbb{R}^2 \) in polar coordinates the only non-vanishing components of the connection are \(\Gamma^r_{\phi\phi} = -r \) and \(\Gamma^\phi_{r\phi} = r^{-1} \). This means that,

\[r'' + \Gamma^r_{\phi\phi}(\phi')^2 = 0 \implies r'' - r(\phi')^2 = 0 \quad \checkmark \]
\[\phi'' + 2 \Gamma^\phi_{r\phi} r' \phi' = 0 \implies r \phi'' + 2r' \phi' = 0 \quad \checkmark \]

3. Structure constants

Note there was a typo in the assignment: \(e_2^\theta = \sin \psi \).

We can easily compute these commutators given results from the first question. The easiest are obviously \([e_1, e_3] \):

\[[e_1, e_3] = \cos \psi [\partial_\theta, \partial_\psi] + \sin \psi (\cot \theta \partial_\psi, \partial_\psi) - \csc \psi (\partial_\theta, \partial_\psi) = f_{13}^2 e_2 \]

\[[e_1, e_3] = -\cos \psi \partial_\theta + \sin \psi (\cot \theta \partial_\psi - \csc \psi \partial_\phi) = f_{23}^1 e_1, \]

where \(f_{23}^1 = -1 \) and \(f_{13}^2 = 1 \). A similar calculation gives

\[[e_1, e_2] = -\partial_\psi = f_{12}^3 e_3 \]

These \(f_{jk} \) are just the structure constants of \(SU(2) \), but this should come as no surprise since the isometry group of the \(S^3 \) is \(SO(4) \simeq SU(2) \times SU(2) \).