
General Relativity Solution #1 10/11/2016

1. Commutators and Connections
If we consider the set of basis vectors eα on an arbitrary manifold,M, equipped with coordi-
nates xµ, then the commutator of [eα, eβ], taking the basis such that eα simply point along
a direction with unit weight, can w.l.o.g. be expressed as

[eα, eβ] = [∂α, ∂β] = (∂α∂β − ∂β∂α) = 0.

The last equality follows from standard properties of mixed ∂’s.

If instead, we were to take an arbitrary vector field u in the coordinate basis, which can be
expanded on the above basis u(f) = uα∂α(f) for any scalar function f ∈ C∞. Then we find
that the commutator [u, v]f is given by

[u, v]f = u(v(f))− v(u(f)) = (uα∂α(vβ∂βf)− vβ∂β(uα∂αf)),

which defines for us a new vector field w(f) = wα∂αf defined by

w(f) = (uα∂α(vβ)− vα∂α(uβ))∂βf.

In components, this evaluates to

wβ = (uα∂α(vβ)− vα∂α(uβ)).

What does this mean for the symmetry properties of the components of the connect? By
definition

∇αeβ = Γλαβeλ.

Now, consider f ∈ C∞(M) and let us compute the action of [eα, eβ]→ [∇α, ∇β] on f

[∇α, ∇β]f = ∂α(∇βf) + Γδαβ∇δf − ∂β(∇αf)− Γδβα∇δf
= [∂α, ∂β]f + (Γδαβ − Γδβα)∂δf = 2Γδ[αβ]∂δf

In the last line, we used that for a scalar function ∇f = ∂f and [∂α, ∂β] = 0. Then we see
that, Γδ[αβ] vanishes which implies that the connection in the coordinate basis is symmetric in
its lower indices

Γa[bc] = 0 ⇒ Γabc = Γacb

In a spacetime with torsion, this is certainly not the case as explicitly Γa[bc] ≡ K
a
bc 6= 0.

2. Geodesics

a. Variational Calculus
We start with the coordinatization of R2 by {r, φ} and parameterize a curve in the plane
by s with a functional defined on the curve as

I =

∫ ξ1

ξ0

ds
1

2
((r′(s))2 + r2(φ′(s))2)

where ′ ≡ d
ds and the fixed endpoints of the curve are {ξ0, ξ1}. This functional, I,

describes the free motion of a particle in R2 with the parameter s playing the role of
time.
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Extremizing the functional:

δI =

∫ ξ1

ξ0

ds
(
(r(φ′)2 − r′′)δr − (r2φ′′ + 2rr′φ′)δφ) + (r′δr + r2φ′δφ)|ξ1ξ0

With the endpoints fixed, the boundary terms vanish, and thus stationarity of the func-
tional implies the following equations

r′′ − r(φ′)2 = 0

rφ′′ + 2r′φ′ = 0

b. Straight Lines
If we return to the original Cartesian coordinate system by r(s)2 = x(s)2 + y(s)2 and

φ(s) = tan−1
(
y(s)
x(s)

)
, then the equations of motion become

xx′′ + yy′′ = 0

yx′′ − xy′′ = 0

Which after simple manipulation gives

x′′ =
xy′′

y

(x2 + y2)y′′ = 0

The solution to this system is simply y(s) = ays+ by and x = axs+ bx.

c. Geodesics
We want to compare the equations of motion from part (a) with the geodesic equation
in affine parameterization by s

d2xα

ds2
+ Γαβγ

dxβ

ds

dxγ

ds
= 0.

Mercifully, for R2 in polar coordinates the only non-vanishing components of the con-
nection are Γrφφ = −r and Γφrφ = r−1. This means that,

r′′ + Γrφφ(φ′)2 = 0 ⇒ r′′ − r(φ′)2 = 0 X

φ′′ + 2Γφrφr
′φ′ = 0 ⇒ rφ′′ + 2r′φ′ = 0 X

3. Structure constants
Note there was a typo in the assignment: eθ2 = sinψ.
We can easily compute these commutators given results from the first question. The easiest
are obviously [ei, e3]:

[e1, e3] = cosψ���
��:0

[∂θ, ∂ψ]− sinψ(cot θ���
��:0

[∂ψ, ∂ψ]− cscψ���
��:0

[∂φ, ∂ψ])− ∂ψ cosψ∂θ + ∂ψ sinψ(cot θ∂ψ − cscψ∂φ)

= sinψ∂θ + cosψ(cot θ∂ψ − cscψ∂φ) = f213e2

[e1, e3] = − cosψ∂θ + sinψ(cot θ∂ψ − cscψ∂φ) = f123e1,

where f123 = −1 and f213 = 1. A similar calculation gives

[e1, e2] = −∂ψ = f312e3

These f ijk are just the structure constants of SU(2), but this should come as no surprise since

the isometry group of the S3 is SO(4) ' SU(2)× SU(2).
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