- 1. Any vector field \mathbf{u} may be regarded as a linear operator acting on scalar fields, with $\mathbf{u}(f) \equiv \partial_{\mathbf{u}} f = u^{\alpha} \partial_{\alpha} f = u^{\alpha} f_{,\alpha}$ for any scalar function f. Given any two vector fields, \mathbf{u} and \mathbf{v} , the commutator $[\mathbf{u}, \mathbf{v}] \equiv [\partial_{\mathbf{u}}, \partial_{\mathbf{v}}]$. Using a coordinate basis: (i) what is the commutator of basis vectors, $[\mathbf{e}_{\alpha}, \mathbf{e}_{\beta}]$, and (ii) what are the components of the commutator $[\mathbf{u}, \mathbf{v}]$? Explain why these results imply that, in any coordinate basis, the connection components are symmetric in the last two indices, $\Gamma^{\mu}{}_{\alpha\beta} = \Gamma^{\mu}{}_{\beta\alpha}$.
- 2. Define polar coordinates on a flat two-dimensional plane as usual: $x \equiv r \cos \phi$ and $y \equiv r \sin \phi$. Let $\{r(s), \phi(s)\}$ describe some curve on the plane parameterized by s. Consider a functional on such curves defined by $I \equiv \int ds \, \frac{1}{2} [(dr/ds)^2 + r^2(d\phi/ds)^2]$.
 - (a) Vary the functional I, with fixed endpoints for the curve. What are the resulting differential equations which characterize minima of I?
 - (b) Justify the claim that curves (with fixed endpoints) which minize I are necessarily geodesics i.e., geometrically straight lines on \mathbb{R}^2 .
 - (c) Compare the general form of the geodesic equation, $d^2x^{\mu}/ds^2 + \Gamma^{\mu}{}_{\alpha\beta} (dx^{\alpha}/ds) (dx^{\beta}/ds) = 0$, with your result in part (a) and extract the values of all connection coefficients $\{\Gamma^{\mu}{}_{\alpha\beta}\}$ for polar coordinates (with coordinate basis vectors) on \mathbb{R}^2 .
- 3. Let $\{\theta, \phi, \psi\}$ be conventional spherical coordinates for a three-sphere (S^3) , related to Cartesian coordinates in \mathbb{R}^4 via $x^4 = r \cos \theta$, $x^2 = r \sin \theta \sin \phi \cos \psi$, $x^3 = r \sin \theta \cos \phi$, and $x^1 = r \sin \theta \sin \phi \sin \psi$. Define the vector fields

$$\mathbf{e}_{1} \equiv \cos \psi \, \frac{\partial}{\partial \theta} - \sin \psi \left(\cot \theta \, \frac{\partial}{\partial \psi} - \csc \theta \, \frac{\partial}{\partial \phi} \right),$$

$$\mathbf{e}_{2} \equiv \sin \psi \, \frac{\partial}{\partial \theta} + \cos \psi \left(\cot \theta \, \frac{\partial}{\partial \psi} - \csc \theta \, \frac{\partial}{\partial \phi} \right),$$

$$\mathbf{e}_{3} \equiv \frac{\partial}{\partial \psi}.$$

Compute the commutators $[\mathbf{e}_i, \mathbf{e}_j]$ and show that $[\mathbf{e}_i, \mathbf{e}_j] = f_{ij}^k \mathbf{e}_k$ for some constant set of coefficients $\{f_{ij}^k\}$. What are these coefficients? Can you explain their form (without your explicit calculation)?