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When resolving errors with interactive systems, people sometimgpsrarticulate—or adopt a
clarified style of speech that has been associated with increased recognition errors. The primary
goals of the present study wer@) to provide a comprehensive analysis of acoustic, prosodic, and
phonological adaptations to speech during human—computer error resolution after different types of
recognition error; and2) to examine changes in speech during bgthbal and focal utterance
repairs. A semi-automatic simulation method with a novel error-generation capability was used to
compare speech immediately before and after system recognition errors. Matched original-repeat
utterance pairs then were analyzed for type and magnitude of linguistic adaptation during global and
focal repairs. Results indicated that the primary hyperarticulate changes in speech following all error
types were durational, with increases in number and length of pauses most noteworthy. Speech also
was adapted toward a more deliberate and hyperclear articulatory style. During focal error repairs,
large durational effects functioned together with pitch and amplitude to provide selective
prominence marking of the repair region. These results corroborate and generalize the
computer-elicited hyperarticulate adaptation mod€HAM). Implications are discussed for
improved error handling in next-generation spoken language and multimodal systeni9980
Acoustical Society of AmericfS0001-496€08)04511-1]

PACS numbers: 43.72.Kb, 43.70.F3LH]

INTRODUCTION Unfortunately, hyperarticulate speech introduces difficult
sources of variability into the task of spoken language pro-
User acceptance of speech technology is influencedessing, which has been associated with elevated rates of
strongly by the error rate, the ease of error resolution, theystem recognition failuréShriberget al,, 1992.
cost of errors, and their relation to users’ ablllty to Complete When peop|e hyperarticu|ate to Spoken |anguage sys-
a task(Kamm, 1994; Frankiskt al, 1995; Rhyne and Wolf, tems in an effort to correct recognition errors, recognition
1993. As aresult, future spoken language systems will neegiates would be expected to degrade as hyperarticulated
to be designed to handle recognition errors effectively if theyspeech departs from the training data upon which a recog-
are to perform in a reliable manner and succeed commelyizer was developed. This problem arises because the basic
ci_ally. Although “de_signing for error” hgs been advocated principle of automatic speech recognition is pattern matching
widely for conventional interfacesLewis and Norman, f hyman speech with relatively static stored representations
1986, to date this concept has not been applied effectively tyt sybword units. Although current recognition algorithms
the design of recognition-based technology. typically model phonemes and coarticulation effects, they do
not tend to model dynamic stylistic changes in the speech
signal that are elicited by environmental factors, such as the
hyperarticulate speech adaptations that speakers make during
When speaking to interactive systems, recent researaimiscommunication, or the “Lombard speech” adaptations
has demonstrated that people typically adapt their languaggat occur in a noisy environmeritombard, 191L With
during attempts to resolve system recognition erf@sgiatt  respect to training, current speech recognizers tend to be
etal, 1996, 1998 This change in speaking style toward trained on original error-free input, typically collected under
hyperarticulate speecimvolves a stylized and clarified form unnatural and constrained task conditions. Realistic interac-
of pronunciation that speakers routinely use when accommaive speech usually is not collected or used for training pur-
dating what they perceive to be “at risk” listeners, adverseposes, which means that training is omitted on hyperarticu-
communication environments, or interactions involving mis-|ate speech during system error handling. As a result, the
communication(Lindblom et al, 1992; Oviattet al, 1998.  sjgnal variability posed by hyperarticulate speech represents
a hard-to-process source of variability that threatens to de-
dElectronic mail: oviatt@cse.ogi.edu;http://www.cse.ogi.ecaviatt/ grade recognizer performance. Since hyperarticulate speech
YCurrently at Artificial Intelligence Laboratory, MIT, Boston, MA. can be both aeactionto system recognition failure, and a

9Currently at Linguistics Department, University of Massachusetts, Am‘potential fuel for precipitating a higher error rate, the net
herst, MA. )

dCurrently at Linguistics Department, University of Pittsburgh, Pittsburgh,effelcj[ is th_at it has the potential to generatewle of rec-
PA. ognition failure

A. Hyperarticulation and the cycle of recognition
failure
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The design of recognition technology also can contribute
to this cycle of recognition failure, and wusteringof rec-
ognition errors. For example, the design of Hidden Markov g,
Models can propagate recognition errors, since a misrecog’é Aticulatory
nized word can cause others in its vicinity to be misrecog—%
nized (Rhyne and Wolf, 1998 Language models based on :
conditional probabilities also can propagate recognition er-§
rors, because an error can force the language model into €%
incorrect state and increase the likelihood of an error on sub
sequent wordgJelinek, 198% In short, once a recognition

ion

repetiti

in fe

Durational
¥
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error has occurred, both the properties of spoken languag Baseline Stage |. Low Error Rate  Stage II. High Error Rate
technology and users’ reactive hyperarticulation can lead tc Singular change Multiple changes
perpetuation of the error in a way that complicates graceful (duration) e iy
recovery.

To design for both avoidance and resolution of errors, FIG. 1. Computer-elicited hyperarticulate adaptation mg@&1AM).
one research strategy is to analyze human—computer interac-
tion specifically during system recognition errors. Such work
could include modeling of users’ hyperarticulated speech-996, 1998. In contrast, during a low system error rate nei-
during interactive error handling, and the design of spokerther of these articulatory phenomena were observed to

language interfaces that aim to manage these strongly efhange significantly.

grained speech patterns. With respect to intonation and fundamental frequency,
during a high error rate, speakers also adopt a final falling
B. The CHAM model intonation contour when repairing error subdialogues. This

shift in intonation is also related to a slight decrease in fun-
. ) . S ; amental frequency, which is reflected as-@% average
hyperarticulation, such that its basic signal properties chang rop in minicr]num ypitch (Oviatt etal, 1999 E%asicallg

dynamically and sometimes abrupt{pviatt et al, 1996, speakers use final falling tones and a drop in pitch as cues to
1998. When a system makes a recognition error, the mis- P 9 pinp

communication that occurs can be a particularly forcefulmark their repair subdialogues during human-—computer dia-

elicitor of hyperarticulate speech from users. FurthermoreIogue interaction. However, neither of these changes are evi-

the presence, form, and degree of hyperarticulation in usergem during a low system error rate, nor have reliable in-

speech to computers is a predictable phenomenon, which {2353 been report.ed in p.revious work in maximum pitch,
P P P P pﬁtch range, or amplitudéviatt et al, 1996, 1998

transformed in principled ways during human—computer in- The t i b hi i licited h i
teraction. Compared with speech to a human partner durin ‘ de wo-stage drag—l,lé?l\gl cqlrlnpu er—z it eF' ypierar(;cu—
expected or actual miscommunication, users’ hyperarticulat € a aptation modef ), illustrated in Fig. 1 an

speech to a computer is in some ways unique, and the pattePr'i'g'na"y mtronged in Oviatet al. (1998, has been pro-
of adaptation is consistent with their perception of the comP0S€d as a unifying framework to account for these system-

puter as a kind of “at risk” listenefOviatt et al, 1998. at_ic changes_in users’ spee_c_h during _interactive error han-
During system error resolution, speech primarily shiftsd/ing. According to the empirically derived CHAM model,
to become lengthier and more clearly articulated. In recenpi@d€ ladaptations entail a singular change in durational
research, uniform increases in utterance duration were dergharacteristics. This stage is associated with a moderate de-
onstrated during both low and high error-rate condititres, ~ 9"€€ of hyperarticulation during a low rate of system errors.
6.5% versus 20% rate of utterances containing an jemath Stage llentails multiple changes in durational, articulatory,
no significant difference in elongation between conditions@nd fundamental frequency characteristics. This stage is as-
On average, a 12% relative increase was found in clonga- Sociated with a more extreme degree of hyperarticulation
tion of speech during error repair, wherea®92% more during a high rate of system errors. The two-stage CHAM
pauses were interjected, and the relative increase in pau§eodel basically summarizes an unfolding of hyperarticulate
duration was+75% (Oviatt et al, 1996, 1998 That is, the SPpeech adaptations that is consistent with the literature out-
most salient change in speech during error handling was alined above. In brief, it predicts thatl) users’ speech will
teration of pause structure. adapt toward the linguistically specified hyperarticulation
During a high error rate, the phonological features ofprofile discussed above, including the type and magnitude of
repeated speech also adapt toward an audibly clearer articohanges in articulatory, durational, and fundamental fre-
lation pattern, with frequent changes including fortition of quency features that has been outlined in previous empirical
alveolar flaps to coronal plosives, sucheaset changing to  findings; (2) systems characterized by a low versus high er-
et lert, and shifts to unreduceat sequences, such asefi  ror rate will elicit different types of hyperarticulate linguistic
changing tatwenti (Oviatt et al, 1996, 1998 Users’ speech features, as illustrated in Stage | and Il of the model shown
basically becomes more deliberate and well specified in itén Fig. 1; and(3) abrupt rather than gradual transitions will
signal cues to phonetic identity. This shift toward hyperclearoccur in the signal profile of users’ speech from one moment
speech has also been shown to correspond with a drop o the next as they begin and end episodes of error handling.
spoken disfluencies during a high error rd@viatt et al, Implications of the CHAM model for designing interactive

Human speech to computers varies along a spectrum
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systems with improved error handling have been discussedearing impairedPichenyet al, 1986, and in speech to

elsewhergOviatt et al,, 1998. nonnative speakerd-erguson, 1975; Freed, 197&ystem-

atic changes also have been observed in speech during noise
C. The hyperarticulation spectrum: When and why (Hanley and Steer, 1949; Junqua, 1993; Schulman, 1989;
speech is adapted Summerset al, 1988, during heavy workload or in stressful

environments(Brenner et al, 1985; Lively et al, 1993;
'59Ikmitt and Scherer, 1986; Williams and Stevens, 1969

speakers make a moment-by-moment assessment of their I@Dd when speakers are asked to "speak clearly™ in labora-

tener’'s need for explicit signal information, and they adapttory settings (Cutler and Butterfield, 1990, 1991; Moon,

their speech production to the perceived needs of their list991; Moon af‘?‘ Lindblom,_ 1994 . :
The specific hyperarticulate adaptations observed in

tener in a given communicative contefttindblom, 1990, h h ditfered d i the t i lati
1996; Lindblomet al, 1992. According to Lindblom’s H & ese cases have difiered depending on the target population

H theory, this adaptation varies actively along a continuumf.lnd (ionjnfwr?cat;tve gor}tedxt. Tor fxdami)lﬁ’ speeccr; jd"’?ftﬁ"
from hypo- to hyperclear speechiypoclear speech is rela- lons 1o Infants often include elevated pitch, expanded pitc

tively relaxed, and contains phonological reductions. A hy_range, and stress on new vocabulary content—features that

poclear speech style involves minimal expenditure of articy@SSISt In gaining and maintaining infants’ attention and in

latory effort by the speaker, and instead relies more on thg?blseri/si;nfigg.tzachi.ng ftljgc';io&ﬂ:hergusqn, ,1977_; dFe'rn;Id
listener’'s ability to fill in missing signal information from et al, ; Garnica, 197 ! earing-impaired indl-

knowledge. In contrast, hyperclear articulation is a clarifiedv'duals’ speech reportedly s h|ghe_r in amplitude z_and funda-
ental frequency, longer in duration, and contains hyper-

style that requires more speaker effort in order to achievd” ) .
ideal target values for the acoustic form of vowels and con—Clear phonological featuretPichenyetal, 198. Speech

sonants, thereby relying less on listener knowledge. Esser"i‘-d"’lpt""t'on in a noisy environment, characterized by the

tially, Lindblom and colleagues maintain that the relationul‘ornb"’Ird effect” (Lo.mbard., 191}, involves an Increase in
between the speech signal and intended phonemes is a hig ca}l effort that mamfest's itself as more than simple aT“P"‘
variable one, which is neither captured entirely by mappin ICation of the speech signal. Among other features, it in-

phonemes to physical acoustic or phonetic characterizationis\]l!ud(f[“,S chan(?e T r;’:lru?ulatlonl c‘)]f consonfg;ss,. asndhlr;creased
nor by factoring in local coarticulation effectkindblom, uration and pitch of voweldJunqua, , >chulman,

1996. During human interaction, speaking style also can1989' Lombard speech is analogous to hyperarticulate

ranae from hvoo- to hvperclear in a wav that contrib tesspeech in the abruptness of signal change that often occurs.
sub%tantial va}rli%bility toytﬁ?]e speec;h sigvr\llaly ou That is, Lombard and hyperarticulate speech both are char-

Lindblom and colleagues believe that speakers operat@aerized by episodic signal variability, which is a more chal-
lenging form of variability for recognizers to process than

on the principle of supplyingufficient discriminatory infor- i ional def i i th ted h of
mationfor a listener to comprehend their intended meaningC0"1NUoUS signai deformation, as in the accented speech ot a
nonnative speaker.

while at the same time striving for articulatory economy. . : . .
When a speaker perceives no particular threat to their listen- TO, summarize, the mterpergonal dynamics associated
er’s ability to comprehend them, articulatory effort typically with different populations and m_rcumstanct_as cl_early vary,
is relaxed(Lindblom, 1996. The result is hypoclear speech, even though aI_I of them can be viewed as_hlgh risk commu-
which represents the default speaking style. When a threat t%'ca“of‘s- Wh'l_e they share fe_atures In _common, th(_a
comprehension is anticipated, as in a noisy environment 0?coust|(;-prosod|c and phonological featyres obsgryed n
when a listener’s hearing is impaired, the speaker will adap ese .d|ffer.ent cases nonetheless are defined by distinct _hy—
their speech toward hyperclear to deliver more explicit Signaperart,mule}tmn profiles. Recent research ha; begun t(.) outline
information. In this sense, phonetic signals are dynamicall;}Jsers bellefs.about the cause_of commu_mcaﬂon faﬂure as
modulated by the speaker to complement their listener’s pelwe" as effecpve repair strategies when interacting with a
ceived speech processing ability and world knowledge. Thgomputer(Owatt e.t 'al., 1998. Due to the error-prone naturg
effect of these speaker adaptations is to assist the Iistenerfﬁ current recognltlo_n syste‘zlms,_ Se,e z_;\kers likewise may view
identifying a signal’s intended lexical content. the computer as a kind of “at risk™ listener.

In accord with these theoretical notions, there is evi- _ .
dence from a variety of studies that adaptation toward hype#—D - The concept of focal hyperarticulation
articulate speech does improve intelligibility by both normal Recent research on hyperarticulate speech during
and impaired listener@ond and Moore, 1994; Chen, 1980; human—computer error resolution has presented an analysis
Cutler and Buttertield, 1990; Gordon-Salant, 1987; Livelybased on failure-to-understand errors, in which the system
et al, 1993; Moon, 1991; Paytoet al, 1994; Pichent al., indicates its inability to recognize what the speaker said
1985; Uchanskiet al, 1996. There is also linguistic and (Oviattet al,, 1996, 1998 However, substitution errors con-
psychological literature indicating that people routinely stitute the majority of speech recognition erréBsown and
adapt their speech during interpersonal exchanges when th&osburgh, 1988 During substitution errors, the system mis-
expect or experience a comprehension failure from their lisrecognizes the user’s speech and substitutes wrong lexical
tener. For example, modifications have been documented icontent. During some substitution errors, the speaker may
parents’ speech to infants and young childi@erguson, not need to make a global repair of the entire utterance, but
1977; Fernalcet al, 1989; Garnica, 197%7in speech to the rather may selectively repair one focal part it—as in “July

Based on experimental phonetics data involving inter
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twenty{irst, nineteen ninety-seven.” There currently is a comparison of different lexical content before and during the
lack of research on how speakers adapt their speech to repair.

computer when making focal repairs, or whether these adap-

tations share hyperarticulate features in common with thosE. Goals and predictions of the study

observed during global rgpgirs. If both .focal and global ut-  Tpe general goal of the present study was to examine the
terance repairs involve similar hyperarticulate change to th pe and magnitude of linguistic adaptations that occur dur-
speech signal, then focal repairs may be viewed as a brighy human—computer error resolution. A further general aim
and highly selective form of hyperarticulate adaptation, ongyas to develop a user-centered predictive model of hyperar-
in which signal transition is particularly abrupt. ticulate change during system error handling. The specific
Although speech adaptations during focal error repairgoals of this study werefl) to provide a comprehensive
with a computer are poorly understood, in linguistic theoryanalysis of acoustic, prosodic, amd phonological adaptations
the concept of stress is relevaftressinvolves assignment in speech during error resolutiof) to test the generality of
of prosodic prominence to one element or part of an utterthe CHAM model(computer-elicited hyperarticulate adapta-
ance, and it can occur during interpersonal communicatiofion mode) in response to qualitatively different types of
when an error is repaired in part of an utterance. Stress haystem recognition error(3) to examine changes in the
several known acoustic and phonological correlates, includspeech signal during botfiobal repair of an entire utterance
ing increased pitch, increased amplitude, longer durationand duringfocal repair of a syllable or word within an utter-
and greater differentiation of vowel formant structde  ance;(4) to assess the relation between users’ nonverbal re-
Jong, 1995; Fry, 1955, 19%8The acoustic-phonetic features action to system errors and change in the acoustic-prosodic
of linguistic stress are believed to enhance the overall promifeatures of their speech signal; afi) to summarize impli-
nence and perceptual clarity of the stressed region, which igations of these findings for the development of improved
the case of an error must serve as the critical repair regiorgrror handling in next-generation spoken language and mul-
Stress sometimes has been described as involving assigiimodal systems.

ment of a pitch acceniBolinger, 1958; Fry, 1958 or as a It was hypothesized that users’ repetitions following sys-
local shift toward hyperarticulate speech with greater phonetem error would be adapted toward hyperclear acoustic-
mic contrast(de Jong, 1996 phonetic features, including higher amplitude, higher maxi-

Empirical research has analyzed cases in which peopl@um pitch, lower minimum pitch, greater pitch range, longer

were disfluent and then spontaneously self-corrected. For efluration of speech and pauses, more hyperclear phonological
ample, a person might say “Her name is Sara, no..SQth, features, and fewer disfluencies. To make these assessments,

san Collins.” In the literature on spontaneous self- within-subject data were examined for matched utterance

corrections, acoustic-prosodic changes have been report®girs in which speakers repeated the same lexical content

between error and repair segments, which indicate that thlénmediately before and after a simulated recognition error.

self-repair tends to be accented, or rendered more prominemPeech data were analyzed following qualitatively different

intonationally (Levelt and Cutler, 1983 However, promi- types of error, including failures-to-understand, related sub-

nence marking on content self-repairs occurs Onlystltutlons, and unrelated substitutiohResults for these dif-

intermittently—usually in less than half of the self-repairsferem. error types were compared to evaluate whether the

. magnitude of hyperarticulate change would be greater when
observed (Levelt and Cutler, 1983; Howell and Young, the computer substituted wrong lexical content, rather than
1991). Furthermore, self-repairs that do not involve the re- P 9 '

lacement of wrong conterte.g., disfluent repetitionsisu- simply failing to guess.it, or \_/vhen users responQe_d o unin-
P rong . 9 : P . tuitive system errors with visible emotional reactivity.
gll_y do not réeceive prominence marking, or else receive neg- In addition to investigating hyperarticulation during glo-
ligible markmg,(HoweII and Young, 1991; Levelt and bal utterance repairs, it was hypothesized that speakers
Cutler, 1983; O'Shaughnessy, 1992 _ would mark focal repairs as more prominent acoustically

During human—computer interaction, there also iSyyan neighboring speech within an utterance. Increased am-

prominence marking when a speaker spontaneously correqlgyde, fundamental frequency, and durational effects were
a disfluency. This marking involves longer duration, in- g explored as potential markers of prominence during focal
creased pitch, and increased amplitude of the repair segmepdpairs. Although pitch and amplitude are relatively inactive
(Nakatani and Hirschberg, 1994; O’Shaughnessy, 1982 qyring error resolution involving global utterance repairs, it
though the reported increases in pitch and amplitude havg g predicted that they would exhibit more change during
been extremely smallNakatani and Hirschberg, 1994t prominence marking in focal repairs. To calibrate durational
currently is not known whether these changes during selfeffects and the selectivity of their placement, the magnitude
corrected disfluencies bear any similarity to hyperarticulatesf change for speech segments and pauses in the immediate
change elicited by system recognition errors. Among othefocal repair region was compared with that in surrounding
differences, the latter type of repair occurs in the context of ayonfocal areas.
highly interactive spoken exchange, and in direct response to A further aim of this study was to explore users’ non-
a computer partner’s failure. Another difference is thatverbal reactivity to different types of recognition error. In
analyses of repairs following system error have comparegarticular, an assessment was made of whether users react
identical lexical content before and after system failure,more strongly when wrong content is introduced, especially
whereas analyses of self-corrected disfluencies have involvettlring substitution errors perceived to be unrelated semanti-
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Cars Available (S)

Daily/Weekly Models
Subcompact $22/$100  Ford Escort, Toyota Tercel
Compact ~ $25/$125  Mercury Tracer, Toyota Corolla
Mid-sized  $32/$160 Ford Tempo, Honda Accord
Full-sized ~ $47/S200  Buick Regal, Cadillac Ceville
Heavy Duty  $55/$275  Ford Explorer, Ford Ranger
(Unlimited miles, insurance, and air on all cars)

Requested car model: | ToyotaCorolla
To check for a corporate discount (10% less):
Tell us your organization’s name:

PREVIOUS PAGE) (NEXT PAGE

Registration Confirmation (S)
If you'll provide the information below, we can confirm
your registration. Your title and surname will appear on
your badge. Please speak your information.

Name| Sport Coupe ‘
Street Address | |
City | |
State | | Zip| |
Work Phone | |

FIG. 2. A user speaks her organization’s name as “National OceanoFIG. 3. A user speaks her name as “Nancy Green” and laughs when it is
graphic” but it is misrecognized as “International Graphics” during a re- misrecognized as “Sport Coupe” during an unrelated substitution error.
lated substitution error.
ognized or wrong content, such asnternational Graph-
cally and acoustically to their original inpgée.g., “Nancy ics’ instead of “National Oceanographi¢’ (i.e., acousti-
Green” misrecognized as “Sport coupg”If users are vis- cally and semanticallyelated substitution, or with “ Sport
ibly more reactive to substitution errors, or to unrelated subCoupé€’ instead of “Nancy Greeri’ (i.e., unrelatedsubsti-
stitutions involving uninterpretable misrecognitions, thentution).
this greater degree of arousal may influence the signal char- Following all errors, participants were instructed to try
acteristics of their repair speech. For example, volume andgain by re-entering their information in the same slot until
fundamental frequency may increase as a by-product ofystem feedback was correct. A form-based interface was
greater arousal. used during data collection so that the locus of system errors
would be clear to users. To successfully resolve a simulated
error, the simulation was programmed so that the participant
I. METHOD P :
had to repeat their input once or twice, although analyses
A. Subjects, tasks, and procedure focused on the users’ original input and first repetition.
. . Users were told that the system was a well-developed
Twenty native English speakers, half male and half fe- . . Y . Pe
- . . . ne with an extensive vocabulary and processing capabili-
male, participated as paid volunteers. Their occupatlona;f : .
. - les, so they could express things as they liked and not worry
backgrounds were varied, but excluded computer scientists, .
o . . " . about what they could and could not say. They were advised
A “Service Transaction System” was simulated that

. . . . that they could speak normally, work at their own pace, and
could assist users with conference registration and car rental . . .
st concentrate on completing their transaction. They also

. . . u
transactions. Compared with an earlier study reported b%vere told that if for any reason the computer did not under-

Oviatt and colleaguegOviatt et al, 1996, 1998 in this . i
study the corpus was designed to permit collection of awide?tand them, they always would have the opportunity to re

varietv of articulated phonemes and three-fold more datenter their input. Following their session, all users were in-
y ot X P . erviewed and then debriefed about the nature of the
than previously, in order to probe the generality of the

CHAM Model. After a general orientation, people were research. All participants reported that they had believed

shown how to enter information using a stylus to click-to- they were interacting with a fully functional system.
speak on active areas of a form displayed on a Wacom LC% Semi o .
tablet. . Semi-automatic simulation method

As input was received, the system interactively con- A flexible simulation method was devised for supporting
firmed the propositional content of requests by displayingvaried studies on user responding during system recognition
typed feedback in the appropriate input slot. For example, ierrors. The simulation developed for this purpose was an
the system prompted witBar pickup location: and adapted version of a method previously outlined by Oviatt
a person spoke San Francisco airport” then “ SFO” was  and colleague§l992. Using this technique, people’s spoken
displayed immediately after the utterance was completed. Iimput was received by an informed assistant, who performed
the case of simulatethilure-to-understancerrors, the sys- the role of responding as a fully functional system. The
tem responded with ???7?’ feedback to indicate its failure simulation software provided support for rapid subject-paced
to recognize lexical content. During these errors, the systermteractions, which averaged a 0.4-s delay between a sub-
basically informed the user of its inability to recognize whatject’s input and system response. Rapid simulation response
the user’s input meant, so it was not necessary for the user twas emphasized during software design, since it was judged
detect the error. In the case siibstitutionerrors, illustrated to be an important prerequisite for collecting high quality
in Figs. 2 and 3, the system instead responded with misre@ata on human speech to computers.
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To support research specifically on errors, a random eras occurring immediately before utterance-medial voiceless
ror generation capability was developed that could simulatstops and affricates. Further details of durational scoring
different types of system recognition error, different errorconventions are outlined elsewhdidoreton, 1996.
baserates, and different realistic properties of speech recog- b. Amplitude. Maximum intensity was computed at the
nition errors. This error generation capability was designedoudest point of each utterance using ESPS Wavesnd
to be preprogrammed and controlled automatically so thathen was converted to decibgldBs). Values judged to be
for example, errors could be distributed randomly across alextraneous nonspeech sounds were excluded.
task content. For the present study, the error-generation soft- ¢. Fundamental frequencySpoken input was coded for
ware was adapted to deliver qualitatively different types ofmaximum FO, minimum FO, and FO range. A pitch-
system recognition errors, includingl) failures to under- smoothing filter was applied to the data to remove or mini-
stand; (2) related substitutions; and(3) unrelated mize: (1) glottalized regions(2) spurious doubling and halv-
substitutiong. The simulated word error rate was held con- ing; (3) points below an amplitude threshold of 400 rms; and
stant at 15%, and approximately one error occurred every4) 1- to 2-point pitch value outlierge.g., due to hissing

five input slots. sound in “s”). The fundamental frequency tracking software
_ in ESPS Waves was used to calculate values for voiced
C. Research design regions of the digitized speech signal. Pitch minima and

The research design was a within-subject factorial thaf"@xima were calculated automatically by program software,
included the following independent variablég) Error sta- and then adJ.usted further to correct for pltgh tracker errors
tus of speechOriginal input; Repeat inpyt (2) Type of such as spurious doubling and halving, interjected nonspeech
simulated erroxFailure to understand; Related substitution; SOUNds, and extreme glottalization affectings tracking
Unrelated substitution All 20 subjects completed 6 tasks. POINtS.

Within each task, six simulated errors were delivered—two  d- Intonation contour. The final rise/fall intonation con-
failures to understand, two related substitutions, and two untour of subjects’ input was judged to involve a rise, fall, or
related substitutions. This represents a 20% rate of utteranc88 clear change. Each matched original-repeat utterance pair
containing an error, which is comparable to that associatehen was classified asl) rise/rise;(2) rise/fall; (3) fall/fall;
with the CHAM model's Stage Il changes in previous re- (4) fall/rise; or (5) unscorable. The likelihood of switching
ports. In total, data were collected on 36 simulated errors pdinal intonation contour from original input to first repetition
subject, or 720 simulated errors in the study. For all matchedcategories 2 and)4sersus holding it the sameategories 1
utterance pairs in which the lexical content was the sameand 3 then was analyzed. In the case of a shifting contour
original input provided a baseline for quantifying changefrom original to repeated input, the likelihood of changing
during the first repetition. In total, this included approxi- from a rising to falling contour versus a falling to rising one
mately 638 utterance pairs, with over 200 representing eac@lso was evaluated. Finally, the percentage of all original

error type. versus repeated utterances that contained a final falling con-
tour was compared.
D. Data coding and analysis e. Phonological alternations. Phonological changes

. . . within original-repeat utterance pairs that could be coded re-
Speech input was collected using a Crown microphone : : .
liably by ear without a spectrogram were categorized as ei-

and all human—computer interaction was videotaped ané1 . : :
. er representing a shift from conversational-to-clear speech
transcribed. The speech segments of matched utterance pairs

involving original input and first repetitions were digitized, style, or vice versa. The following contrasting categories

. . were coded(1) released and unreleased plosivés;unlen-

and software was used to align word boundaries automati- (D : p i

. . ited coronal plosives and alveolar flaps; a8 presence

cally and label each utterance. Most automatic alignments

: . versus absence of segments. Alveolar flaps, deleted seg-

then were hand-adjusted further by an expert phonetic tran- . e

. . ; ments, and unreleased stops were considered characteristic of
scriber. The ESPS Wavessignal analysis package was

used to anayze ampltude and requency; and he OGIIT 21218 SPeEC, whereds unenied orone poshes,
Speech Tools were used for duration. 9 ' y : ‘op
of clear speech. A focus was placed on identifying uncontro-

versial phonological changes with respect to the

1. Global linguistic adaptations conversational-to-clear speech continuum, and those that
In these analyses, global spoken adaptations that ocould be coded reliably by ear without access to a spectro-

curred within the entire utterance were assessed. gram. For example, cases of glottalization and glottal stop
a. Duration. The following were summarizedl) total  insertion were not included due to known difficulty with re-

utterance duration(2) total speech segment duratigne., liable coding(Eisenet al,, 1992.

total duration minus pause duratjoii3) total pause duration f. Disfluencies. Spoken disfluencies were totaled for

for multi-word utterances in which at least one pause waach subject and condition during original spoken input as
present; and4) average number of pauses per subject forwell as repeats during errors, and then were converted to a
multi-word utterances. No attempt was made to code pauseaate per 100 words. The following types of disfluencies were
less than 10 ms in duration. Due to difficulty locating their coded:(1) content self-correctiong?) false startsy3) rep-
onset, utterance-initial voiceless stops and affricates were aetitions; and(4) filled pauses. For further classification and
bitrarily assigned a 20-ms closure, and no pauses were codedding details, see Oviatl995.
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g. Nonverbal responding.To assess users’ subjective mum amplitude of spoken words not in the focal repair re-
reaction to different types of recognition error, the following gion also was calculated.
categories of nonverbal responding were coded from video- (3) FOC/NFOC Amplitude Ratie-The ratio of focal to
tapes for each subject and error conditiéh: smiling—lips  nonfocal speech segment amplitudes was computed to assess
fully retracted upward in an unambiguous smil€2)  whether the focal repair region had a relatively higher am-
laughter—open-mouth smile accompanied by one or morglitude during repetition.
breathy nonarticulated bursts of noid@) raised brows— c. Fundamental frequency. (1) Focal Pitch
eyebrows lifted upward, as if in surprise; ar{d) knit Maximum—MaximumFO0 during the focal repair was scored
brows—eyebrows moved together, with forehead wrinkledfor original and repeat utterances, and analyzed separately
as muscles contract. These nonverbal facial changes, whiakhen the repair was in sentence-final versus initial or medial
were considered indices of emotional reactivity and heightposition.
ened arousal, were assessed for possible correspondence with (2) Nonfocal Pitch Maximum-The average maximum
speech signal changes. FO of nonfocal spoken words also was calculated, excluding
h. Self-reported perception of recognition errord’he  words in sentence-final position.
percentage of subjects reporting specific beliefs about the (3) Focal Pitch Minimura—Minimum FO during the fo-
causal basis of errors, as well as effective ways to resolveal repair was scored for original and repeat utterances, and
errors, was summarized from post-experimental interviews.analyzed separately when the repair was in sentence-final
versus initial or medial position.

(4) Nonfocal Pitch Minimum-The average minimum

2. Focal linguistic adaptations FO of nonfocal spoken words also was calculated, excluding

These analyses concentrated on focal error repairs inv_vords in sentence-final position.

volving one syllable or word within a longer multi-word ut- . (5)':';0%.1' .P'tCh Range—ThedeO r?ngel €0 maximum
terance. In total, 96 original-repeat utterance pairs werdninus minimum was scored for focal repair segments

available for analysis of focal error repairs, which constituted®ccurNg In all sentence positions, and then compared for

a subset of the related substitution errors. Examples of focé?”g'%al snd frep(IeaFt).;JtLersnces.Th &0 f
repairs during related substitution errors wewveo seven (6) Nonfocal Pitch Range-The averag range o

seven Frill Street>“two seven severHill Street,” Septem- nonfocal spoken words also was scored, and compared for

ber seven, 1996“Septembereleven 1996.” The goal of orlglgalRaTdbr_le_tpea';:mpu;[I. red ¢ i
these analyses was to assess whether and to what extent the ™ eliability. -or all measures reported except ampli-

; . i . o ; 9% —1000 is-
focal repair region received selective emphasis via acousti df’ 1|0/° _flO(g_A; of thehdata wers sec]iond scor((ejq. ﬂFor d.|s
cues during system error resolution. crete classifications, such as number of pauses, disfluencies,

a. Duration. (1) Focal Speech DuratioaThe total phonological alternations, nonverbal responding, and intona-

duration of the focal speech segméRFOC], which repre- tion contour, all inter-rater reliabilities exceeded 88%. For
phonological alternations, only cases agreed upon by both

sented the repair region, was evaluated for original and reP .
peat input scorers were analyzed. For fundamental frequency, the inter-
(2) Nonfocal Speech DuratieaThe total duration of rater reliability for minimumF0O was an 80% match with less

the surrounding nonfocal speech segm¢NBOC] (i.e., to- than 3-Hz departure, and for maximuR0 an 80% maich

tal utterance duration minus focal speech duration minus toW'th less than 9-Hz departure. For duration, pause length was

tal pause durationwas computed an 80% match with less than 65-ms departure, and total ut-

(3) FOC/NFOC Speech Duration RatieThe ratio of terance duration an 80% match with less than 59-ms depar-

focal to surrounding speech segment durations was confure:

puted to assess whether the focal region was relatively more
elongated during repetition than surrounding speech. Il. RESULTS
(4) Pause Duration Adjacent to Repaif-or all utter- '
ances with one or more pauses, total pause duration was Speech data were available for analysis on approxi-
computed both immediately before and after the repair remately 638 scorable utterance pairs for which the lexical
gion in original and repeated input. content was identical during original and repeated input. Of
(5) Pause Duration Nonadjacent to Repaifotal these, over 200 utterance pairs representing each of the three
pause duration also was assessed for pauses not adjacent tereor types were analysed. Spoken utterances in this corpus
focal repair region in original and repeat utterances. tended to be brief fragments averaging two to three words,
(6) Number of Pauses Adjacent to Repaffor all mul-  and ranging from 1 to 13 words in length.
tiword utterances, the total number of pauses immediately
before and after a focal repair region were scored for originaf"
and repeat utterances. Table | presents a summary of all the significant global
b. Amplitude. (1) Focal Maximum Amplitude- linguistic changes identified during human—computer error
Maximum amplitude was computed from the loudest pointresolution. The magnitude of relative change shown for each
during the focal repair region, and was summarized for botHinguistic dimension is an average across the three different
original and repeat utterances. error types. Specific results on each type of linguistic change
(2) Nonfocal Maximum AmplitudeThe average maxi- are detailed in the following sections.

Overview of global linguistic adaptations
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TABLE I. Overview of relative change in linguistic dimensions of hyper- 1800
articulation during global utterance repairs.
1600 [ _
Percentage change 1400k
Type of change during repetition
Pause interjection +44.0% 1200 F
Pause elongation +40.0% 1000 F
Disfluencies —38.5% &
Intonation—final fall +20.0% = goo |-
Speech elongation +8.5% |
Hyperclear phonology +6.0% 600
Pitch minimum —2.0% 400
Amplitude +0.5%
200 | E I E I
ifi i i 0 Failure to Relaltted Unre;ated
Table | clarifies that change in pause structure domi- Understand Substitution Il

nated hyperarticulate adaptation during error resolution, with
durational increase in the speech segment also notewortHyG. 4. Elongation of the speech segment and pauses in repeated utterances
but smaller in magnitude. Articulatory changes were a sec®" three types of recognition error. Original spedch repeat speech’;
ond prominent characteristic of global hyperarticulate adap®"9ina! Paus&; repeat pausa.
tation, including both a drop in spoken disfluencies and an
increase in hyperclear phonological features. With respect teepeated measures ANOVA on log transformed data re-
prosody, speakers shifted to a final falling intonation contounealed that the main effect of original versus repeat speech
during repetitions, which was associated with small dewas significantF=142.46(df=1, 169, p<0.001, although
creases in fundamental frequency measures. While amplitudgror type was notF<1, nor was the interaction between
increases were reliably present, they were negligilfligure  error type and original-repeat speeéhs 2.85 (df=2, 330,
7 illustrates that the overall profile of hyperarticulate adaptaN.S. Having ruled out significant variation due to type of
tions was replicated across all three of the different errorecognition errora priori pairedt-tests were conducted on
types) the prediction that repeated speech segments would be sig-
nificantly elongated following all three types of recognition
error. These analyses confirmed a significant increase in
speech segment duration following failure-to-understand er-
Total utterance duration averaged 1567 ms and 1786 m®rs, pairedt=6.88 (df=197), p<<0.001, one-tailed, related
in original and repeat input during failure-to-understand er-substitutions, pairet=8.95 (df=205), p<<0.001, one-tailed,
rors, 1677 ms and 1845 ms during related substitutions, anand unrelated substitutions, pairg¢é=5.69 (df=219), p
1659 ms and 1815 ms during unrelated substitutions. The0.001, one-tailed.
average gain in total utterance duration from original to re-  b. Pause duration. The total pause duration of multi-
peated speech across all error types wdd%. A repeated word utterances also increased from an average of 192—-295
measures ANOVA on log transformed data revealed that thens between original and repeat input after failure to under-
main effect of original versus repeat speech was a significargtand errors, from 207 ms to 248 ms after related substitu-
one, F=166.05(df=1, 165, p<0.001, although the main tions, and 193 ms to 283 ms after unrelated substitutions.
effect of type of recognition error was not significaft, The average gain in total pause duration from original to
<1, nor was the interaction between error type and originalrepeated speech across all error types wd8%. A repeated
repeat speecty; =2.30 (df=2, 330, N.S. Having ruled out measures ANOVA on log transformed data revealed that the
significant variation in utterance duration due to type of recimain effect of original versus repeat speech significantly in-
ognition error,a priori pairedt tests then were conducted on fluenced total pause duratiork=57.68 (df=1, 56, p
the prediction that duration would be elongated during rep<<0.001, although type of error did ndE<1, nor did the
etition following all three types of error. These analyses coninteraction between error type and original-repeat speech,
firmed a significant increase in utterance length for failure-=1.93(df=2, 112, N.S. Having ruled out significant varia-
to-understand errors, paired=4.58 (df=197), p<0.001, tion due to type of errora priori pairedt-tests were con-
one-tailed, for related substitution errors, paited8.93 (df  ducted on the prediction that pause duration would be elon-
=205, p<0.001, one-tailed, and for unrelated substitutiongated significantly in response to all three types of
errors, paired=6.63 (df=219), p<0.001, one-tailed. recognition error. These analyses confirmed a significant in-
a. Speech segment duratiomAnalyses revealed an in- crease in pause duration following failure-to-understand er-
crease in the total speech segment from an average of 1446rs, pairedt=>5.59 (df=77), p<0.001, one-tailed, related
ms during original input to 1591 ms during repetitions fol- substitutions, paired=5.74 (df=93), p<0.001, one-tailed,
lowing failure-to-understand errors, 1525 ms and 1662 m&nd unrelated substitutions, paired=4.59 (df=84), p
following related substitutions, and 1513 ms and 1613 ms<0.001, one-tailed.
following unrelated substitutions, as illustrated in Fig. 4. The Figure 4 illustrates the average increase in pause dura-
average relative gain in speech segment duration from origition for all three types of error, and its relation to increases in
nal to repeated speech across all error types wd$%. A  speech segment duration. Figure 5 also shows the increasing

1. Duration
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0.20 — speech for all three error types. For failure-to-understand er-
. ﬂgggg‘;' rors, the number of pauses increased from an average of 0.69
.% o8k to 1.08 between original and repeated utterances, significant
g by Wilcoxon Signed Ranks tesz=3.32 (N=17), p
P <0.001, one-tailed. For related substitutions, the number of
§0.16 - pauses increased from 0.71 to 1.06 during repeat utterances,
@ again significant by Wilcoxornz=3.62 (N=17), p<<0.001,
73? 014k one-tailed. Finally, for unrelat_ed substitutions, pauses inf
§ ’ creased from 0.83 to 1.04 during repeat utterances, signifi-
5 cant by Wilcoxon,z=2.12 (N=16), p<0.02, one-tailed.
-g 012} Overall, the net increase in average number of pauses during
o« repeated speech was44%.

0.10 - L L

Undersiand  Subsiuion  Subsiften 2. Amplitude

FIG. 5. | . . I The maximum amplitude averaged 70.3 dB and 70.6 dB

. 5. Increasing ratio of pause to speech duration in repeated utterances . .

for three types of recognition error. in original and repeat utterances during failures to under-
stand, 70.8 dB and 71.1 dB during related substitutions, and

0.6 dB and 71.0 dB during unrelated substitutions. A re-

ratio of pause to speech duration in repeatec_i spe(_ac_h for ag)leated measures ANOVA revealed that the main effect of
three types of error, which averagedl3% during original

. : : o - original-repeat speech had a significant impact on amplitude,
0,

Input .bUt increased te.Ll?AJ d_urmg repetitions. That is, Fhe F=23.76(df=1, 163, p<0.001, but there was no difference

gain in pause duration during repetitions was relatively

greater than for speech, a comparison that was :statisticallbewveen error types; =1.45(df=2, 326, N.S., and no sig-

e o sy o Wik Sgned o e ALCLIION 1402 520 1S g hed
—3.24 (N=19), p<0.001, two-tailed. 9 yP (e p

: o . was tested that repeated speech would be increased in ampli-
To test for elongation of individual matched paues., . ' S
: NSO tude. Analyses using plannédests confirmed a significant
independent of interjecting new ones that may have been : : .
jncrease in amplitude on repeat speech for failures to under-

brief), original and repeat utterance pairs matched on tOtastand,t=2.45(df=204), p<0.01, one-tailed, for related sub-

number of pauses were compared for total pause length. Th'%itutions t=3.00 (df=208), p<0.0015, one-tailed, and for
analysis confirmed that pauses were elongated significantlS X y ! . ; ;

. . tnrelated substitutions,= 3.57 (df=223), p<0.001, one-

more in repeat utterances following all three types of errors,_. . :
. . . . tailed. However, these increases were very neglible, averag-
including failure-to-understand errors, pairée2.37 (df ina less thant-0 5%
=34), p<0.02, one-tailed, related substitutions, paired 9 o
=2.02 (df=49), p<0.025, one-tailed, and unrelated substi-
tutions, paired = 3.60 (df=45), p<Q.OOl, one-tailed. 3. Fundamental frequency

c. Number of pauses.Approximately 63% of multi- . ) )
word utterances contained one or more pauses during error & Pitch maximum. Maximum FO averaged 190.8 and
resolution, even though utterances in the corpus tended to F&0-2 for original and repeat speech during failures to under-
brief. Figure 6 reveals that the average number of pauses p&fand, 188.8 and 189.6 for original and repeat speech during

subject for multi-word utterances increased during repeafélated substitutions, and 193.0 and 192.9 for original and
repeat speech during unrelated substitutions. Repeated mea-

sure ANOVAs conducted on the whole sample and then re-

12 @ Original analyzed §e_parately by gender all revealed no significant gf-
11k W Repeat fect of original versus repeat speech, error type, or their
§ interaction on pitch maximum valugéEs<1).
§ 10fF b. Pitch minimum. Minimum FO averaged 129.5 and
5 126.8 on original and repeat speech during failures to under-
g oo} stand, 129.9 and 127.4 during related substitutions, and
3 — 129.1 and 127.6 during unrelated substitutions. A repeated
é_% 08 / measures ANOVA conducted on the whole sample revealed
g / a significant main effect of original versus repeat speéch,
s 07r / =4.68(df=1, 158, p<0.035, but no difference due to error
< 06k / type, F<1, or their interaction,F=1.90 (df=2, 316, p
’ / >0.15. Since a decrease was predicted in mininftGndur-
05 1 . L ing repetitions,a priori pairedt-tests were conducted to as-
Failure to Related Unrelated sess predicted drops during different error types. Significant
Understand Substitution Substitution decreases were confirmed for failure to understand ertors,
FIG. 6. Increase in number of pauses in repeated utterances for three typ&s2-42(df=189), p<0.01, one-tailed, for related substitution
of recognition error. errors,t=2.16 (df=190), p<0.02, one-tailed, and for unre-
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lated substitution errors,=1.76 (df=216), p<<0.04, one- TABLE L Number and type of phonological alternations involving a shift
tailed. These decreases in minimuro averaged less than toward clear speecta—f) versus toward conversational spegghkh), listed

by subject.
—2%. y St
c. Pitch range. B range averaged 61.9 and 63.2 for Clear to Conversational Phonological
original and repeat speech during failures to understand, 62.7 conversational to Clear alternations

and 62.8 during related substitutions, and 63.9 and 65.4 dur-

ing unrelated substitutions. Repeated measures ANOVAs 8 Z Z 21 ‘; e e
conducted on the whole sample and then reanalyzed sepa- 2 2 g.g/ad
rately by gender all revealed no significant main effect of 0 1 a
original versus repeat speech, error type, or their interaction 0 0
on overall pitch range values for the utterarfEe<1). 8 g aaacc
0 3 a,cd

4. Intonation contour 8 é f

The probability ofshifting final intonation contour from 0 3 a b, c
rise to fall, or vice versa, averaged only 11.5% between 0 1 a
original and repeated input. More specifically, speakers g 8 oh
maintained the same final contour 89% of the time during 0 1 d
failure to understand errors, 87% of the time during related 0 3 a ac
substitutions, and 89% during unrelated substitutions, with 0 3 aac
no significant differences apparent between error types. Wil- 0 0
coxon Signed Ranks analysis confirmed that speakers were é 8 9
significantly more likely to hold their intonation the same Total—5 30

between original input and first repetition than to change it;
z=3.88 (N=20), p<0.001, one-tailed. In this sense, it ap- “Unreleased>released.
pears that whatever intonation contour originally is appliecf Alveolar flap>coronal plosive.
to the utterance tends to persist during verbatim correctiongn/alvemar-nasal- flapnt sequence.
Segment insertion.
Of the cases in which a change was evident in finaknasal flap-n.

intonation contour during repetition, 88% of the time the 'schwa>| altered vowel quality.
shift was from rising to falling, rather than the reverse. Thisﬁseg’ment deletion.

. e . nt sequencenasal flap.
difference was significant by Wilcoxon test+ =110 (N
=15), p<0.003, two-tailed. Analyses of all three error types
reconfirmed this pattern of significantly more final falls than pared with a gain of only-44% for the whole corpus. Like-
rises during repetitions. Overall, the likelihood of a final fall- wise, total pause length increase®1% from baseline input
ing contour was 45% during original input, increasing toto repetitions when a phonological change was pre§ent
54% during repetitions—for a net relative increase in finalfrom 191 ms to 307 ms although the gain only averaged
falling contours of+20%. +40% for the whole corpus. Total speech duration averaged
1891 ms and 2126 ms during utterances with a phonological
alteration, a+12% increase over baseline input, compared
i N ) ] with +8.5% increase for the whole corpus. In short, dura-

~ Approximately 6% of repetitions in this corpus con- tiona| change averaged about 49% greater during repetitions
tained a phonological alternation that could be classifieqnyglving a phonological alternation than during those with-
along the hyperarticulation spectrum. Table Il summarizeg)t one. When original-repeat utterance pairs containing a

the number and type of alternations observed for éach suRspnyersational-to-clear-speech phonological change were
ject by the direction of shift toward conversational versus

hyperclear speech.
The majority of subjects, or 79% of those who had at

5. Phonological Alternations

epeat

least one spoken adaptation classifiable according to hyperz .| 7 'g'
articulation, shifted more often from a conversational to clearz .| /!
speech style, rather than the reverse, a significant differencg | f
by Wilcoxon Signed Ranks tesfT+=80 (N=13), p § ]
<0.007, one-tailed. The rate of hyperclear alternations aver-% N2 ey
aged 6% of repetitions during failures to understand, 4% of% N 7
repetitions during related substitutions, and 5% during unre-g S_ S
lated substitutions, with no significant difference among er-§ -~ 7 falueto = > 7 7 / ol Substiutions.
ror types(see Fig. 7. ST S S v S A
When one or more clear-speech phonological changes (Pause durationfZ}; Number of pauses F3; Disfuencies [
were present during repetitions, the number of pauses corre Intonation contour N; Speech duration{[]; Hyper-clear
spondingly increased-67% from baseline inputi.e., from pronclogysS; Pichs; Ampitude M1
0.90 to 1.50 pauses between original and repeat jinpam- FIG. 7. Similarity of hyperarticulation profile for different error types.
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compared with utterances from the corpus at large that didABLE lll. Overview of relative change in linguistic dimensions of hyper-
not contain any phonological changjee., that were matched 2rticulation during focal repairs.

on speaker and Iexpal contenit was cpnﬁrm_ed _that utter- Percentage change
ances with phonological change contained significantly more Type of change during repetition
pauses than those in the corpus at lafe¢,=55 (N=10),
p<0.001 one-tailed, and also significantly longer pauses

Focal repair region:

) . ’ Pause duration next to repair +149%

T+=79 (N=13), p<0.01, one-tailed. These data clarify  number of pauses next to repair +113%
that the degree of hyperarticulate adaptation varied along a Duration of speech repair +18%
spectrum, and also that durational and phonological changes Pitch range of speech repair +11%
during hyperarticulation were correlated within individual ~ Pitch maximum of speech repair +3%
utterances. Pltch_mlnlmum of speech _repalr —3%
Amplitude of speech repair +1%

Nonfocal region:
Pause duration nonadjacent to repair +9%
The disfluency rate during baseline speéah, through- Duration of nonfocal speech +9%

out the interaction when no errors were occuryiageraged
0.65 disfluencies per 100 words. However, this rate droppe
to 0.40 during repeated input following system errors, a sig-

nificant decrease by Wilcoxon Signed Ranks t&st,= 103 . o . .
) . ) With I h he follow-
(N=15), p<0.01, one-tailed. The rate of disfluencies per. Ith respect to linguistic repair mechanisms, the follow

. . ing specific ones were cited most frequently as being effec-
100 words averaged 0.43 during failures to understand, 0.4 Ve: (a) speaking more clearly—mentioned by 45% of par-

during related substitutions, and 0.30 during unrelated SUbficipants who maintained a linguistic theory: an)

stitutions, which did not differ significantly. speaking more slowly—40% of participants. A small minor-
) ity of people said they believed that speaking more loudly to

7. Nonverbal responding the computer was effective in resolving erratk0%), or

Users frequently reacted emotionally to system recognichanging voice inflectior{5%). In short, participants’ self-
tion failures. They smiled in response to 9% of errors,reports regarding error repair strategies were consistent with
laughed after another 6%, raised their eyebrows after 4%he major changes observed in hyperarticulate speech.
and knit their brows after 3% of errors. In total, 22% of
system errors elicited a nonverbal response. B. Overview of focal linguistic adaptations

Participants were significantly more likely to smile after
an unrelated substitution than after a failure to understanﬁng
error,z=2.73 (N=11), p<0.003, one-tailed, or after a re-
lated substitution errorz=1.69 (N=11), p<0.05, one-

6. Disfluencies

hange for all focal repairs, except those in sentence-final position.
hange for focal repairs in sentence-final position only.

Table Il presents a summary of all the significant focal
uistic adaptations that were identified during human—
computer error resolution. It summarizes changes that oc-

) . rred when r lectively emphasiz focal repair re-
tailed. Users also were significantly more likely to laugh af-Cu ed when users selectively emphasized a focal repair re

- . ion in a related substitution error. Specific results on each
ter unrelated substitutions than after a failure to understanﬁ e of linquistic adaptation are detailed in the followin
error,z=2.40 (N=9), p<0.01, one-tailed, or after a related syepctions 9 P 9
substltut|on',z=2.45 (N=9), p<0.007, one-tailed. Finally, Table 1l clarifies that change in pause structure still
although raised eyebrows were not expressed more often af- . . ) i

. . . . “dominated focal hyperarticulate adaptation, although it was
ter any particular error type, users also knit their brows S'9%ree- to four-fold greater than that observed during global
nificantly more often after unrelated substitutions than fa”ureutterance repair. Changes in pause interjection and elonga-
to understand errors,= 1.81 (N=7), p<0.04, one-tailed, tion also were selectively placed adjacent to the focal repair
and related substitutiong=1.62 (N=7), p<<0.053, one-

. . ; region. In fact, these pause changes were twelve-to sixteen-
tailed. In summary, participants were most reactive to th . .
o old more pronounced immediately before and after the re-
unrelated substitution errors.

pair region than in other sentence positions. The focal speech
] B region also was substantially elongated, approximately two-
8. Self-reported perception of recognition errors fold more than speech in surrounding nonfocal regions or
Post-experimental interviews revealed that users typiduring global utterance repairs.
cally posited a cause for errors that involved self-attribution  Although relatively smaller in magnitude of change, the
of blame and a linguistically based cause of system failurdocal repair region also was selectively marked with a mod-
(e.g., “l just needed to speak more slowly and cleajly” erate increase in pitch range that was derived from an in-
Although the delivery of simulated recognition errors wascrease in maximum pitch in sentence-initial and medial po-
not contingent at all on users’ input, 70% of intervieweessitions and a decrease in minimum pitch in sentence-final
stated that altering the linguistic characteristics of their owrposition. Finally, the focal repair region was selectively
language was effective in repairing system errors successaarked with a small increase in amplitude. These data
fully. Another 15% said they had no idea why system errorsclarify how duration, fundamental frequency, and amplitude
occurred, and the remaining 15% cited mechanical reasongork together in a finely tuned manner to mark a highly
for recognition failurgle.g., “My pen wasn't inside the input specific repair region as acoustically more prominent than
box, so it didn't get the last few digit9’ surrounding ones during human—computer error resolution.
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“two seven seven Hill Street”

Original:

Hill

Repeat:

“two seven seven Street”

FIG. 8. During repair of a related substitution error, elongation of the focal
speech regiorfbox with wavy line$ and selective pause interjection and
elongation next to the focal repail), compared with nonfocal utterance
regions(0J).

1. Duration

a. Focal speech duration.The total duration of the fo-

Fundamental Frequency

cal speech segment increased from an average of 400 ms
during original input to 473 ms during repetition, a gain of stantial +149% increase was discovered in average pause

+18%. This increase was significant by paitetgst on log
transformed data,=6.02 (df=95), p<0.001, one-tailed.
b. Nonfocal speech durationThe total duration of the

172

-
N
[=]

168

166

164

#- -8 Repeat
D—a Original

Nonfocal

Focal

Nonfocal

Repair Region of Phrase

FIG. 10. Change in pitch maximum on focal repair region versus nonfocal
segments, for focal repairs in sentence initial and medial position.

duration immediately next to the focal repair region during
repetitions. This increase in total pause duration was compa-
rable in size for pauses positioned immediately before versus

surrounding speech segments also increased from an averagfger the repair regiori.e., averaging 178.5 vs, 180.0 ms,
of 745 ms during original input to 811 ms during repetition, respectively.
Further analysis confirmed that both interjection of new

a gain of +9%. This increase also was significant by paired

t-test on log transformed daté=5.11 (df=95), p<0.001,
one-tailed.
c. FOC/NFOC speech duration ratioThe ratio of focal

pauses and elongation of existing ones contributed indepen-
dently to observed increases in total pause duration immedi-
ately around the focal region. In original-repeat utterance

to nonfocal speech duration increased significantly duringairs for which the number of pauses was matched, pause
repetition, paired=2.13(df=95), p<0.02, one-tailed. That elongation still was significant by pairedtest, t=2.96 (df

is, the focal speech region was demonstrated to increase sig-13), p<0.01, one-tailed.
e. Pause duration nonadjacent to repaifPause dura-

nificantly more than other surrounding speech segments.
d. Pause duration adjacent to repair Approximately

tion for positions nonadjacent to the repair region averaged

47% of all multi-word utterances contained one or two128 ms during original input and 140 ms during repetitions,
pauses adjacent to the focal speech repair during error resa-+9% increase. This increase also was significant by paired
lution. The total duration of such pauses averaged 72 mgtest,t=2.02 (df=13), p<0.04.
f. Number of pauses adjacent to repaii.he number of
which was significant by paireti test on log transformed pauses immediately adjacent to a repair region averaged 0.80
data,t=5.60 (df=35), p<0.001, one-tailed. That is, a sub- during original input, increasing to 1.70 during repetitions, a

during original input, increasing to 179 ms during repetition,

72
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FIG. 9. Amplitude change on focal repair region versus nonfocal segments1G. 11. Change in pitch maximum and minimum on focal repairs as a
function of sentence position.

during related substitutions.
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40 c. FOC/NFOC amplitude ratio. The ratio of maximum

sl :gz‘;ﬁ;‘l amplitude gain on focal versus nonfocal regions increased
A from 1.00 during original input to 1.01 during repetition, a

significant relative change by pairédest,t=2.71 (df=95),

p<0.004, one-tailed. Figure 9 illustrates the amplitude in-

crease on focal repair regions during repeated utterances,

compared with nonfocal segments.

36

a2r
30 3. Fundamental frequency

28 -

a. Focal pitch maximum. Maximum FO on focal
speech segments averaged 165.5 during original input and

Fundamental Frequency Range

261 increased to 170.0 during repetition of the focal repair when
o4 ) L L it occurred in sentence initial and medial positions. This
Nonfocal Focal Nonfocal change represented -82.7% increase in maximuri0 on
Repair Region of Phrase the target repair region, which was significant by paited

test,t=2.86 (df=50), p<0.003, one-tailed. However, when
%he focal repair was in sentence-final position maxime
averaged 191.5 and 189.7 during original and repeated input,
) o ] which did not represent a significant change,l.

+113% gain. This increase in average number of pauses was p, Nonfocal pitch maximumThe average maximuiR0
significant by Wilcoxon Signed Ranks test=2.49 N o phonfocal speech segmefite., excluding those occurring
=12), p<<0.01, one-tailed. Analysis of the position of these, sentence-final positiorwas 167.4 and 166.8 during origi-
pauses indicated an equal split between those located imM@z| and repeated input, which was not a significant increase,
diately before versus after the repair. t<1.

Figure 8 illustrates selective pause interjection and elon- Figure 10 illustrates the increase in maximé® during
gation immediately around the focal repair region, as well aSepetition of a focal repair segment, compared with sur-
elongation of the spoken repair region itself, during focal,oynding nonfocal ones. Figure 1fop) illustrates that this
repair of a typical related substitution error from the present,.rease occurred when the repair region was in any position

FIG. 12. Change in pitch range on focal repair region versus nonfocal se
ments during related substitutions.

corpus. except final.
c. Focal pitch minimum. Minimum FO on focal speech
2. Amplitude segments averaged 143.6 and 143.5 on original input and

a. Focal maximum amplitude Maximum amplitude of repetitions when the focal repair was in sentence-initial or
the focal region averaged 69.4 dB during original input, in-medial position, which did not represent a significant change,
creasing to 70.1 dB during repetition, which represented 4<1. However, when the focal repair was in sentence-final
+1% gain. This increase on the focal segment was signifiposition, minimumF0 averaged 141.3 on original input and
cant by paired test,t=23.15(df=95), p<0.001, one-tailed. dropped to 137.5 during repetitions, which was-2.7%

b. Nonfocal maximum amplitudeAverage maximum decrease and significant by pairedest, t=1.72 (df=41),
amplitude of the nonfocal repair region was 69.3 dB duringP<0.05. Figure 11(bottom) illustrates that this decrease in
original input and 69.1 dB during repetitions, which was notminimum pitch only occurred in sentence-final position.

a significant change,<1. d. Nonfocal pitch minimum.The minimumFO on non-
focal speech segments occurring in sentence-final position
60 averaged 135.6 and 133.3 during original input and repeti-
= -m Repeat tion, which did not represent a significant differente,1.
o gob B Original » That is, sentence-final speech segments that were not the
g focus of repair showed no reliable drop in minimua®
c sk during repetitions.
§ e. Focal pitch range. The FO range on focal repair
% segments occurring in all sentence positions averaged 34.0
o sor for original input, increasing to 37.8 for repetitions. This was
2 an +11.2% gain, and a significant expansion of pitch range,
% 20 t=2.11(df=95), p<0.02, one-tailed.
= f. Nonfocal pitch range. The FO range averaged a
& 1o lower 28.8 and 27.4 for original and repeated input for
speech segments throughout the sentence that were not the
] : : . focus of repair, which did not represent a significant differ-
Initial Medial Final ence,t=1.09 (df=92), N.S.
Sentence Position Figure 12 illustrates the increase in pitch range during
FIG. 13. Change in pitch range on focal repairs as a function of sentenckePetition of focal repair segments, compared with surround-
position. ing nonfocal ones. Figure 13 illustrates that this pitch range
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expansion on focal repairs occurred uniformly in all sentencé his shift also corresponded with a 38.5% decrease in spo-

positions. ken disfluencies, which may have occurred in part because
rearticulated utterances involve a reduced planning load
I1l. DISCUSSION (Oviatt, 1995. Essentially, users’ speech became more de-

. Iiperate and better specified in its signal cues to phonetic
Human speech to computers varies along a spectrum of, . - . . e
b b gasp |gent|ty. These findings are consistent with the linguistic lit-

hyperarticulation, such that its basic signal properties chang .
dynamically and sometimes abruptly. The present data deme_rature on hyperclear speech between people, which has re-

onstrate that system recognition errors can be a forceful elici!-aortefOI change II n both vowﬂ.;nd CIO nsor:jant qéla]\(!ltylmtilud-
tor of hyperarticulate speech from users. Furthermore, th ch or 1e$<§1(;r.1pce,tlmore dauBItty fr.elgasleggi’\_lolz/l_ ina 15982_3
presence, form, and degree of hyperarticulation in users en. » utler an uttertield, » voon, ’

speech to computers is a highly predictable phenomenon. ﬁlcr_lenyet 3"'|.1986.'"|E futuredre(:jsearchh, more ddetallgd qlljan;j
has a specific constellation of linguistic features, and it oclitative modeling will be needed on the major durational an

curs as a generalized response to different types of systeﬁ{t'cmatOry changes observed during hyperarticulation to

recognition error. In addition, hyperarticulate adaptation Caﬁ:omput('ars, as well as on their mFerreIaﬂon. i

occur during global utterance repairs, and also during focal . During glqbg! utterance repairs, an error porrechon sub-
repairs involving one isolated region within a longer u'[ter-d""llogue was initiated that also !Ed to prosodic char_lges. _Re-
ance. These research findings raise concerns with current J€at utterances were 9% more likely to be closed with a final
gorithmic approaches to recognizing spoken language, whiclslling contour thgn were 0r|g|ngl utterances. Pitch minima

generally fail to model dynamic stylistic changes in the &lso decreased significantly during global utterance repairs,

speech signal that are elicited during natural interactionsthough only by—2% overall. Both this increased rate of
final falling tones on error correction subdialogues, and the

such as hyperarticulation during miscommunication, or Lom- ) Hes
bard speech during noise. small decline in pitch, apparently were used by speakers as
cues to mark the close of a repair with their computer part-

A. Global hyperarticulation to computers ner. These findings are consistent with previous research

During global utterance repairs, speech predominantiflemonstrating that a final falling contour and reduction in
shifted to become lengthier and more clearly articulated, aBitch are the strongest cues used during interpersonal speech
summarized in Table I. Comparable durational changes wer® produce finality judgementSwertset al, 1994.
observed following all three types of system error, including ~ While amplitude increases were present during global
+8.5% average elongation of the speech segmenf)%  Utterance repairs, they nonetheless were negligible—
elongation of pause duration, and interjectiontaf4% more ~ averaging just+0.5%. In a previous study, no amplitude
pauses. The most salient relative changes in repeated spedBgreases were found at all in speech during error resolution
involved altered pause structure. Perhaps ironically, userdOviatt et al, 1996, 1998 The statistically reliable ampli-
speech became somewhat more discrete during hyperartictide effect in this study most likely was discernable because
lation, departing from the pattern of continuous speech upoihe data set was three fold larger, and the present experimen-
which most current recognizers typically are trained. How-tal design afforded greater precision. In any event, the am-
ever, the changes observed in pause structure in no senglitude change observed in speech to computers was ex-
approached regularized discrete pausing between evetjemely small. This stands in contrast to the sizable increases
word, as would be required by a discrete word recognizeroften found in hyperarticulated speech between humans—for
Instead, it often was highly targeted, as in selective pausexample, in speech to the hearing impaired and in a noisy
interjection and elongation around focal repair regions. ~ environment. In summary, adaptation in both amplitude and

The large durational increases obtained in this study aréundamental frequency were relatively attenuated during er-
similar to those documented in hyperclear speech to the hearor resolution with a computer partner, compared with the
ing impaired(Uchanskiet al, 1996. Previous literature on effects typically observed between humans during miscom-
interpersonal speech also has reported increases in the numunication.
ber and length of pauses in hyperclear speech between The hyperarticulation profile described above was strik-
people without hearing impairment€utler and Butterfield, ingly similar following all three types of system recognition
1990, 1991 In general, such changes in pause structure aperror. Irrespective of the fact that users view substitution
pear to play an important role in assisting listeners witherrors as interjectingurong content, hyperarticulate change
marking word boundaries and segmenting a continuou$ollowing both types of substitution error replicated the pat-
stream of speech(Cutler and Butterfield, 1990, 1991; tern found for failure to understand errors. Likewise, unre-
Maasen, 1986 lated substitution errors were unintuitive, comical, and

Articulatory changes also were a prominent characterisunique in their ability to evoke emotional reactions 22% of
tic of global hyperarticulate adaptation. The phonologicalthe time (e.g., “Nancy Alston” recognized as “Dodge
features of repeat speech adapted toward an audibly clear€ity” ). Although one might assume that this emotional
articulation pattern on 6% of repetitions, with frequently ob-arousal would be associated with a larger magnitude of hy-
served changes including the insertion of previously deletegerarticulate change, including heightened pitch and ampli-
segmentse.g.,'levenchanging tceleven, fortition of alveo-  tude changes, this was not the case. In spite of their evoca-
lar flaps to coronal plosive®.g.,eiret changing teeltelt), tive nature, the speech signal adapted nearly identically for
and shifts to unreducedt sequencege.g.,twefi to twenti).  unrelated substitution errors as the other two types. This
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striking similarity in the hyperarticulation profile for differ- that such pauses were placed in advance of the repair region

ent types of system error is illustrated in Fig. 7. more often than after it, for example as a way to signal
Compared with interpersonal speech during expected alipcoming repair. The focal speech region also was elongated

actual miscommunication, the overall pattern of hyperarticuy 18%, which was twofold more than speech elongation in

lation to a compl,Jter_ig somewhat unique. This partly wassyrrounding nonfocal regions or speech elongation during
evident in users’ minimal amplitude and pitch changesg|oba| utterance repairs.

which was consistent with self-reports indicating that speak- Although relatively smaller in magnitude of change, the

ers generally did not believe that volume or pitch were keyfocal repair region also was selectively marked with an

factors in eliminating recognition errors. Instead, users re- : L . . .
. . ; +11% increase in pitch range, which derived from increases
ported that controlling rate and articulatory clarity caused

computer errors to resolve—comments that correspondei&] maximum pitgh in' s:entencg-init'ial and medigl positiqps,

with dominant changes observed in their speech at the sign@d decreases in minimum pitch in sentence-final position.
level. In this sense, speakers’ beliefs about rate and articula/ariation in absolute pitch levels were revealed to be highly
tory clarity appear to apply more broadly to resolving mis- sensitive to the location of a repair in the sentence. However,
communications with both computers and varied human listhe net effect of this orchestration of maximum and mini-

teners. The present evidence supports the view that speakersim pitch changes was a uniform expansion of pitch range
view error-prone computers as a unique kind of “at risk” on focal repairs occurring anywhere in a sentence. As in the
listener—one involving communication dynamics andcase of durational effects, pitch changes observed during fo-
sources of fallibility distinct from other at risk groups such cal repairs were highly targeted at the repair region. On av-
as children, the hearing impaired, or nonnative speakers. erage, there was ©38% greater expansion of pitch range on

The hyperarticulate signal changes reported in this studyhe focal speech repair than on surrounding nonfocal speech
represent a strong and persistent predilection by Speaker§egments.
They may underestimate changes during interaction with Expanded pitch range is known to mark linguistic seg-
some challenging application domains that are known tq

have high word error rates, such as the DARPA Switchboar(irinents as salierPierrehumbert, 1980or as content that the

corpus(Martin et al, 1997. The Switchboard corpus con- Istener ShOl,JId pay particula.r attentign o ir] the moment-by-
tains speech from spontaneous telephone dialogues, and {fpment delivery 9f spoken mformaﬂon. P_'tCh range also IS
best systems currently are generating word error rates two- §10Wn 0 play an important role in conveying the hierarchi-
three fold higher on this corpus than that in the present study?@l Seégmentation of discourse, generally being expanded at
For systems or application domains known to have such higkhe beginning of new topictéBrown, 1983; Hirschberg and
error rates, previous research indicates that speech is likely f6rosz, 1992; Lehiste, 1975In spontaneous conversations,
involve a substantial intensification of hyperarticulate effectspitch range expansion generally has been shown to mark the

(Oviatt et al, 1998. start of a new unit, whether a new topic, a new speaker turn,
or a self-correction of disfluencies or content errGhyers,
B. Focal hyperarticulation to computers 1994; French and Local, 1986During focal error repairs

Since the majority of speech recognition errors are subWith & computer partner, both elevated pitch and expanded
stitutions, sometimes cases arise in which the user selectiveRjtch range provided cues for identifying the precise bound-
repairs one focal part of an utterance, as in “July twenty-aries of the correction region within a longer continuous ut-
first nineteen ninety-seven.” There is a sense in which theséerance, which could facilitate linguistic processing of its
focal repairs may be viewed as a highly targeted, brief, andexical content. As a tool for demarcating focal repair re-
fine-tuned form of hyperarticulate adaptation in which dura-gions, pitch clearly functioned more actively than during glo-
tional, fundamental frequency, and amplitude cues functiomal utterance repairs.
together to demarcate and highlight the repair region. Results  The focal repair region also was selectively marked with
from the present study clarify the nature and orchestration 0§mall increases in amplitude, averaging less than a 1% gain.
hyperart_iculate change during error resolution involving fO'AIthough change in amplitude co-occurred with durational
cal repairs. _ _ _ effects, increases in duration far exceeded the relative gains

Changes in pause structure still were dominant dur'n%r amplitude. This finding is consistent with Turk and

focal hyperarticulate adaptation, as summarized in Tabl%awusch’s(lg%) demonstration that, while duration and

l—with a +149% increase in pause duration, and @amplitude generally interact to yield judgements of promi-
+113% increase in pause interjection next to the repair re- P g y y Jucg P

gion. However, the magnitude of these changes was three- {?)e.”ce(”y' 1955' the. prilmary factor that.gives ris.e to per-
fourfold larger than during global utterance repair. ChangeS€1Ved Prominence is increased duration. Their research

in pause interjection and elongation also were highly selecdemonstrates that the impact of durational and amplitude in-

tive in their placement immediately before and after the focaf'®ases on the perceived salience of a speech segment are not
repair region. In fact, these pause changes were twelve- ®duivalent or symmetric. At some level, speakers may be
sixteen-fold greater next to the repair region than in othe@ware of this greater impact of durational increase on the
sentence positions. The function of this selective interjectionntelligibility of speech, which may account for their simi-

and lengthening of pauses was most plausibly to demarcatarly strong reliance on durational cues when resolving sys-
the repair region clearly. However, there was no evidencéem recognition errors.
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TABLE IV. Summary of absolute change in linguistic features of Stage I et al. (1998 (i.e., shown in plain fontand from the present
and Il hyperarticulatiorf,based on past and present rese8rch. findings (i.e., shown in bold font Results from the earlier
study by Oviattet al. (1998 included data on Stage | and Il

Linguistic feature Stage | change Stage Il change . ) oA . -
- hyperarticulation elicited by rejections errors. In contrast, the
Duration: larger and more extensive present study included data on
Pause interjection +0.57 pauses  +0.32 —+0.38 pausés

Pause elongation +97 ms 478 — 4102 ms three common types of system recqgnltlon error, as well as
Speech elongation +190 ms +127 —+171ms on focal and global utterance repairs, although these latter
o comparative data all assessed Stage Il hyperarticulation. The
Articulation: . Stage | hyperarticulation data listed in Table IV were pre-
Hyper-clear phonology N.S. +6 — +9% .. .
Disfluencies NS 025 ——_0.25 cipitated by a low error ratéi.e., 6.5%, whereas Stage |l
data were associated with a high error réte., 20%. The

Piltrfgnat_on final fall NS 19— +99 hyperarticulation values from the present study that are listed
1on—ii . — . .
Pitch minmum NS 29 —27Hz in Table IV tend to mark the lower bound on Stage Il esti-

mates, with Stage Il values based on previous research rang-
Amplitude: _ ing slightly but consistently higher because they involved
Amplitude maximum N.S. N.$#0.3 dB spiral errors that could recur between one and six times.
avalues listed represent absolute change from original to repeat input fol N€Se spiral errors effectively would have compounded the
statistically significant change®l.S.=not significan). error rate, which could account for the correspondingly

bCumulative data included from past and present research are indicated g‘reater changes in hyperarticulate features and would be con-
regular and bold font, respectively. Values based on the present resear¢ ﬁtent with the CHAM model

are averages across all error types. Values based on past findings are tak%I ) h .
from Oviattet al. (1999. With respect to hyperarticulate change during focal re-

‘Stage | changes were associated with a 6.5% overall error rate per uttepairs, the acoustic dimensions that were examined—
ances input, and Stage Il changes with a 20% tapper bounds of the including duration, pitCh, and amplitude—all adapted as pre-
Stage Il range based on spiral errors that repeated 1-6)times icted by the CHAM del. Furth th lative d
dData represent change in average number of pauses per utterance in mufé'—C ed by .e moael. . ur Qrmore, € relative egree
word utterances. of change in these three dimensiopg., large changes in
“Data represent change in percent of utterances with a phonological alterngluration, moderate ones in pitCh, and minimal ones in am-
Jion involving a hyperarticulate shift. . plitude) are similar to those observed during global error
Data represent change in rate of disfluencies per 100 words. . h bsol itud fd . | d
9Data represent change in percent of utterances with a final fallingintonatioﬁe_pa'rs' However, the a_so ute magnl_tu e of durational an
contour. pitch range changes during focal repairs was larger than that
found during global repairs. In addition, shifting to and from
a hyperarticulate speech style was more abrupt and highly
C. The CHAM model targeted than that during global utterance repairs. While con-

These results corroborate and generalize the compute?—iStem with the CHAM model, these characteristics of hyper-

elicited hyperarticulate adaptation mod€HAM), which is articulation duri'ng focal re.pairs may prove more difficu!t to
summarized schematically in Fig. 1 and elaborated quantitagpcommzdftethm _thetzhde5|gr; of tf_uture systems, as will be
tively in the accompanying Table IV. The CHAM model IScussed further in the next section.

predicts that specific features in users’ speech will adapt dur- tIQ b?ef, trt1e pregﬁr:h/rlesult(js <I:onf;]r_mhand furthf_r gte rée;)al-
ing human—computer error resolution, and that the type an e the two-stage model, which was motivated by

magnitude of adaptation will depend on a system’s overal Inguistic theory(Lindblom, 1990 and the specifics of which

error rate(Oviatt et al, 1998. In the present study, the hy- Wgée d'inved fromlr?cent empmrc]al rezea;(ﬁ(?jm?tt;ttal., it
perarticulate changes that were replicated across all three eJr §. From cumulative research conducted to date, it is

ror types would be considered Stage Il adaptations, and iﬁlear. that Stage | and ”.Of the CHAM model accuratgly
fact the predicted multiple effects involving durational, ar- predict the type and magnitude of hyperarticulate adaptations
’ fpr a variety of linguistic features during human—computer

ticulatory, fundamental frequency, and amplitude changes a , ) . .
were evident(i.e., see Table IV values in bold fontAl- error resolution, which vary according to a system’s overall
' qerror rate. As demonstrated in the present study, the CHAM

though no change in amplitude was reported in earlier fin del's basi dicti vt litatively diff t
ings by Oviattet al. (1998, in the present study which was modetls basic prediclions apply 1o qualitatively difieren
types of recognition error, and to both global and focal ut-

threefold larger and more carefully controlled, a significant .
but very small amplitude effect did emerge. As clarified byterance repars.
Table 1V, the magnitude of adaptations for specific linguistic
features in the present study was extremely close to previo
reports. In addition to the above, the CHAM model predicts
abrupt transitions in the signal profile from one moment to  The hyperarticulate speech documented in this research
the next, which was observed continually in this study wherpresents a potentially difficult source of variability that can
brief episodes of hyperarticulation punctuated repetitions irdegrade the performance of current speech recognizers and
juxtaposed original-repeat utterances. complicate their ability to resolve errors gracefully. One
Table IV summarizes the type and magnitude of absoguestion raised by viewing the CHAM model in Fig. 1 is
lute hyperarticulate changes during Stage | and Il based owhether an utterance spoken during baseline conditions can
cumulative evidence from past research reported in Oviatbe recognized as identical to its counterpart during Stage |l

. Designing interactive systems to handle
yperarticulation
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conditions. Like Lombard speech, hyperarticulate speech ineorrection subdialogue, such a system shoodd be de-
volves episodic and often abrupt signal variability that maysigned to adapt continuously to users’ speech throughout an
pose a more substantial challenge to current recognitiomteraction. Rather, system adaptation specifically should
technology than chronic forms of variability, such as ac-avoid adapting across sharp boundaries that divide original
cented speech. The relatively static algorithmic approacheisput from error correction speech—instead adapting within
that currently dominate the field of speech recognition, in-error-correction subdialogues to the specific form and mag-
cluding technigues like hidden Markov modeling, appeamitude of a given user’s hyperarticulation. The goal of such
particularly ill suited to processing the dynamic stylistic vari- an approach would be to improve recognizer performance on
ability typical of hyperarticulate speech. The present research user’'s hyperarticulation during future correction episodes.
therefore should provide a stimulus for developing funda-To better assess the prospects and benefits of an adaptive
mentally more dynamic, adaptive, and user-centered apapproach, future research should explore individual differ-
proaches to speech recognition. ences in hyperarticulate speech, especially for durational ef-
There are several possible avenues for improving thdects (for discussion, see Oviatt al, 1998.
performance of current spoken language systems on hyper- Perhaps the most promising long-term solution to im-
articulate speech. One is to train recognizers on more natur@oving current recognizers’ performance is to avoid hyper-
samples of users’ interactive speech to systems, includingrticulate speech by designing a multimodal rather than uni-
error resolution with the type and baserate of errors expecte@iodal interface. This option has been discussed in detail
in the target system. However, this alternative may be assdlsewhergOviatt and vanGent, 1996; Oviat al, in pres$,
ciated with trade-offs in accuracy, and it does not address theo Will only be summarized here. First, when people are free
problematic issue of abrupt signal transitions in hyperarticut0 interact multimodally and can switch to an alternate input
late speech. mode, the likelihood of both avoiding and rapidly resolving
Another approach is to design a recognizer specialize@ors is facilitated. In part, this is because users have good
for error handling, which could function as part of a coordi- intuitions about when to deploy a given input mode such that
nated suite of multiple recognizers that are swapped in anthey avoid error¢Oviatt and Olsen, 1994In addition, users
out at appropriate points during system interaction. Such afaturally increase their alternation of input modes after a
alternative would be viable within a form-based interfacerecognition error occurs. Since input modes such as speech
with input slots, as was used in the present simulation, sinc@nd pen have different confusion matrices associated with
in such an arrangement it is reasonable to assume that r1€ same propositional content, this switching of input modes
entry into the same slot involves a correction. This approaci @ multimodal interface can eliminate stubborn spiral errors
would require data collection and recognizer training on g€ffectively. In addition, multimodal system architectures that
corpus of hyperarticulate speech. One advantage of this aptnify the propositional content carried in parallel input
proach is that it is capable of handling abrupt shifts in hy__modes can result_ in mutual disambiguation during semantic
perarticulation. However, not all applications may be amelnterpretation, which then red_uces. the overall system'’s error
nable to identifying the start and end of error correction,ate (Johnstoret al, 1997; Oviatt, in press; Oviatt, in sub-
which would be necessary to swap in the appropriate recogniSSion- o _ o
nizer reliably. In the near future, it will become increasingly important

Although hyperarticulate changes during focal error re-to model speech in natural field environments and while us-
pairs were similar to those during global repair, in some®'S aré mobile. Due to variable noise levels, movement, col-
respects they may be more difficult for systems to accommg/@Porating groups of users, interruptions, multi-tasking,

date. For example, the durational and pitch range changedless: and other factors, acoustic-phonetic variability in the
’ speech signal may be different and substantially magnified

during focal repairs were more pronounced in magnitude; - . —
and shifts to and from hyperarticulate speech were moré‘nder such conditions. Rates of miscommunication also are

abrupt than during global repairs. One difficult problem“kely to be elevated, in some cases beyond those currently

raised by these data on focal repairs is how to identify theif€POrted for spontaneous telephone dialogues. Unlike the
precise boundaries in a continuous utterance. This problefdP0ratory, speech in these settings can be expected to in-
complicates the prospect of designing systems with speciafUde @ combination of hyperarticulate, Lombard, and other
ized recognizers, as suggested above. In particular, it may fficult forms of abrupt signal variation. The present re-

implausible in future systems to mark focal repair regionssearCh on user-centered modeling of speech adaptations dur-

clearly via simple interface design techniques, for example',ng error begins to provide an empirical foundation for the

using a form-based interface to swap in a specialized recogjj-eslgn of these more challenging next-generation systems.

nizer at appropriate times. However, since strong acousti
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