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I. Tasks, Conditions and Submissions
We participated in all four tasks: Entity Discovery and Link-

ing (EDL), Machine Translation (MT), Situation Frame from
text(SFT), and SF for speech (SFS). In all tasks we generally
submitted to the constrained track; where submissions were
to the unconstrained track, this may be regarded as another
constrained track submission, either mis-submitted or taking
advantage of limited submission space, if relevant.

A. EDL Highlights
Some new and successful approaches for EDL include:
• We developed a novel approach to construct multi-lingual
common semantic space [1] and use it for multi-lingual

multi-task transfer learning [2] which allows related
languages to share and transfer resources and knowl-
edge. For this evaluation we used Swahili as the related
language for Kinyarwanda and Bengali as the related
language for Sinhala .

• We developed various incident-drive collective inference
methods for entity linking to Geoname database.

• We developed a novel cross-lingual joint entity and word
embedding approach for parallel sentence mining and
name translation mining, which are used for improving
Machine Translation and Speech Recognition.



B. MT Highlights

We used a variety of traditional MT systems, including
phrase-based, Hiero, and syntax-based approaches. We also
used a variety of neural MT systems, both sequence-to-
sequence systems (one of which is specifically oriented for
low-resource translation) and tensor-to-tensor systems (one of
which uses back-translations of the Leidos Reliefweb cor-
pus). Some approaches that worked in previous years (using
related language data as incident data, building special out-
of-vocabulary (OOV) word translators, building a do-not-
translate tagger) were unnecessary or low priority in this year,
and other approaches (neural MT, selection from comparable
corpora, system combination) that were not helpful previously
were helpful this year. As always, finding large amounts
of clean data is paramount. The solution this year was to
re-align the provided parallel data, which was given with
bad sentence alignments. By treating this data as generally
document-aligned and comparable but not sentence-aligned or
necessarily parallel, we were able to generate a reasonably
clean parallel sentence set suitable for cleaning. Additionally,
we found the Native Informants (particularly for Sinhala )
quite good at translation this year and were able to effectively
develop in-domain parallel data. We were also able to create
pseudo-parallel data with our Chinese Room interface but not
in enough time to interface with NIs.

C. Text SF Highlights

We integrated Status variable generation into the SF Type
systems, using a multi-task learning approach, where each
Type and status variable are treated as separate tasks, enabling
the use of data with missing labels. We augmented our
training data by, apart from all the released Situation Frame
development datasets, using the released speech SF develop-
ment datasets, after transcription through Automatic Speech
Recognition and translation using the ELISA, Google and
Bing Machine Translation interfaces. We used a dictionary-
based hashtag and twitter handle splitter as a pre-processing
step, that allowed our SF models to understand hashtags and
handles.

D. Speech SF Highlights

We were able to build 24-hour systems, which, for our
pipeline, require ASR, Information Extraction, Machine Trans-
lation, and SF identification, largely due to the ability to
recognize speech in only 2-3 hours from receiving data. We did
this using UIUC’s new high-speed speech recognizer ASR24.
Similar to the SF text task, we used a multi-task learning ap-
proach where a shared model was used for predicting Type and
status variables. We also augmented both SF-annotated text
as well as ASR-transcribed and translated speech documents
for training the models. The multi-task nature of learning and
augmentation of text documents in the training data were both
crucial especially for urgency prediction, since most of the
speech datasets lacked urgency annotation.

II. Entity Discovery and Linking
Our Entity Discovery and Linking (EDL) team consists of

Boliang Zhang, Xiaoman Pan, Ying Lin, Di Lu, Lifu Huang,
Tongtao Zhang, Kevin Blissett, Ni Zhang, Spencer Whitehead,
Ananya Subburathinam, Diya Li, Qingyun Wang, Zhiying
Jiang and Heng Ji.

A. Submissions
For the EDL task we only participated in constraint setting

for both check points. Tables I summarizes the submissions
for each checkpoint.

B. Core Algorithmic Approach
The overall framework follows our cross-lingual EDL sys-

tem for 282 languages [3], [4] and consists of three steps:
(1) Incident Language (IL) name tagging and English name
tagging; (2) Translate IL names to English and link English
mentions to English knowledge base (KB); and (3) cluster
unlinkable (NIL) name mentions across IL and English. We
will present detailed approach for each step as follows.
Name Tagging. We use a typical neural network architec-

ture that consists of Bi-directional Long Short-Term Memory
and Conditional Random Fields network [5] as our underlying
learning model for name tagging. We acquire training data
through our Chinese Room annotation interface [6] which
allows an English speaker to annotate names for any language.
We annotated 1,889 Kinyarwanda sentences and 2,438 Sinhala
sentences for check point 1; and 7,900 Kinyarwanda sentences
and 5,297 Sinhala sentences for check point 2. We made the
following novel additions and new techniques this year.
Multi-lingual common space and cross-lingual transfer

learning. We construct a multilingual common semantic
space [1] based on distributional semantics, where words
from multiple languages are projected into a shared space
to enable knowledge and resource transfer across languages.
Beyond word alignment, we introduce multiple cluster-level
alignments and enforce the word clusters to be consistently
distributed across multiple languages. We exploit three signals
for clustering: (1) neighbor words in the monolingual word
embedding space; (2) character-level information; and (3)
linguistic properties (e.g., apposition, locative suffix) derived
from linguistic structure knowledge bases available for thou-
sands of languages. We introduce a new cluster-consistent
correlational neural network to construct the common semantic
space by aligning words as well as clusters. Intrinsic eval-
uation on monolingual and multilingual QVEC tasks shows
our approach achieves significantly higher correlation with
linguistic features than state-of-the-art multi-lingual embed-
ding learning methods do. We then feed the multi-lingual
embedding representation into a novel cross-lingual transfer
learning framework [2] so we can use Swahili name tagging
training data for Kinyarwanda and Bengali training data for
Sinhala .
Global Attention. Many name tagging approaches use local

contextual information with much success, but fail when
the local context is ambiguous or limited. We developed a



TABLE I
ELISA Kinyarwanda and Sinhala EDL Submissions

Check Submission
Point Condition (Kinyarwanda /Sinhala ) Description

1 Constrained 356/357 Full system trained on RPI 6 hours Chinese Room data.
1 Constrained 487/489 Full system + cross-lingual transfer learning from related languages.
1 Constrained 545/547 Full system - hashtag and twitter user ID processing.
1 Constrained 511/509 Full system trained on RPI 10 hours Chinese Room data.
1 Constrained 488/490 Full system trained on RPI + JHU Chinese Room data.

2 Constrained 605/606 Full system trained on RPI 5 days Chinese Room data.
2 Constrained 673/675 Full system - GPE designator post-processing.
2 Constrained 700/704 Full system - hashtag and twitter user ID processing.
2 Constrained 699/703 Full system - ensemble learning
2 Constrained 769/782 Full system trained on RPI + JHU Chinese Room data.
2 Constrained 775/785 Full system trained on RPI adjudicated data only.
2 Constrained 779/862 Full system - nominal extraction.
2 Constrained 820/789 Full system trained on RPI 7 days Chinese Room data.
2 Constrained 672/674 Full system + cross-lingual transfer learning from related languages.
2 Constrained 607/608 Full system + cross-lingual transfer learning based on incident-related document

selection from related languages.

new framework to improve name tagging by utilizing local,
document-level, and corpus-level contextual information. We
retrieve document-level context from other sentences within
the same document and corpus-level context from sentences in
other documents. This model learns to incorporate document-
level and corpus-level contextual information alongside local
contextual information via document-level as well as corpus-
level attentions, which dynamically weight their respective
contextual information, and gating mechanisms, which deter-
mine the influence of this information.
English Nominal Extraction and Coreference Resolu-

tion. Our English nominal extraction and coreference res-
olution were trained from ACE and ERE corpora, using
embedding and distance features.
Cross-lingual Joint Entity and Word Embedding. Tradi-

tional methods of representing entity mentions consider each
name mention as a common phrase, and use the combination
of word embeddings of first name token and last name
token. There are two major problems on these methods: (1)
many names are out-of-vocabulary and they don’t appear in
the training data; (2) phrase embedding cannot disambiguate
entities. We develop a novel cross-lingual joint entity and
word method that not only can capture each entity mention
as a single unit and perform disambiguation, but also allow
all languages to share one common space. For each sentence
in an IL Wikipedia, we replace each IL mention with the title
of the English entity it’s linked to, and then use this code-
switch data to learn joint entity and word embeddings for IL;
For each English Wikipedia sentence, we replace each mention
with the title of the English entity it’s linked to and construct
the semantic space for English. In other words, the shared
linked English entities are used as anchors to align two spaces.
We gradually rotate the IL space so it can be aligned with
the English space by learning a mapping function (rotation
matrix).
Name Translation Mining. We mined IL-English name

translation pairs from various approaches: (1) Cross-lingual
Wikipedia titles; (2) Cross-lingual Geoname titles; (3) We
collected incident-related comparable documents from Set 0,
Set 1 and Set S. Then we measure the similarity between
every pair of IL name and English name using the cross-
lingual joint entity and word embedding, and discover name
translation pairs. These mined name translation pairs are used
in cross-lingual entity linking, Automatic Speech Recognition
and Machine Translation.
Cross-lingual Entity Linking. After we translate each each

IL name mention into English, we apply an unsupervised
collective inference approach to link each translated mention
to the target KB. The unique challenge in the LORELEI
setting is that the target KB is very scarce, without rich linked
structures, text descriptions or properties as in traditional KBs
such as Wikipedia. We associate mentions with entities in the
target KB in a collective manner, based on salience, similarity
and coherence measures [7]. We calculated topic-sensitive
PageRank scores for 500k overlapping entities between GeoN-
ames and Wikipedia as their salience scores. Using the scores
of overlapping entities, we calculated the average score of
each geographical type, such as city, village, and lake, and
thus estimated the salience scores of out-of-DBpedia entities
using their type scores. We use the cross-lingual joint entity
and word embedding as an additional similarity measure. Then
we construct a knowledge networks from source language
texts, where each node represents a name mention, and each
link represents a sentence-level co-occurrence relation. If two
mentions co-occur in the same sentence, we prefer their entity
candidates in the KB to share administrative code and type,
or close in terms of latitude and longitude values.
Cross-lingual NIL Clustering.
For NIL mentions we created initial clusters based on exact

string matching on mention surface forms. Then we applied
multiple steps to cluster mentions: (1) We developed a normal-
izer to normalize surface forms by removing name designators



and stop words and stemming; (2) We clustered mentions with
similar NYSIIS representation (similar to Soundex) longer
than four letters, after removing double consonants and vow-
els; (3) We clustered two mentions if the edit distance between
their normalized surface forms is equal to or smaller than a
threshold; (4) We clustered two mentions if their distance in
the joint entity and word embedding space is shorter than a
threshold; (5) Finally we merged two clusters if they include
mentions sharing the same English translation.

C. Critical Additional Features and Tools Used
We incorporate both character embedding and contextu-

alized word embedding [8] as features for name tagging.
We used the results from universal romanization tool [9] for
Chinese room annotation.

D. Other Data Used
We used a multi-lingual Wikipedia dump, and massively

multi-lingual Panlex which were collected before the incident
dates.

E. Significant Pre/Post-Processing
We used UPenn morphology analyzer [10] to segment

Kinyarwanda words for Chinese room annotation. We added a
post-processing step to extend the name boundaries to include
GPE designators. We developed another post-processing step
to process names in @ mentions and hashtags in tweets, by
automatically parsing each mention into multiple tokens, and
running English EDL to candidate names.

F. Native Informant Use
We run our IL name taggers on Set 0 and Set 1 and ask

the NIs to translate frequent names which are not in our name
translation gazetteers into English.

G. Remaining Challenges
We were not able to conduct more detailed error analysis

because there is no ground truth or score feedback. The follow-
ing are some challenges we have identified during analyzing
Set 0, Set 1 and Set S name tagging errors. Many names are
specific to incident-related regions and topics. It’s challenging
to acquire enough training data to cover these names and their
contexts. These names are even out-of-vocabulary for state-of-
the-art English name taggers. In the following sentence “The
final Perahera of the Ruhunu Kataragama Maha Devalaya
will be held today.”, only after we see the image of Ruhunu
Kataragama Maha Devalaya we can infer it’s a temple and
label it as a location. In “In the communiqué the education
ministry has cited as a cases in point several instances like the
application by a doctor transferred to Bemmulla in Gampaha
for admission of his child to the Colombo D . S . Senanayake
Vidyalaya”, D . S . Senanayake Vidyalaya looks like a person
name based on its surface form, but it’s a college. Similarly,
without web search it’s hard to know Kerala Ganja Cannabis
is a drug in the following sentence “The navy media unit stated
that they suspect that the Kerala Ganja Cannabis was brought
from India via the mainland”; and IOC refers to Indian Oil

Corporation in “IOC’s fuel prices will again rise again in
the light of the increase in fuel prices in Ceylon Petroleum
Corporation”.
To alleviate this domain knowledge bottleneck, an intel-

ligent name tagger will need to be self-localized rapidly.
The system should perform automatic googling beyond local
context, by automatically linking each mention to a huge
web-scale corpus and analyzing all related documents for
knowledge discovery and embedding learning. For next year’s
evaluation we suggest NIST and LDC to provide as much IL
and English monolingual data as possible. It would be even
better if these monolingual corpora are in multi-media form.

III. Machine Translation
Our MT team consisted of Ronald Cardenas, Thamme

Gowda, Ulf Hermjakob, Nima Pourdamghani, Michael Pust,
Jibiao Shen, Tian Xie, Kenton Murray, Toan Nguyen, Heng
Ji, David Chiang, and Jonathan May.

A. Core Algorithmic Approach
General components.
MT Systems. Our primary submissions were a combination

of several MT systems within in the ELISA project. These
were:

• A syntax-based MT system (SBMT) built at ISI.
• A hierarchical phrase-based system (Hiero) built at Notre
Dame.

• A phrase-based system (Moses) built at Notre Dame.
• A recurrent neural system built at Notre Dame.
• Two convolutional neural systems based on Transformer
(one at ISI, one at UW).

These MT systems were trained on parallel data provided
by NIST. See section III-B for details. Translation models and
language models used mixed-case data. Unlike in previous
years, we did not use stemmed corpora for word alignment
of the non-neural systems as the training corpora were signif-
icantly larger than had been seen before. Below we describe
details of each of these systems.
ISI Syntax This is a string-to-tree statistical MT system

based on [11], [12]. We used two word aligners (GIZA and
Berkeley). We tuned with MIRA. We used a gigaword 5gram
language model and an additional LM built from Leidos
reliefweb.
ND Hiero This system was a hierarchical phrase-based

system, trained on v1 of the data. Preprocessing, word align-
ments, and language models were the same as described
above for Moses. We extracted hierarchical rules from all
parts of the corpora likely to contain parallel sentences, and
phrases from translation lexicons. We trained feature weights
discriminatively using MIRA with feature scaling somewhat
similar to RMSprop.
ND Moses Our Moses system relied on data preprocessed

with Morfessor Flatcat. Our alignments were generated with



GIZA++ (both intersection and grow-diag-final-and) as well
as the Berkeley aligner. All three were combined in order
to generate the phrase table. We used three n-gram language
models. These were built from the bitext, Gigaword, and
Leidos using KenLM. Our model was tuned using MERT.
ND Recurrent The sequence-to-sequence system use the

standard LSTM encoder-decoder with attention. We applied
two enhancements, a normalization technique that fixes the
norms of all word embeddings to some value, and a lexical
module that predicts the target word based on only the source
words. All systems were trained for 40 epochs with a batch
size of 32, and a vocab size of 12119 word pieces. We used
the full training data with lexicons.
ISI Transformer The transformer system [13] used direct

tensorflow transformer code from Google. It was run with
default hyperparameters except for a batch size of 4096, vocab
(number of word pieces) of 32,768, and all training data (but
no lexicons). It ran for 64,000 steps (minibatches). We also
used this setup to build backtranslation models and generate
backtranslation data from the Leidos Reliefweb corpus (but did
not use this data in CP1). We noticed that Transformer appears
to behave worse when the orthographies are not Latin. We
have not yet determined why this is but suspect the word piece
segmentation algorithm may be tuned for Latin characters. To
get around this for Sinhala we used Uroman [14].
UW Transformer The UW Transformer NMT system built

on the attention-only neural machine translation model of
[13]. The system employs the subword modeling approach
of the Transformer system. However, prior experiments on
Tamil had indicated issues with non-Latin scripts, and thus
we applied uroman [14] to romanize the Sinhala script prior
to processing. We also trained the model on lowercase text,
but built a corresponding recaser, paired with a detokenizer,
to create final mixed case output. Based on prior tuning
experiments on dryrun languages, our model used a batch size
of 1024, a vocabulary size of 8192 word parts across source
and target languages, learning rate of 0.1, two encoding and
two decoding layers, and a hidden layer size of 512. The model
was trained for 250,000 steps for each IL in CP1, and a number
of steps determined by performance on the NISET data in CP2
(113,000 steps for Kinyarwanda ; 250,000 steps for Sinhala ).
For CP2, the parallel training data was augmented with the
lexicon and upsampled gazetteer data.

B. Data
We trained MT systems on the following parallel data

resources:
Language Resources provided by UW The LanguageNet

massively multilingual lexical resource was used to augment
the LDC-provided lexical resources for Kinyarwanda and
Sinhala . LanguageNet “masterlexicons” have been compiled
for the duration of the LORELEI project using publicly
available Internet and print resources such as Wiktionary,
PanLex, online dictionaries and language learning sites [15].
These include, minimally, a translation pair between a source
and target language and the source of the translation pair.

TABLE II
Parallel data versions. Words shown are English words in the parallel

training set corresponding to the source language indicated.

Version description Kinyarwanda Sinhala

1 initial auto-extract 4,151,376 6,438,717
2 tokenization fix n/a 6,438,717
3 Gargantua re-alignment 4,034,444 6,165,523
4 duplicate segment 3,765,588 5,865,482

elimination
5 comparable segment 3,021,096 3,095,721

selection
6 cleaned monolingual before 3,765,310 6,068,514

Gargantua

The target language is English in most cases; however, where
translations into other languages were readily available from
a source, these were also gathered, with each language pair
having its own masterlexicon. The masterlexicons use the
information exactly as given in the source material. Where
the source material included other information, such as part
of speech, transliteration, pronunciation, dialect or domain,
these are also included. For each language pair, the lexicons
gathered from different sources are merged into a single
masterlexicon. Entries including the same word and translation
are merged into a single entry, with all sources attributed.
These entries were incorporated into our released ‘lexicon’
versions.
Bilingual dictionaries. We used the LDC-provided dictio-

nary, and we pulled other entries from pre-collected massively
multilingual resources. We cleaned dictionary entries (deleting
infinitive “to” on the English side, etc). We received lexicons
from UW, per the description above. We numbered our
dictionary releases (v1, v2, v3, …v6). The dictionary sizes are
shown in Table III. The initial version of dictionaries solely
consisted LDC provided lexicons, and the subsequent releases
were made by augmenting it with other entries. The statistics
of final release of dictionary is given in Table IV.
Parallel Corpora. We processed the provided parallel data

into sets called ‘train’ (for MT rule acquisition), ‘dev’ (for MT
tuning), ‘syscomb’ (for multi-system combination), and ‘test’
(held out). As in previous years, we used a set of incident-
relevant English keywords to choose the documents that went
into test, syscomb, and dev, in that priority order. Previous
years’ LoreHLT evaluations did not have any incident data
so this approach formerly did not do much, but in this year
there were substantial news articles in Sinhala and even in the
bible-inspired text that made up the bulk of Kinyarwanda so
we were more confident that the test sets would be indicative
of evaluation performance.
We also numbered our parallel data releases (v1, v2, v3, …).

Table II denotes the various versions of our data, brought about
by different cleaning approaches employed after previous
versions were shown to yield suboptimal results. Below we
describe the various versions of our data. All changes were
applicable to both Kinyarwanda and Sinhala unless otherwise
noted.



1) This was the initial version auto-extracted from parallel
data. It was found to have a great many sentence pairs
that were not translations of each other. The default
cleaning filtered segments with length ratios and length
deltas more than two standard deviations outside the
mean, which is a conservative approach that assumes
most segments are well-aligned. However, in the case
of Kinyarwanda and Sinhala data the assumption was
invalid and consequently little data was actually filtered.
For example, in Kinyarwanda the automatic processing
required ratios to be in excess of 8.2 and deltas to be in
excess of 21.7; only 1% of lines met both criteria.

2) Sinhala Version 1 had faulty tokenization, due to a
misunderstanding about the proper order of operations.
This was a technical fix.

3) Starting in CP2, in Kinyarwanda and Sinhala , we used
the Gargantua sentence alignment tool [16] to align data.
At this point we re-split dev/test/syscomb data sets so
Versions 1 and 2 are not compatible with this version and
beyond. Thereafter we kept the same splits (but some-
times threw away or realigned segments) so subsequent
versions are compatible.

4) We removed duplicate segments. The watchtower data
had high incidents of duplication, which led to over-
confidence in Kinyarwanda results (Sinhala test/de-
v/syscomb sets were generally news-only due to our
incident-relevant set selection process). Any segment pair
that appeared previously in data was eliminated (using the
data set order train-dev-syscomb-test).

5) We decided to treat the parallel data as comparable and
threw out the initial alignments. We developed a toolkit
called ReAligner1 which used a combination of rules
and scoring functions to produce new alignments. The
tool was scoped to align segments within documents. It
performed so by scoring and ranking every combination
of sentences within a given pair of source and target
documents. We applied rules such as length ratio, punctu-
ations count ratio, presence or absence of numerals, and
URLs on both sides to reduce the exhaustive search of
the re-aligner. Details of scoring functions and algorithms
for this approach are below. We also filtered entire
documents that were not parallel; this was particularly
a problem for news data in Sinhala . We used NI time
to inspect document headlines and asked the NI to say
whether or not a headline was a reasonable translation,
to filter out for document mismatch.

6) We noticed that many of the alignments in the LDC pack
were seemingly inaccurate. For instance, we observed
segments having numerals on the source side aligned to
segments without numerals on the target side (and vice
versa). Length ratios between source and target segments
were suspiciously abnormal.In an analysis during which
we detected unalignable URLs (URLs for which we
cannot find the same URL on the other side) and tokens

1https://github.com/thammegowda/realigner

such as ‘img’ and ‘MP3’ on both source and translation
sides and filtered segments containing those, we observed
11605 segments reduced from Kinyarwanda data and
16656 segments reduced from Sinhala data. We then ran
Gargantua again, as in version 3.

Re-aligner details For the re-aligner, we experimented with
two approaches to score the sentence pairs: (i) MCSS Simi-
larity score and (ii) Translation Table (T-Table) score.
MCSS Similarity score Multilingual Common Semantic

Space (MCSS) is a system based on neural word embedding
that projects embeddings from one language to the other. The
word vectors were trained on a large monolingual dataset of
English, Kinyarwanda , and Sinhala , followed by projecting
Kinyarwanda and Sinhala word vectors to English embedding
space. Intuitively, MCSS scoring function mapped source and
target words into the same vector space, and computed sen-
tence vector by aggregating the word vectors in the sequence.
The MCSS similarity score was the cosine similarity between
source and target sentence vectors.
Translation-Table (T-Table) score For a source sequence

s = s1s2s3...sm and target sequence t = t1t2t3...tn, the
scorettab was computed as follows: The translation probability
of lexicons was estimated using GIZA++ aligner. The dataset
excluded parallel sentences from the LDC IL package, instead
used the dictionaries and previously mined parallel sentences
from the web by our massively multi-lingual web crawler. We
generated T-table from both the sides, i.e. forward T-Table−→
T : P (tj |si), and inverse T-Table

←−
T : P (si|tj). We ignored

the casing of text by converting all the texts to lower case.

scorettab(s, t) =
1

2

[ 1
m

m∑
i

scoretok(si,
−→
T , t)+

1

n

n∑
i

scoretok(ti,
←−
T , s)

]
The scoretok(w, T, c) was computed as:

0 if w ̸∈ T and w ̸∈ c i.e. OOV
1 if w ̸∈ T and w ∈ c i.e. Copied∑
w′∈c

PT (w
′|w) otherwise

Evaluating the re-aligner We also set up a test to eval-
uate the performance of our alignment functions. The test
for alignment quality used 1000 sentence pairs which are
properly aligned as positive samples, and randomly generated
negative samples for each of those 1000 source sentences.
We experimented with various sizes of negative sampling
sizes; the easiest test had 20 negatives, and the hardest test
had 200 negatives for each source sentence. For MCSS, the
sentence alignment error was to be 13% and 35% with 20
and 200 negative samples. The T-Table scoring function had
the sentence alignment error of 10% and 25% respectively
for 20 and 200 negative samples. The internal parallel data
release version v5 included T-Table based aligner. We set
a threshold score of 0.2, based on our manual inspection



TABLE III
Dictionary versions and number of entries

Version Kinyarwanda Sinhala

1 48,333 227,668
2 76,679 249,833
3 90,379 Not released
4 89,345 240,526
5 90,228 241,476
6 90,285 241,797

TABLE IV
Statistics of final version (v6) of Kinyarwanda and Sinhala dictionaries

Source Kinyarwanda Count Sinhala Count

LDC IL pack 48,333 227,668
ISI-DICT 19,290 5,096
RPI-GAZv2 3,367 2,985
UW-Panlex 2,177 3,983
UW-others 292 1,317
NI-Phrases 360 427
UW-NI 57 321
RPI-Kinyarwanda.net 13,700 N/A
UW-BabelNet 2,709 N/A

Total 90,285 241,797

on bad alignments, to remove the misaligned data. As a
result, our re-aligner found no valid alignments for 55, 079
out of 298, 660 segments in Kinyarwanda and 190, 826 out of
415, 041 segments in Sinhala datasets.

C. Other Elements

Morphology. The syntax MT used the Morfessor system
for unsupervised splitting of words, as in previous years it
was additionally exposed to full-word analyses in a source-
language lattice. Penn’s unsupervised morphology was not
found to be as helpful in preliminary internal investigations.
Most of the neural systems used byte-pair encoding as a sort
of rough morphological splitting; we noticed that the BPE
used by Transformer seemed to have some problems with the
non-latin orthography of Sinhala so we applied Uroman pre-
romanization to avoid these issues.
System combination. We used Kenneth Heafield’s Multi-

Engine Machine Translation (MEMT) software [17] to com-
bine individual MT systems. The software constructs lattices
from sets of translations by heuristically aligning words, then
tunes weights for a set of language model and per-system
features to optimize Bleu, using the MERT algorithm [18]. We
tuned system combination using the ‘syscomb’ set and chose
systems with high individual Bleu scores. We show ‘syscomb’
as a submission in all check points and languages; for these
systems we also, show, separately, a table of component
systems that went into the combination.
Handling of Sinhalese complex numbers
We extended a special lexicon-and-rule-based translation

system to translate complex numbers from Sinhalese, which
uses a mix of Western and Indian style number systems.

Example translations (Sinhalese source shown in uromanized
form):

• dekootti asuupan laksayaka (“two-crore eighty-five lakh-
suffix”) ⇒ 28.5 million

• eklaksa hatalis hayadahas tunsiya tis hayak ⇒ 146,336
• kootti 1574 yi dasama 5 yi 2 ⇒ 15.7452 billion
• biliyana 15 ⇒ 15 billion
• 3,45,67,890 ⇒ 34,567,890

The output of this special system competes against other MT
modules based on automatically tuned weights. Unfortunately,
it did not appear to give a Bleu gain. We were unable to take
time to analyze why this was so.

Document Selection: We devised several approaches to se-
lecting documents for Chinese Room and/or Native Informant
annotation. One approach is a semi-supervised variant of the
CoReX algorithm. The other is based on pairwise mutual
information and keyword expansion.
Chinese Room: We previously developed a interface (the

“Chinese Room”) [19] that allows monolingual English speak-
ers to translate sentences from an arbitrary, unknown language,
given a dictionary and a small parallel text. It makes these
resources available in an intuitive way. We had previously
hired and trained three USC Masters students (all of whom
have several Indian language and English fluencies but none
of whom speak the ILs). We also received help from a graduate
student at RPI. All in all, the CR annotators performed slower
than anticipated during the evaluation, yielding a total of 311
usable words of Kinyarwanda and 623 words of Sinhala ,
available after our NI sessions. We used this data as silver
sets for determining which systems to submit, out of fear of
overfitting on our native informant sets.

D. Use of Native Informant
Native Informant: The ELISA team received two units of

NI time for this evaluation. The UW team received one unit.
The general approach to use of NI was as follows:

• ELISA unit 1 was used in CP1 and CP2 to collect
translations of English incident terms into the ILs.

• ELISA unit 2 was used in CP2 to collect whole-sentence
translations of IL situational documents, both translating
from scratch and from Chinese Room annotations.

• UW unit was used for...
Below we describe some details of each unit. All collection

was used by all MT and SF subteams.
ELISA unit 1 For all sessions, we asked the NI to translate a

list of English terms into their native language (Kinyarwanda
or Sinhala ). If a term could not be translated, the NI provided
the best available translation and a comment of why the term
could not be translated. The term list was selected from Leidos
and OSC corpora, using a combination of class-relevance,
document frequency and manual filtering. In total we had 10
NI sessions of 1 hour each (5 per IL). We worked with 4
informants: NI2 and NI4 for Kinyarwanda , and NI5 and NI6
for Sinhala . By checkpoint 1, NIs had translated 254 terms:
200 for Kinyarwanda and 54 for Sinhala ; by checkpoint 2,



TABLE V
Number of translations obtained per session date.

Kinyarwanda Sinhala

6/2/18 105 36
6/3/2018 - preCP1 95 54
6/3/2018 - postCP1 - 115
6/4/18 - -
6/5/18 97 122
6/6/18 201 101
6/7/18 - -
6/8/18 - -
6/9/18 189 -

Total 687 428

they had translated 881 terms: 687 for Kinyarwanda and 428
for Sinhala . The breakdown of number of translations per
session is presented in table V. Overall the NI sessions went
without any delays or incidents, all NIs were professional
and ready to do their jobs. The only exception was our last
meeting on Monday 9th, where NI2 was unable to attend the
call due to personal circumstances. Appen re-assigned us to a
new time slot with NI4 on the same day without any further
complications.
ELISA unit 2 NI3 (Kinyarwanda ) did 4 hours, translating

documents regarding floods, unrest, and drought, amounting
to 52 sentences. NI4 (Kinyarwanda ) did headline comparison
and verified all JW articles in syscomb, dev, and test were
valid. NI5 (Sinhala ) 728 words in 2 hours. NI6 did 1324
words in 2 hours. The last hour of this unit for Sinhala ws used
to discover that about half our news-oriented Sinhala articles
in test were probably not real translations and 2/3 of the
inspected syscomb sentences were similarly not translations
of each other.
UW unit The UW/UIUC team was allocated one unit of NI

time. The use of this time largely aimed to enhance Named
Entity handling, especially geo-political and location entities,
in support of lexical resource enhancement and language
modeling for speech recognition. Using the (assumed) parallel
English-IL training data, we applied an off-the-shelf English
Named Entity Recognition system [20] to identify English-
side entities as candidates for translation. The task was revised
based on experience and observations about the set0 parallel
training data.

• Kinyarwanda /Hr1/NI3: An alphabetized list of English
PER/GPE/LOC entities was presented to the NI for
translation to the IL. No additional context of occurrence
was provided. The NI made rapid progress through the
list of entities, but expressed concerns about orthographic
variation in the English tokens.

• Sinhala /Hr1/NI7: An alphabetized list of English PER/G-
PE/LOC entities was presented to the NI for translation to
the IL. No additional context of occurrence was provided.
The NI made steady progress through the list of entities.

Beginning in Hr2, we made some revisions to the task
protocol. Due to concerns about out-of-context translation and
English-IL translation equivalence in the training sample, we

began presenting the entities to be translated in-situ, in an
example English sentence, paired with its presumed IL transla-
tion. Annotators were also given the option to indicate that no
translation of the English NE term appeared in the presumed
parallel text or that the sentences were not translations of each
other. In addition, having observed the prevalence of personal
names in the Watchtower text, we restricted the NE types
for selection to GPE/LOC, which we hoped would be more
generally relevant to the downstream EDL and SF tasks.

• Kinyarwanda /Hr2/NI2: In this iteration of the task, we
asked the NI to also provide a translation of the English
sentence if the candidate parallel sentence was found to
not actually be a translation.

• Sinhala /Hr2/NI7: Here, in order to enrich the corpus of
entity related utterances, we also asked the NI to provide
a paraphrase of the NE-bearing sentences.

The translation/paraphrase variants of the task proved very
time-consuming, with NIs only able to complete 7-10 sen-
tences in the hour of time. NIs also commented that the longer
sentences in these tasks were difficult to work with.
As a result, for the remainder of our NI time, we a) returned

to focus on the NE translation task alone and b) restricted con-
text sentences by length to 20 words or fewer. (Kinyarwanda
/Hr3/NI2:Sinhala /Hr3/NI5: Kinyarwanda /Hr4/NI1:Sinhala
/Hr4/NI6:Kinyarwanda /Hr5/NI1:Sinhala /Hr5/NI6)
The results of NI efforts augmented the IL gazetteers and

informed the entity-targeted language modeling efforts.
Checkpoint 1.
Pre-and post-processing. It was extremely handy to have

the uroman tool prepared in advance, so that we could view
and process Sinhala in Latin script. Kinyarwanda is already
in Latin script.
Noisy Data While we had an ample amount of parallel

data in comparison to previous years, as noted above, it
was rather noisily aligned by comparison. This was observed
when inspecting the parallel data and when initial decodes
consistently produced artifacts such as URLs that did not occur
in source sentences. We started aggressively cleaning training
data more than the default cleaning procedures built into our
data processing pipeline at around the 14 hour mark of CP1
but did not make it into systems submitted in this checkpoint;
systems from this checkpoint all use rather misaligned data.
Reduced training. Unlike in previous years, the parallel data

provided to us was ample (3–6m words). In fact, we were
concerned that we wouldn’t be able to build MT systems
in enough time for SF to make the checkpoint. We thus
reduced our syntax training set. We automatically grew our
training set by starting with a seed subset of training and
then automatically adding data based on improving coverage
relative to the evaluation set. This is all done without human
intervention or manual inspection and is equivalent to targeting
‘important words and phrases’ as noted in clarification emails.
Backtranslation We’ve found it beneficial for certain types

of MT (e.g. Transformer) to augment or domain-shift low-
resource training data with English that has been back-
translated into the source language using an earlier version



TABLE VI
Kinyarwanda CP1 system submissions

dev test syscomb

t2t-v1 13.0 15.7 19.0
nd-hiero-s2i7 15.3 9.0 17.2
isi-sbmt 11.2 14.6 14.3
nd-nmt_norm_bridge 13.5 15.2 17.6
nd-moses 6.8 7.7 8.2
t2tbt-v1 12.1 16.5 17.9
uw-tfm 6.6 10.4 9.8
combo 16.8 18.1 20.7

TABLE VII
Sinhala CP1 system submissions

dev test syscomb

t2t-uroman-v1 4.5 3.3 3.4
isi-sbmt 3.2 2.8 2.5
nd-hiero-s1i7 4.3 3.4 2.9
t2t-v1 3.1 2.9 2.5
nd-nmt_lex 5.1 3.6 3.7
uw-tfm 2.7 2.1 1.7
nd-moses 4.4 3.1 3.1
combo 5.5 4.8 5.1

of a symmetric mt system. We back-translated 6.6m words
of Leidos Reliefweb data into Kinyarwanda and Sinhala and
used this data, together with the provided parallel data, to build
Transformer engines.
Re-scoring. Our neural MT (NMT) systems did reasonably

well in standalone mode, so we did not make an attempt to
use them to re-score SBMT n-best lists this year, since that
procedure is somewhat more time consuming.
Submitted results’ proxy scores on internal sets are shown

in Tables VII and VI. Additionally, the components that went
into the systems are shown in Tables X and XI. All systems
are constrained.

Lessons Learned:
• Having a relatively large data set is not a panacea if it is
extremely noisy

• The old trope about fighting the last war is true and
seems almost inevitable; handling unknown unknowns a
priori currently is AI-complete and human intervention is
inevitable.

TABLE VIII
Kinyarwanda CP2 system submissions

dev test syscomb niset crset

t2t-lgb-v4 28.4 30.1 28.4 7.1 13.1
nd-hiero-s7 2.6 3.0 2.7 0.3 12.3
isi-sbmt-v5-small-mixed 23.6 22.5 20.7 5.3 12.0
t2t-lgbxv-v5 27.6 30.1 28.2 5.9 12.6
uw-tfm-6 8.5 8.8 7.9 2.7 4.5
combo3 31.5 30.1 7.2 13.8

TABLE IX
Sinhala CP2 system submissions

dev test syscomb niset crset

t2t-lgb-v5 9.4 9.9 8.6 9.8 12.3
isi-sbmt-v4-mixed 9.2 8.4 10.8 11.8
nd-hiero-s7 6.1 4.8 6.8 6.8
t2t-xuroman-lgb-v5 8.6 9.0 8.1 10.1 8.5
nd-nmt_lex 9.3 9.6 8.9 10.1 8.9
combo3 12.2 10.9 11.9
nd-moses-v6 6.5 6.1 6.2 7.0 8.9
uw-tfm-6 9.1 7.2 7.4 7.1 7.1

TABLE X
Components of Sinhala CP1 system combination submission (v2 data used)

dev test syscomb

isi-sbmt 3.2 2.8 2.4
nd-hiero-s1i7 4.3 3.4 2.9
nd-nmt_lex 5.1 3.6 3.6
t2t-uroman-v1 4.5 3.2 3.4
t2t-v1 3.1 2.9 2.5
System-combination 5.5 4.8 5.1

TABLE XI
Components of Kinyarwanda CP1 system combination submission (v2 data

used)

dev test syscomb

isi-sbmt 11.1 14.5 14.2
nd-hiero-s2i7 15.3 9.0 17.2
t2tbt-v1 12.0 16.2 17.7
t2t-v1 13.0 15.5 18.8
System-combination 16.8 18.1 20.7

TABLE XII
System combination (combo3) submission for Kinyarwanda CP2 (v1 data

used)

Kinyarwanda test syscomb niset crset1

isi-sbmt-v5-small-mixed 22.4 20.6 5.3 11.9
nd-hiero-s7 32.8 30.1 2.9 12.3
t2t-lgb-v4 29.7 28.2 7.1 12.9
t2t-lgbxv-v5 29.8 28.1 5.6 12.6
system combination 31.5 30.1 7.2 13.8

TABLE XIII
System combination (combo3) submission for Sinhala CP2

test syscomb niset

isi-sbmt-v4-mixed 9.2 8.3 10.8
nd-hiero-s7 6.1 4.8 6.9
nd-moses-v6 6.0 6.2 7.0
nd-nmt_lex 9.4 9.0 10.1
t2t-lgb-v5 9.8 8.6 9.8
t2t-xuroman-lgb-v5 9.0 7.9 10.1
system combination 12.2 10.9 11.9



Checkpoint 2.
Parallel Data and Dictionaries. Cleaning parallel data be-

came of utmost importance. We built versions 3 and beyond,
as noted above.
In-domain data. We developed small domain parallel sets

using the Native Informants (called “niset”), partially by
working inside the Chinese Room with them. the Sinhala NIs
in particular were surprisingly fast and in 4 hours of direct
translation (Chinese Room sets were not yet available) we
were able to produce almost 2200 words of translations of
news articles. We also built sets using the Chinese Room that
were not validate by NIs; these are called “crset”.
Tweet Set:
We had no parallel twitter data and did not select any twitter

data for NIs to translate. However, in order to get a sense of
any systematic problems with our translations of tweet data,
we selected, with RPI’s automatic and manual help, a small
set of Kinyarwanda and Sinhala tweets that we looked at
various system translations of.
Transformations to TransformerWe were able to make good

use of the Transformer (also known as and interchangeably re-
ferred to as ‘tensor-to-tensor,’ ‘tensor2tensor,’ or ‘t2t’) neural
machine translation system [13], however there were some
task-specific data properties that prevented us from using t2t
out of the box. We made the following modifications:

• Social Media Entities: tensor2tensor uses BPE [21] to
preserve some in-words information. But this will mess
up entities found in Twitter and other kinds of short social
media communication that should not be translated such
as hashtags, handles, urls, and emojis. One solution could
be add some pseudo copy-paste pairs to the training set,
but since training a t2t takes a long time as the data
size grows, we chose to pre-process the source, extracting
those tokens we do not want to translate, then put them
back after translation. This was a quick fix and altered
some word order but seemed like the best decision given
our time constraints.

• Applying back-translation It has been known that low-
resource Transformer systems can benefit from incor-
porating additional target language data paired with an
artificial source translation. Such a translation is typically
obtained by building a target-to-source MT system and
’back-translating’ the target data. Using in-domain data
where available is ideal; we used the incident-rich Leidos
Reliefweb corpus. We used tensor2tensor’s transformer_-
base settings and trained the model for 128,000 steps on
our training releases. We retrained whenever new training
data or new vocabularies were available (see elsewhere
for a discussion of this data construction).

• Romanization: When translating a non-latin language
(e.g. Sinhala ), we observed improvements by first turning
the source language characters into latin letters which
could represent their pronunciation, using uroman[14].

Below are some specific Transformer systems we built
during this exercise:

• System t2t-lgb-v4 for Kinyarwanda : This system was
trained on training data v4 + lexicon v4 + glosbe data +
back translation v3. We set the training steps to 256,000,
batch size to 4,096 and used the same transformer_base
settings to train 8 models, and picked the best (based on
our gold label test sets) to produce this part of outputs.

• System t2t-lgbxv-v5 for Kinyarwanda : this system was
trained on training data v5 + lexicon v5 + glosbe data +
back translation v4. We set this model’s BPE vocabulary
size to 65,536 (twice as the default) as we observed this
would help Kinyarwanda translation. The reason could
be Kinyarwanda had a larger vocabulary size. We trained
it for 256,000 steps with 4,096 batch size.

• System t2t-lgb-v5 for Sinhala : this system was trained
on training data v5 + lexicon v5 + glosbe data + back
translation v4. We set the training steps at 256,000 and
batch size at 4,096 to train the model and produced
outputs for this part.

• System t2t-xuroman-lgb-v5 for Sinhala : this system is
more complicated than above ones. It used romanization
to preprocess the data. In combining romanization with
back translation we have 2 options: 1) use romanized
data to build reverse model and produce romanized
translation; 2) use original data to build reverse model
and romanized its translation. By doing option 1 we found
that romanized model was usually better without back
translation data but it became not as competitive after
adding back translation produced by romanized reverse
model. We suspected that the perplexity introduced by
romanization was amplified by the not-so-good back
translation process. Then came this system’s idea. It was
trained for 256,000 steps with batch size 4,096 on training
data v5, lexicon v5, glosbe data, and back translation v4,
all of which were romanized.

• Systems we tried but didn’t use: systems based on v3
and v6 training data (not competitive), systems with dif-
ferent dropout rates (no obvious improvements), systems
with larger hidden sizes (took too long to train and no
obvious improvements), and systems with smaller BPE
vocabulary sizes (not good).

Submitted results’ proxy scores on internal sets are shown
in Tables IX and VIII. Additionally, the components that went
into the systems are shown in Tables XIII and XII. All systems
are constrained.
Lessons Learned.
• It was important to distinguish parallel documents from
non-parallel; we found that we couldn’t completely trust
the selection provided to us.

E. Critical Additional Features and Tools

As in previous years it was informative to look at output
and compare output across different systems in regular group
sessions. We looked at our automatically selected syscomb
and test sets (subselected from the provided parallel data),
translation of our NI-provided gold and CR-provided silver



sets, and even translation of tweets, for which we had no
human translation of any kind. By doing this we learned:

• By virtue of many spontaneous unmotivated artifacts
from all systems, that there were many misaligned sen-
tences where multiple sentences that included much un-
related data was aligned to a single sentence and vice
versa.

• By virtue of many translation system outputs agreeing
with each other and strongly disagreeing with the refer-
ence, that our so-called ‘parallel’ data was comparable
and not parallel.

• By simple observation, that part of one mt system had
a bug and was copying its input without translating (this
system was fixed)

• That simple copyable elements in tweets such as hashtags,
user handles, urls, and emojis were not consistently being
copied. We refined our postprocessing code developed
in previous years to ensure these were all handled. Of
particular interest was that uroman over-romanized and
replaced, e.g., smiley face unicode characters with the
romanization ‘face’.

F. Other Data

We selected name pairs from our pre-collected, massively
multilingual name pair list, derived from Wikipedia sources.

G. Filtering and re-alignment

see above sections.

H. Data Pre- and Post-Processing

See above sections.

I. Remaining Challenges

It is difficult to run in a truly automated fashion. The
challenges vary considerably from year to year and human
intervention is always needed. We would like to avoid this
necessity.

IV. Situation Frames from Text

The primary team consisted of Nikolaos Malandrakis,
Ruchir Travadi, Karan Singla, Victor Martinez, and Shrikanth
Narayanan. However since the situation frame model used the
name tagging and machine translation systems as modules, all
members of the ELISA team have a contribution.
We submitted constrained and unconstrained runs of situa-

tion frame detection, including types, localization and status.

A. Core algorithmic approach
We implemented a variety of models targeting situation

frames of different scopes, described below. The primary
submissions were, for all checkpoints, combinations of one
SF text and one SF speech model output, with “MLP-LSA”,
“CNN-GRU” and “MULTI” used for SF text. Our models are
not multilingual: they can only process English and depend
on the existence of machine translation and name tagging
components, which they use as inputs. In all cases we used our
team’s translation and name tagging systems as inputs of the
situation frame models. The models are top-down: they start
by assigning types & status variables to documents and then
attempt to localize these to the available locations, creating
frames. Compared to the 2017 iteration of the task, this year’s
models are all multi-task, meaning they generate SF types
jointly with SF status labels per type (last year we used a two-
pass solution with a separate status model). We also switched
to a supervised combination model and, of course, had to
repeat the entire hill-climbing for hyper-parameter and data
selection with nDCG as the primary performance metric. The
models were trained on a combination of text and speech SF
datasets, with hill-climbing used to decide which subsets of
the data to use in each case.
Type & Status Detection Models
An overview of all models is shown in Fig. 1.
a) The CNN-GRU model: is a compositional CNN-GRU

that accepts input documents as sequences of 1-hot vectors and
uses a CNN to compose word embeddings into sentences and
a single forward GRU to compose sentences into documents.
It was pre-trained on the ReliefWeb and OSC corpora and
the word embeddings were initialized using the, publicly
available and general purpose, GloVe embeddings. Then the
final layer was replaced and the entire network re-trained using
a combination of SF speech and text data. The final layer
is composed of 44 binary classifiers, corresponding to Type,
Status, Resolution and Urgency with the latter three being
produced separately for each type.

b) The MLP-LSA model: is a multi-layered perceptron
applied to LSA document vectors. The LSA transformation
was learned using the ReliefWeb & OSC corpora, which were
also used to perform the first stage of training of the network.
The second stage involves replacing the final layer of binary
classifiers and re-training a combination of SF speech and text
data.

c) The MULTI model: is the combination of the CNN-
GRU and MLP-LSA models. The two constituent models
are tied, by concatenating their first and last layers and then
trained as a single network, using a combination of SF speech
and text data.
Localization
The models described above are top-down: they consume

the entire document and produce document-level labels. To
localize, we use a simple solution of creating location-specific
sub-documents and attempting to classify them using the same
models. Given a detected LOC or GPE entity, we will collect
all sentences/segments that contain said entity and form a
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Fig. 1. Overview of the three SF Type+Status models

dummy “document” out of them. Then this dummy document
will be passed through the same model and labels will be
generated and then filtered by the complete document labels:
a dummy document is not allowed to contain a type or status
value that was not contained in the complete document. The
final labels assigned to the dummy document corresponding
to an entity mention are assigned to the entity mention itself.
If no entity mention is connected to a type that was detected
at the document level, then a non-localized frame is created
for the specific type.

B. Critical data and Tools

The data used during development were:
• the publicly available GloVe word embeddings were used
to initialize neural network embeddings

• the ReliefWeb and OSC corpora of disaster-related doc-
uments were used to train models

• the HA/DR lexicon was used for term and data selection
• an internal dataset of about 4000 annotated English tweets
was used to train models

• the representative Mandarin, Uyghur, Oromo and English
text SF datasets were used train and evaluate models.

• the transcribed and translated speech SF sets for Turkish,
Uzbek, Mandarin, and Russian were used to train models.

The main tools and software packages used were:
• Python libraries: NLTK, gensim, Theano, Tensorflow,
Keras, sklearn

• Matlab

C. Native informant use

As we were allotted two SF units and two MT units of NI
time, and as much of the text SF collection activity is relevant
for MT purposes as well, we prioritized speech collection over
text and leveraged MT NI collection to aid text SF in CP1.
Please see Section III-D for information about MT annotation
used for text SF. Please see Section V-B3 for information on
how the SF units were used.

D. The evaluation

Before the Evaluation
On the run up to the evaluation we identified the main

challenges to this year’s task. Below is a short list and how
we tried to address them during the development phase.
1) Only frames localized to KB IDs are taken into account.

We only generated localized frames and included a cross-
reference check to validate the the entity we are localizing
to is linked to an existing KB entry.

2) Status variables are much more important. Since no
credit is given unless all SF fields are correct. Last
year we used a 2-step solution, where we generated
Type+Place frames, then assigned status to each as a
separate step, that did not perform well, barely ever
producing the minority labels. This year we integrated
the status variable production into the SF Type model,
so each for each Type we also generate the three status
variables. To allow for the use of data with missing labels
(almost all speech data are missing Urgency labels) we
switched to a multi-task learning framework, where each
Type and it’s corresponding status variables are treated as
separate tasks. This lead to much improved nDCG scores
and also allowed us to address some of the following
challenges.

3) We have almost no speech data with Urgency annota-
tions. Since this is a multi-task setup, we used the text
datasets to learn Urgency tagging for speech. We could
not evaluate this approach.

4) We have virtually no data with Urgency annotations
for Issue Types. Not much we could do. We wanted to
produce the majority class label, but we do not know
what that was. This was handled at the submission stage,
by making submissions for both possible assumptions.

5) The Urgency annotation protocol has changed signifi-
cantly, potentially invalidating the little data we do have.
No choice. We had to assume the Urgency annotations
would be compatible with previous years or we would



have no data to work on.
6) The new scoring metric is impossible to tune for, since it

has manually set hyper-parameters (the gain assignment
thresholds) which we do not know how to account for and
which can dramatically alter the scores. Also apparently
the scorer was very buggy. Again not many alternatives.
We used some thresholds to develop against and hope
that they were representative of the final thresholds.

7) Due to incompatible localization annotations & lack of
Urgency, no speech data could be scored with the new
metric. We used the 2017 metrics to evaluate SF speech.
However the lack of compatible data also meant we could
not evaluate any combination of speech & text data, so
we had no way tuning the joint output.

The changes to the task lead to significant insurmountable
challenges that we hope can be addressed for next year’s task.
As it stands we may be taking the low-resource premise of the
task way too far: we need some compatible data in at least
one language and we don’t have that.
Checkpoint 1
At the beginning of checkpoint 1 we got access to the

first batch of development data and the incident description
document.
It was clear from the incident description that the issue SF

types would be particularly significant for this scenario. This
posed a serious problem for us: we had no training samples for
issue frame urgency and this year’s metric is very dependent
on urgency in particular. We wanted to submit the majority
class in all cases, but we did not know what that was. Our
solution was to submit duplicates: submit the exact same SF
output twice, once with all issue frames set as not urgent and
once with all issue frames set as urgent.
This checkpoint proved very challenging due to the short

time allowed. Development was frantic and any discovered
issues or bugs had to be addressed very quickly - if they could
be addressed at all. Due to the SF systems’ position at the end
of the overall ELISA pipeline, we could not really do much
until very late in the evaluation period. We performed some
sanity checks on the Set0 documents, but the only change
made was that we dropped the hashtag splitter due to some
bug that could not be addressed in the remaining time. This
rush also had an effect on our input selection. Ideally we would
use one EDL output and one MT output to produce SF, the best
of each, but we had some concerns so used two MT outputs
instead (separate submissions).
In total we submitted 20 runs, all constrained though only 10

will count as such. The main 18 submissions were generated
by taking the Cartesian product of three sets:
1) SF text models: {CNN−GRU, MLP−LSA, MULTI}
2) SF speech models: {CNN−GRU, MLP−LSA, MULTI}
3) Issue Urgency: {urgent, not−urgent}

This lead to 3 × 3 × 2 = 18 submissions. The last two
submissions were created using a different MT from the first
18 and the “MULTI” models for both speech and text. An
overview of our submissions can be seen in Table XIV.
Lessons Learned:

• 24 hours is a very short amount of time. This was
particularly obvious at the end of the pipeline. The SF
systems had to wait for inputs, each of which took time
to produce and that wait took most of the first 24 hours.

• We really need compatible data so we can evaluate on
the entire task instead of only part of it. We had to use
all our submissions to account for things we had no data
for, like issue urgency.

• It is unfortunate that the evaluation datasets focus on the
more problematic areas of the task. Annotator agreement
for issue types has been very poor, but the IL incidents
focus on these types. Urgency agreement has been terribly
poor & the annotation guidelines have changed, but the
evaluation metric focuses on Urgency. This disconnect
between resources and requirements should be addressed
going forward.

Checkpoint 2
For SF text the extra time of between checkpoints was

used to debug issues discovered during first checkpoint. We
revised the hashtag parser, and used Set0 and 1 to validate.
The results were satisfactory and the parser was used for all
CP2 submissions. Other than that, no changes were made to
the SF text models, so any improvements have to come from
improved input (MT and EDL) quality.
The submission strategy was the same as CP1, with 18

submissions made using the Cartesian product of SF text
and SF speech systems and 2 more submissions made using
alternative MT inputs and the “MULTI” models.
Lessons Learned:
• No amount of debugging is enough. The SF system sits
at the end of a very complex pipeline and any preceding
component can introduce unforeseen issues. This was
more of problem for CP1, but we could not really address
any of the issues until CP2.

E. Remaining Challenges
• We are still very dependent on MT performance. We
expected to have some MT-independent components for
this evaluation, but they never reached the required
performance. We will hopefully have them ready by next
time.

• With increased data we saw improved performance from
the more complicated networks. We expect that trend to
extend into the future, as more data is released. Hopefully
that will allow us to use more ambitious approaches.

• Perhaps in the future we can have data representative of
all the tasks we are expected to perform. We have the
knowledge and the infrastructure, but there is only so
much we can get out of nothing.

V. Situation Frames from Speech
To produce situation frames from speech we followed

a similar approach with the one described in the previous



TABLE XIV
ELISA IL9 and IL10 SF Submissions

Check Submission
Point Condition (IL9/IL10) Description

1 & 2 Constrained 200/210 (Text,Speech) = (CNN,MLP)
1 & 2 Constrained 201/211 (Text,Speech) = (CNN,MULTI)
1 & 2 Constrained 203/208 (Text,Speech) = (MLP,MLP)
1 & 2 Constrained 204/213 (Text,Speech) = (MLP,MULTI)
1 & 2 Constrained 206/215 (Text,Speech) = (MULTI,MLP)
1 & 2 Constrained 207/216 (Text,Speech) = (MULTI,MULTI)
1 & 2 Constrained 219/228 (Text,Speech) = (CNN,MULTI), Issue frames set Urgent
1 & 2 Constrained 225/234 (Text,Speech) = (MULTI,MULTI), Issue frames set Urgent
1 & 2 Constrained 254/256 (Text,Speech) = (MULTI,MULTI), Second choice MT
1 & 2 Constrained 255/257 (Text,Speech) = (MULTI,MULTI), Second choice MT, Issue frames set Urgent

1 & 2 Unconstrained 199/209 (Text,Speech) = (CNN,CNN)
1 & 2 Unconstrained 202/212 (Text,Speech) = (MLP,CNN)
1 & 2 Unconstrained 205/214 (Text,Speech) = (MULTI,CNN)
1 & 2 Unconstrained 218/227 (Text,Speech) = (CNN,MLP), Issue frames set Urgent
1 & 2 Unconstrained 217/226 (Text,Speech) = (CNN,CNN), Issue frames set Urgent
1 & 2 Unconstrained 220/229 (Text,Speech) = (MLP,CNN), Issue frames set Urgent
1 & 2 Unconstrained 221/230 (Text,Speech) = (MLP,MLP), Issue frames set Urgent
1 & 2 Unconstrained 222/231 (Text,Speech) = (MLP,MULTI), Issue frames set Urgent
1 & 2 Unconstrained 223/232 (Text,Speech) = (MULTI,CNN), Issue frames set Urgent
1 & 2 Unconstrained 224/233 (Text,Speech) = (MULTI,MLP), Issue frames set Urgent

sections for text documents. An overview of our system
is presented in Fig. 2. The machine translation (MT) and
name tagger (NT) components were presented in Sections III
and II respectively. The automatic speech recognition (ASR)
component is language specific and its output is passed to the
MT component to be translated into English as well as the NT
component to extract information regarding place mentions.
Additionally, a relevance classifier can be optionally applied
to the audio input stream, and gives information if an incident
is present in the audio document. Application of the relevance
classifier alters the training procedure as we will explain in
the following subsections.

A. UIUC Automatic Speech Recognition (ASR)
To transcribe speech, UIUC’s Mark Hasegawa-Johnson and

Camille Goudeseune used their new high-speed speech rec-
ognizer ASR24 (https://github.com/uiuc-sst/asr24). Instead of
taking a day or more to train an acoustic model from the
speech data, it uses a pretrained model built by Krisztián
Varga as an extension of the ASpIRE chain model, part of
the standard ASR toolkit Kaldi. ASR24 combines this with
a pronunciation dictionary and a language model, built from
raw text and a table of grapheme-to-phoneme rules (G2P).
The word-trigram language model was built with standard

SRILM tools. The raw text came from the ORIG_RAW_-
SOURCE elements in the IL xml files. It was cleaned up
by various simple heuristics and by discarding text that used
graphemes unknown to the G2P, such as words in completely
different alphabets. Each IL’s G2P had been built beforehand,
by scraping Wikipedia (https://github.com/uiuc-sst/g2ps) and
then converting IPA phones to the acoustic model’s ASpIRE
phones.
All processing was done on a single dedicated compute

server. Combining the models into an ASR was the speed

bottleneck, taking about 2 hours per IL. This was a surprising
slowdown, perhaps because the training text was so large.
Once combined, the ASR transcribed each IL’s speech in just
30 minutes, using all 56 cores of the server. 2.5 hours after the
start of the eval, the first Kinyarwanda transcription set was
completed. 5 hours after the start of the eval, the first Sinhala
transcription set was completed. 6 hours after the start of the
eval, the second Sinhala transcription set was completed.
The second set’s improvements were in its training data.

(Because of user error, Kinyarwanda had *only* a second set;
its first set’s files were accidentally deleted.) The improve-
ments were removing anything that looked like Bible verses,
and adding phrases from Heng Ji’s gazetteers.
For later checkpoints, UIUC will retranscribe the audio.

Instead of ASR24’s own quick-and-dirty LM, it will use a
sophisticated LM built by UW’s Gina-Anne Levow, improved
gazetteers, a G2P that tolerates loanwords, and a systems
redesign to allow for mixed-case words, which integrates more
nicely with the mixed-case MT engines.

B. BUT Automatic Speech Recognition (ASR)
The BUT ASR system training was mainly based on ex-

ploiting the NI’s. All experiments mentioned below are trained
using KALDI toolkit [] and grapheme to phoneme converter
(G2P) from [22]. We follow the direction of the previous
evaluations, and make use of the advanced text-based system
as described in the previous sections.
1) IL9—Kinyarwanda:
a) Data description: NI data collected (in both sessions)

- 7 hours of recorded speech Text for language modeling - 0.4
million utterances and size vocabulary of 42k The vocabulary
and LM text includes data from Gazetteers and web data

b) Input features: The speech signal was pre-processed
using multilingual+music VAD (Voice Activity Detection) to



Fig. 2. Speech System Pipeline. Speech in the incident language goes through an Automatic Speech Recognition (ASR) component, whose output is utilized
by the Machine Translation(MT) engine and the Name Tagger (NT). Once we have the translated output in English, as well as the place mentions, we identify
the types of incidents occurring in the document and produce situation frames.

discard music and non-speech portions. Multilingual-RDT
(MultRDT) features [23] and perceptual linear prediction
(PLP) features were used for the experiments. The Multilin-
gual RDT was trained initially with 17 languages from the
BABEL corpus.

c) Acoustic model: Two speech recognition systems were
built for the evaluation:
1) First system was a multilingual system built with Swahili

and Zulu to output character sequence for the eval set. An
unsupervised grapheme to phoneme converter (G2P) [22]
was used for mapping multilingual output characters to
characters in Kinyarwanda. The 7 hours of NI data is
used for initializing the G2P system.

2) The second system was a basic DNN-HMM system built
with Swahili and Zulu, and later ported to IL9. The
alignments for the model were obtained using GMM-
HMM model.
d) Language model: A tri-gram language model was

built using the provided monolingual corpus and Gazetteers
separately. These two models were later interpolated with
equal weights to obtain the final model (based on the perplex-
ity with the development set). This operation was performed
to get an adapted language model towards the in-domain
data. The lexicon contains 42k unique vocabulary words.
Number of word tokens was chosen empirically to contain
reasonable number of words and at the same time make the
task computationally feasible. The words were chosen based
on their occurances in the monolingual corpus.
2) IL10—Sinhalese:
a) Data description: Training data were provided solely

by NI informants (see Sec. V-B3 below). The corpus contains
1389 utterances in 4.95 hours. Text for language modeling
- 0.2 million utterances and size vocabulary of 42k The
vocabulary and LM text includes data from Gazetteers and
web data

b) Input features: The speech signal was pre-processed
using multilingual+music VAD (Voice Activity Detection) to
discard music and non-speech portions. Multilingual-RDT
(MultRDT) features [23] and perceptual linear prediction
(PLP) features were used for the experiments. The Multilin-
gual RDT is trained intially with 17 languages from BABEL
corpus.The major part of the training is similar to procedure
in [24].

c) Acoustic model: Considering the limited amount of
data for Sinhalese, we used 20 hours of Tamil data from

BABEL and along with Sinhalese data for better generaliza-
tion. The Tamil characters were transliterated from its own
characters to Sinhalese characters and then used as initial
model. This prior model was then ported to Sinhalese with
data obtained from the NIs. Simple GMM-HMM was used
for Sinhalese, unlike Kinyarwanda.

d) Language model: For IL10, we used the same pro-
cedure as for IL9, i.e. build the LM as an interpolation of
two specific tri-gram LMs. The lexicon again contained 42k
unique vocabulary words.

e) UW Entity-targeted Language Modeling: The Situa-
tion Frame task places significant emphasis on entity, espe-
cially geographic entity, recognition. Previous dryrun exper-
iments had highlighted challenges in speech recognition for
these classes of terms. As a result, we focused on develop-
ment of language modeling approaches that would target and
enhance speech recognition of named entity terms. All models
employed the SRILM toolkit[25].
Five distinct strategies were investigated:
• Frequency boosting: This strategy increased the unigram
frequency of the gazetteer terms by adding multiple
instances of each IL gazetteer entry to the language
model training corpus. This configuration was the pri-
mary ASR24 language model.

• Frequency boosting with entity-based data augmentation:
In addition to the frequency boosting above, this strat-
egy augments the language modeling training corpus
with additional entity-bearing sentences. Candidate entity
bearing sentences are identified as the translation parallel
IL sentences corresponding to English language sentences
in which entities were found by an off-the-shelf English
named entity recognizer.[20] The additional sentences are
created by probabilistically duplicating existing entity-
bearing sentences and generating new entity bearing
sentences by stochastically replacing entities in original
sentences, found by gazetteer match, with alternate IL
gazetteer entries. The rate of data augmentation was tuned
on a pair of development sets, one targeting entity-dense
sentences and another the overall corpus distribution.

• Supervised expansion of unsupervised class-based mod-
els: Class-based language models were created by unsu-
pervised clustering over the language model training cor-
pus, using a threaded implementation of Brown clustering
[26], [27], [28]. Additional, previously unseen entries
from IL gazetteers and GeoNames were added to the clus-



ter with the highest proportion of the corresponding class,
with uniform frequency. The class-based model was then
interpolated with a word-based tri-gram language model
with modified Kneser-Ney discounting to create the final
model.

• Supervised seeding of class-based models: Classes were
initialized with entries from IL gazetteers and GeoNames,
and Brown clustering was performed, building on that
assignment. All gazetteer/GeoNames instances appearing
in the training corpus were treated as tokens of that class;
tokens not attested in the corpus were added with uni-
form frequency to the resulting cluster. The class-based
model was then interpolated with a word-based tri-gram
language model with modified Kneser-Ney discounting
to create the final model.

• Supervised class creation: Classes were created and pop-
ulated based only on IL gazetteer and GeoNames entries;
all other tokens were treated as individual words. Tokens
not attested in the corpus were added with uniform
frequency to the corresponding cluster. The class-based
model was then interpolated with a word-based tri-gram
language model with modified Kneser-Ney discounting
to create the final model.

For class-based models, configurations with the number of
clusters ranging from 750 to 2000 were created. The con-
figuration with the highest gazetteer term cluster purity was
chosen, 750 clusters. However, based on perplexity over a
development set drawn from Set1 data, the models were shown
to be relatively insensitive to number of clusters, though the
models which incorporated unsupervised clustering to build
full class-based models outperformed those which only used
supervised class creation.
Since the available training data was significantly larger

than that in previous years and morphological complexity
further contributed to a larger vocabulary size, we found that
the resulting class-based models were also substantially larger,
sometimes infeasibly so, especially with the conversions re-
quired for integration in the speech recognition pipeline. In
some cases, this resulted in a prohibitive slowdown of the
decoding process, even when trained on an entity-focused
subset of the training corpus. The frequency boosting and
entity-based data augmentation strategies were not subject to
this issue.
For CP2, frequency boosting was applied to all language

model training sets.
3) Native Informant for Speech: The strategy for us was

to obtain as much training data for the acoustic models as
possible. Following our previous strategy, we used the Native
Informant (NI) for reading only. In the reading sessions,
the NI’s were asked to read sentences that were chosen
from the Set0 text. The sentences were chosen based on
the frequency of incident-related English-translated keywords,
and were provide by RPI. The list of filtered sentences was
then numbered and formatted into a googledoc (note that we
had to discard sentences with any numbering or non-IL and
unpronuncable text). The NI’s were instructed to read the

TABLE XV
NI speech statistics. (clean speech in hours)

IL CP1 CP2 Total

Kinyarwanda 1.49 5.51 7.00
Sinhala 1.10 3.85 4.95

number in English and the sentence in their language. We used
Audacity to capture the whole session, after which manual
segmentation was performed based on the English numbers.
This way, we conducted 10 reading sessions per IL (2 in

CP1 and 8 in CP2). The statistics are shown in Tab. XV.

C. Critical data and Tools
The data used during development were:
• the publicly available GloVe word embeddings were used
to initialize neural network embeddings

• the representative Mandarin, Uyghur and English text SF
datasets were used train and evaluate models.

• the ASR-transcribed and translated speech SF sets for
Turkish, Uzbek, Mandarin, Amharic, Uyghur, Russian
and IL6 were used to train models.

• BABEL corpus was used to obtain data for Tamil, Swahili
and Zulu

The main tools and software packages used were:
• Python libraries: NLTK, gensim, Theano, Tensorflow,
Keras, sklearn

• KALDI, G2P toolkit from BUT [22]
• Tamil to Sinhalese transliteration tool2
• R libraries: xgboost
• Matlab

D. Native informant use
See Section V-B

E. The Evaluation
Many of the challenges encountered before and during the

evaluation for the speech SF task have already been high-
lighted earlier in Section IV-A. In particular, the absence of
urgency annotations for most speech datasets was an important
issue for the speech SF task, and we had to rely on text datasets
for urgency labels while training the models.
Lessons Learned
• ASR performance is crucial to this task. If ASR output
is poor the errors propagate to the rest of the pipeline.

• However, building a reliable ASR system within 24 hours
proved to be a challenging task

• More speech datasets with urgency annotations might be
required for a more reliable estimation of urgency from
speech. In the absence of such data, we had to rely on
models trained on text data which might not be an optimal
choice for speech input with noisy ASR and MT systems.

• The incorporation of multilingual system and G2P map-
ping for this evaluation helped in getting a better initial
system

2http://service.subasa.info/transliter2.htm



• Using Tamil transilteration and including it with Sin-
halese system helped in boosting Sinhalese performance

• The time consumption to prepare a fst graph composing
hmm, lexicon and language model modules was more
than expected. This is one reason why CP1 submission
was not possible.

F. Remaining Challenges
• The pipeline we employ is “fragile”. Errors in a com-
ponent propagate throughout the pipeline and hurt per-
formance. This effect is especially pronounced in time-
sensitive checkpoints.

• We are still very dependent on MT performance. We
expected to have some MT-independent components for
this evaluation, but they never reached the required
performance. We are hoping to use them in the upcoming
evaluations.
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