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ABSTRACT 
Although typing on touchscreens is slower than typing on 
physical keyboards, touchscreens offer a critical potential 
advantage: they are software-based, and, as such, the 
keyboard layout and classification models used to interpret 
key presses can dynamically adapt to suit each user’s typing 
pattern. To explore this potential, we introduce and evaluate 
two novel personalized keyboard interfaces, both of which 
adapt their underlying key-press classification models. The 
first keyboard also visually adapts the location of keys 
while the second one always maintains a visually stable 
rectangular layout. A three-session user evaluation showed 
that the keyboard with the stable rectangular layout 
significantly improved typing speed compared to a control 
condition with no personalization. Although no similar 
benefit was found for the keyboard that also offered visual 
adaptation, overall subjective response to both new 
touchscreen keyboards was positive. As personalized 
keyboards are still an emerging area of research, we also 
outline a design space that includes dimensions of 
adaptation and key-press classification features.  

Author Keywords 
Touchscreen text input, personalization, adaptive interfaces. 

ACM Classification Keywords 
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interfaces—input devices and strategies. 

INTRODUCTION 
Large touchscreen devices such as tablets and interactive 
tabletops are being adopted for an increasingly wide range 
of tasks. While these devices support ten-finger text input 
and full size QWERTY keyboards, providing rapid text entry 
remains a challenge [4,14,27]. The reduced tactile and 
kinesthetic feedback of a touchscreen not only increases the 
visual attention required to position hands and fingers on 
the keyboard but also impacts the user’s knowledge of 
whether a key has been depressed [3]. Spurious input may 
also occur from hands or arms touching the surface [31], 
further impacting text entry.  

Despite these challenges, touchscreens offer a major 
potential advantage over physical keyboards: they are 
software-based, and, consequently, the keyboard layout and 
key-press classification models can dynamically adapt to 
each user. In previous work, for example, we used 
simulations of touchscreen typing data to show that a 
personalized input model for ten-finger typing greatly 
improves key-press classification accuracy over a model 
aggregated across all users [6]. However, we did not 
actually build an adaptive keyboard, leaving future work to 
capitalize on the implications of those findings. 
Furthermore, other empirical exploration of personalized 
keyboards for ten-finger typing has been almost 
nonexistent, with the only user evaluation to our knowledge 
showing no performance benefit over a static keyboard [7]. 

To study the effect of keyboard adaptation on touchscreen 
typing performance, we designed and evaluated two novel 
adaptive keyboards for ten-finger typing (Figure 1). These 
prototypes explore two points in the design space of 
personalized touchscreen keyboards. While both use the 
same approach to personalize the underlying key-press 
classification model, one keyboard also visually adapts the 
location of keys while the other maintains a visually stable 
rectangular layout. We used an iterative approach to design 
the keyboards, including simulation analyses of ten-finger 
typing data to select and tune the final underlying key-press 
classification model, a J48 decision tree classifier trained on 
finger location and movement features. 

We conducted a three-session study with 12 participants to 
compare performance and subjective reactions with the two 
adaptive keyboards and a traditional, static QWERTY layout. 
Our findings show that a personalized keyboard can 
improve typing speed over the static alternative. The 
personalized keyboard that did not visually adapt improved 
typing speed by 12.9% across all three sessions, rising to 
15.2% for the third session; no discernible difference was 
found in error rates. In contrast, the personalized keyboard 

 
Figure 1. Personalization with a visually adaptive keyboard, 
showing the adapted layouts for two participants at the end of 
three study sessions. 
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that did visually adapt did not provide a performance 
benefit over the static keyboard. It was, however, 
considered to be the most comfortable and natural of the 
three keyboards.  

This paper makes the following contributions. First, as 
keyboard adaptation is still an emerging area of research, 
we outline a design space for personalized touchscreen 
keyboards, including major dimensions of adaptation and 
key-press classification features. This design space provides 
both a rationale for the design choices that we made and 
highlights open areas of future work. Second, we provide 
two novel personalized keyboard interfaces that use more 
sophisticated classification models than previous work [6,7] 
and can accommodate a wide range of typing features. 
Finally, we provide empirical evidence for the benefit of 
such personalization, both in terms of typing performance 
and user experience. These findings show that the way in 
which keyboard adaptation is visualized can significantly 
impact the efficacy of and reaction to that adaptation. While 
our focus is on ten-finger touch-typing, our contributions 
are also relevant to mobile devices, where research has only 
begun to explore personalized text input [30]. 

RELATED WORK 
We discuss work most relevant to personalized touchscreen 
keyboards in the context of our design space (next section). 
Here, we focus on tabletop text input, touchscreen typing, 
and adaptive interfaces in general. 

The lack of efficient methods for entering text on 
interactive tabletops is well documented (e.g., [4,14,31]) 
and may potentially detract from long-term sustained use of 
such devices [27,37]. As one solution, distal tactile 
feedback, applied not on the surface itself but on the wrist 
or arm, has been shown to improve typing speed [26]. The 
use of physical keyboards [12] and physical silicon 
keyboards overlaid on the surface [36] have also been 
proposed, highlighting the challenge of text entry on 
interactive tabletops. Finally, although not for tabletops per 
se, techniques to support ten-finger typing on arbitrary flat 
surfaces using computer vision [29] or augmented gloves 
[8] have been explored. The 1Line keyboard [22] has also 
been proposed to save visual space on smaller touchscreens. 

In contrast to ten-finger typing, a large body of work exists 
on virtual keyboards for a single point of input, most often a 
finger or stylus. These include techniques that utilize the 
geometric relationship between keys to improve input 
accuracy [20] or enable typing without a priori determining 
the position of the keyboard, albeit with a high error rate 
[28]. Alternatives to tapping a QWERTY keyboard have also 
been proposed, including alternate key layouts [21,24,40] 
and methods to stroke between keys [19]. Though highly 
relevant to our work, one difference between single point of 
input and multiple-finger typing is highlighted by 
comparing two past papers on keyboard size ([25] vs. [33]). 
With stylus input, MacKenzie and Zhang [25] showed that 
a smaller keyboard increased errors but did not reduce 

speed compared to a larger keyboard. In contrast, with 
multiple finger input, Sears et al. [33] showed that smaller 
keys reduce speed and increase errors. 

Regardless of the exact keyboard layout or method used to 
identify key presses, language modeling is commonly used 
to improve input accuracy with virtual keyboards. For 
keyboards where a single key is overloaded with multiple 
letters, these models can clarify the ambiguity of key 
presses (e.g., [8]). More generally, language modeling can 
be used to improve typing accuracy by reducing the chance 
of improbable key presses (e.g., [1,2,9,10]). These 
approaches combine the user’s key-press location with 
language model predictions for the next possible letter to 
more accurately classify which key the user was attempting 
to hit [9]. As discussed in the next section, work on 
language modeling is complementary to our research.  

Our design space and, particularly, the comparison of visual 
and nonvisual adaptation in that design space are inspired 
by previous work on adaptive user interfaces. Adaptive user 
interfaces can introduce new challenges compared to 
traditional interfaces (see [5,16,17]). Those most applicable 
to text input include: lack of user control, unpredictability, 
lack of transparency of the system’s decision making 
process, and obtrusiveness, or the degree to which the 
adaptations are distracting. Evaluations are also often more 
complicated than for non-adaptive user interfaces. For 
example, not only does the user need time to learn about the 
system, but the system needs to learn about the user.  

DESIGN SPACE OF PERSONALIZED KEYBOARDS 
Before describing our specific approach, we first outline a 
design space for touchscreen keyboard personalization. 
This design space is useful to introduce and define concepts 
that our classification models leverage as well as to map out 
this emerging research area. Since the focus of this paper is 
on adaptive (automatic) forms of personalization, we use 
the terms “adaptive” and “personalized” interchangeably. 
We also rely on a distinction made by Goodman et al. [9] 
between touch models and language models for touchscreen 
typing. A touch model describes how the user’s finger 
touch is interpreted as a key press while the language model 
adds knowledge such as the distribution of words in a given 
language. These two sources of information are often 
combined to improve overall typing accuracy (e.g., [9,10]). 
Our focus is primarily on improving touch models, which 
has received less attention of the two. 

Dimensions of Adaptation 
We outline three major dimensions of touch-model 
adaptation for touchscreen keyboards. No one dimension is 
entirely independent of the others, but each one may elicit 
different design considerations.  

Dimension 1: Key-Press Classification Model  
A key-press classification model classifies finger touches as 
specific keys, such as A, S, or D. Perhaps the simplest 
adaptive model is the closest-centroid approach, where key 
centroids are updated as the user types, and touches are 



assigned to the key with the closest centroid. For ten-finger 
typing, simulation results have demonstrated the potential 
of a personalized closest-centroid approach to increase 
classification accuracy over a model aggregated across all 
users [6]. However, user evaluations with a ten-finger 
keyboard [7] and a 9-key numeric keyboard [13] have so far 
found no performance improvement.  

Bivariate Gaussian distributions computed for each key 
offer a more sophisticated, probabilistic classification 
approach and have been used for small touchscreen devices 
[9,10,28] though not, to our knowledge, for ten-finger 
typing. Most work with bivariate Gaussian distributions has 
focused on models aggregated across multiple users; 
however, simulations by Rudchenko et al. [30] have 
demonstrated the benefit of personalized versus aggregate 
models. Both closest-centroid and bivariate Gaussian 
models only make use of the (x,y) location of the finger 
touch. In this paper, we explore machine learning 
approaches that can accommodate a larger set of features. 

Dimension 2: Visual Key Layout 
When the key-press classification model adapts to the user, 
the visual key layout may also change. Figure 2 shows an 
example from Go and Endo [7]: a Voronoi tessellation 
drawn about the adapted centroids of a closest-centroid 
classification model. Not adapting the visual layout when 
the underlying model changes increases the chance that the 
classifier’s output will not match the visual key the user 
appears to touch. Thus, visual adaptation may increase the 
predictability of the keyboard. How users react to visual 
adaptation, however, has so far been inconclusive (see [7] 
vs. [13]). This issue may reflect a broader challenge with 
adaptive user interfaces: adaptations can demand so much 
attention from the user that even theoretically beneficial 
adaptations have a negative effect [5,17].  

The issue of visual adaptation can arise with language 
model predictions as well. Some text input techniques 
increase the size of probable keys based on a language 
model’s prediction of the next letter [1,2,10]. In this 

context, Gunawardana et al. [10] defined an anchor area in 
the center of each drawn key to improve key-press 
predictability. This technique, where touch points within an 
anchor area always return the anchored key, may also be 
useful when combined with adaptive touch models.  

Dimension 3: Keyboard Positioning and Orientation 
While the previous two dimensions focused on individual 
keys, the keyboard itself can also adapt more holistically to 
the user’s hand and arm placement. This adaptation can 
occur when the user first places their hands on the surface: 
for example, the keyboard may be displayed automatically 
in two halves under the user’s hands (see Figure 3). This 
type of adaptation has been previously proposed [15,32] but 
not evaluated. The keyboard can also adjust itself more 
subtly over time to account for drift as the user is typing. 

Classification Features for Touchscreen Typing 
The above subsections defined three dimensions of 
adaptation for personalized touchscreen keyboards. Here 
we focus on Dimension 1, key-press classification models, 
and consider what features may be most useful for 
classification (Figure 4). Ultimately, the set of possible 
features will be determined by the input hardware used 
(e.g., a vision system may provide more features than a 
capacitive touchscreen). While our focus is on ten-finger 
typing, many features listed here are also applicable to 
smaller devices. Our goal is to highlight the breadth of 
features that exist for personalizing keyboards as well as to 
introduce the particular features that we later test. 

 
Figure 4. A subset of classification features based on a single 
key press event. This subset was tested in our simulations. 

Touch location features are based on finger-down and 
finger-up locations. These features can include: (1) finger 
center (x,y) and (2) fingertip (x,y) locations. On large 
touchscreens, the keyboard can move, so these coordinates 
must be relative to some point(s) of reference. For 
adaptation to the left and right hands, two relative center 
locations can be calculated, e.g., one as an offset from the F 
key and one as an offset from the J key (the home keys). 
Absolute values can be used for smaller screens. 

Touch area features describe the size and angle of the 
finger on the screen; these features greatly depend on the 
hardware device. We used a Microsoft Surface, which 
provides ellipses fitted to the touch area and allows for (3) 
major axis, (4) minor axis and (5) orientation. 

Movement features describe the movement of the finger 

 
Figure 2. Visual adaptation of CATKey, showing Voronoi 
tessellation around adapted key centers (from [7]; copyright 
Springer). 

 
Figure 3. Adapting keyboard halves to hands in our system.  



during the key-press action. Different keys may result in 
different movement signatures based on the finger used and 
how the user reaches for that key. Specific features include 
(6) travel and (7) elapsed time between finger down and up. 
Travel can be calculated as the distance in x and y 
directions for either the fingertip or the finger center. 

Features relative to previous key presses incorporate 
knowledge about previous key presses. These include (8) 
inter-key-press timing, or the elapsed time between key 
presses, and (9) (x,y) distance offset from previous key. The 
latter may be useful if, for example, the current key-press 
location is affected by whether the last key was to its left or 
right. A simulation study by Rashid and Smith [28] showed 
low accuracies for a touch model based only on this feature. 

Hand or arm features are based on the position of the hand 
and/or arm. Again, these features are highly dependent on 
the underlying touchscreen system in that only certain 
systems can provide this information.  

Summary and Discussion 
We have defined three dimensions of adaptation and a list 
of potential classification features for personalized touch 
models. Of course, the particular touchscreen device used 
will dictate which subset of features is possible and useful. 
In addition, any adaptive system needs to account for how 
the user model is trained: online, as the user types (e.g., 
[7,13]), or offline, perhaps in an explicit training period 
(e.g., [30]). Furthermore, if the training occurs online, the 
rate at which the adaptation occurs may impact the 
effectiveness of a personalized keyboard.  

ITERATIVE DESIGN OF AN ADAPTIVE KEYBOARD 
We took an iterative approach to design and build two 
personalized keyboards that were the same in all respects 
except for their visual adaptation. Here, we describe the 
general personalization method used, a pilot study of our 
early keyboard designs, and, finally, the designs that we 
ultimately evaluated in the full user study. 

General Personalization Approach  
We implemented static (non-adaptive) and personalized 
(adaptive) keyboard interfaces in C♯ .NET 4.0. The most 
basic of these interfaces, used as a control condition, was a 
static rectangular QWERTY layout with keys 0.9” × 0.9” 
(39 px × 39 px; based on the Surface’s native keyboard).  

For the personalized keyboards, we used Weka 3.61 and 
IKVM2 to provide online adaptation in real-time. That is, 
each personalized keyboard collected training data as the 
user typed and, at natural break points in the user’s input, 
this training data was used to update the classification 
model and possibly the visual layout of the keyboard. In our 
studies, model updating occurred at the end of each phrase. 
Key presses whose letters were subsequently backspaced 
were considered errors and removed from the training set. 

                                                           
1 http://www.cs.waikato.ac.nz/ml/weka/ 
2 http://www.ikvm.net/  

Additionally, each key was initially seeded from 5 points 
sampled from a bivariate Gaussian distribution around the 
key’s center, with x and y variance of 40 pixels and no 
covariance. The keyboards only began adapting after a 
minimum of 10 training points (key presses) were collected 
for every key. Based on early user feedback, we required 
that all keys achieve this minimum for consistency so that 
some keys did not begin adapting sooner than others (e.g., E 
collects training data more quickly than Q). To 
accommodate the possibility that the user could adjust his 
or her typing patterns over time, the training history only 
stored the last 100 strikes per key.  

The frequency of model-updating and the size of the 
training history used were determined by informal feedback 
from six early users and input from the research team. This 
process allowed us to identify a reasonable rate of 
adaptation for the personalized keyboards. However, 
determining the optimal rate is an open area of research and 
only one of many design considerations with adaptive user 
interfaces (see [5][17]). 

Pilot Study to Select a Classifier and Feature Set 
We conducted a pilot study that informed the final 
keyboard designs in two important ways: (1) it inspired us 
to reflect on the role of visual adaptation in personalized 
keyboards; (2) it provided realistic typing data with which 
to evaluate and select an appropriate machine learning 
classifier for the key-press classification models. 

Typing Interfaces for Pilot Study 
We built and tested three keyboards in the pilot study, two 
of which were seeded using a dataset we had previously 
collected on 10-finger typing patterns from 20 participants 
[6]. In particular, since we hoped to create novel keyboards 
that would allow for typing with reduced visual attention, 
we used data from a condition in the previous study that 
was meant to emulate just that: in the no visual keyboard 
condition in [6], participants typed on a blank surface.  

The keyboards used in the pilot study were as follows: 

 Conventional was a static rectangular QWERTY layout. 
 Static-Centroid provided a static layout where the 

locations of keys were adjusted to the aggregate 
centroids of key presses across all participants from the 
previously collected dataset (from [6]). 

 Adaptive-Bayes began with the same aggregate key 
layout and switched to a Naïve Bayes classifier after 10 
training points had been observed for each key (using 
finger center (x, y) and fingertip (x, y) as the feature set). 
As with all machine learning classifiers in this paper, we 
used Weka 3.6. Naïve Bayes was chosen for this early 
keyboard implementation because it performed well in 
simulations we ran on the dataset from [6].  

The pilot study system provided language model correction 
trained on an existing corpus [38]. We used a source-
channel approach [9,10]: at each key press, we reduced the 
chance of outputting improbable letters by combining letter 



probabilities from the touch model with those from the 
language model. Additionally, at the end of each word, the 
language model auto-corrected to the most likely full word 
in its dictionary if the currently displayed word was not 
recognized (similar to auto-correction in the Apple iOS).  

Pilot Participants, Procedure and Performance Data 
Four participants each volunteered for three 1.5-hour long 
study sessions where they used each of the three keyboards. 
For each session they entered a combination of pangrams 
and random phrases from the MacKenzie and Soukoreff 
phrase set [23]. Participants were asked to type quickly and 
accurately, and corrected errors with a right-to-left 
horizontal swipe (as in [6]). They typed 5 practice phrases 
and 40 test phrases with each keyboard during each session. 
Mean typing speeds and uncorrected error rates were 
similar across all keyboard conditions, from 27.7 to 28.2 
WPM (comparable to [6]) and 0.7% to 0.9% error rate.   

Discussion and Simulation Analysis of Pilot Data 
Although we had predicted that the personalized keyboard 
(Adaptive-Bayes) would offer a performance benefit over 
the control condition, typing speeds across all three 
conditions were similar. We identified two potential areas 
for improvement. First, the visual adaptation of the 
keyboard was unsettling to some participants, suggesting 
that the role of visual adaptation was more complex than we 
had expected. Second, we had chosen the Naïve Bayes 
classifier based on simulations with our previous dataset 
[6], but our current keyboard interface was substantially 
different; for example, [6] did not provide a visible 
keyboard or standard typing output. As such, it seemed 
prudent to reassess the choice of machine learning classifier 
based on the newly collected pilot study data. 

We ran simulations with the data from the Conventional 
keyboard condition to compare the accuracy of several 
machine learning classifiers on this new dataset. The 
simulations tested personalized key-press classification 
models by running 10-fold cross validations on each 
participant’s data. We tested a number of classifiers 
provided in Weka, including Naïve Bayes, Support Vector 
Machines, and Decision Trees. J48, Weka’s implementation 
of the C4.5 decision tree algorithm, produced consistently 
high classification accuracy (with all features in Table 1: 
82.3% on average across all participants). In contrast, the 
Naïve Bayes classifier that we had used for the Adaptive-
Bayes condition did not perform as well (58.0% for the 
same setup). In addition, J48 was fast for building/updating 
the model and classifying key presses, which is obviously 
critical for a real-time system such as ours. Based on these 
findings, we chose the J48 classifier for the full study, with 
a normalization filter and default classifier settings. 

Final Implementation 
Based on the insights from the pilot study, we implemented 
two personalized keyboards that were exactly the same in 
all respects except that one visually adapted the keyboard 
(Visual-Adaptive) while the other did not (NonVisual-

Adaptive). Both keyboards were initially rendered as 
rectangular QWERTY layouts (see Figure 6). Visual-
Adaptive adapted the visual center of each key to be located 
at the centroid of all fingertip locations in that key’s 
training history. To avoid excessive visual overlap between 
keys, Visual-Adaptive also reshuffled keys to maintain a 
minimum of 30 pixels (0.7”) between key centers (Figure 
5). For stability, reshuffling was done by maintaining the F 
and J “home” keys at a fixed location and translating 
neighboring keys away from F and J; this effect then 
cascaded toward outer keys. 

(a) Layout before reshuffling (b) Layout after reshuffling 

Figure 5. Removing overlap between neighboring keys. 

In contrast, NonVisual-Adaptive always retained a visually 
stable rectangular layout (Figure 6). As discussed earlier, 
adapting the underlying key-press model without changing 
the visual layout increases the chance that the user will 
press one visual key but the system will output a different 
letter. To mitigate this issue, NonVisual-Adaptive disabled 
the J48 classifier for one keystroke after a backspace, or if 
the user was typing slowly (< 1 key stroke per second). In 
those situations, the user is more likely to look down at the 
keys and target carefully, so the system simply checked 
which visual key boundaries contained the fingertip.  

To select which subset of classification features to include 
in the J48 classification model, we used a wrapper-based 
feature selection technique [18]. That is, we incrementally 
added features to the model until no improvement in 
performance occurred. This process resulted in all features 
in Table 1 marked with a ‘*’. Additionally, we included the 
finger center y relative to the F and J keys for continuity, 
since the finger center x was already in the feature set; this 
inclusion did not reduce classification accuracy. With the 

Feature Set 
Classification 

Accuracy 
Tip x relative to F and J keys* 53.3%  (SD = 3.3) 
Center x relative to F and J keys* 43.4%  (SD = 6.7) 
Tip y relative to F and J keys* 35.4%  (SD = 2.0) 
Center y relative to F and J keys* 29.7%  (SD = 1.5) 
Angle 28.0%  (SD = 3.9) 
Tip travel in x and y directions* 27.4%  (SD = 1.9) 
Center travel in x and y directions 24.8%  (SD = 1.4) 
Major axis 22.4%  (SD = 1.5) 
Minor axis 19.0%  (SD = 1.9) 
Elapsed time 14.2%  (SD = 1.0) 
Inter-key-press time 11.7%  (SD = 2.3)
Majority classifier (right space key) 11.8% 

* Used in feature set for final implementation. 

Table 1. Explanatory power of classification features based on 
the pilot study data: mean 10-fold cross-validation results from 
a J48 classifier trained on individual features or pairs of related 
features. The majority classifier is the accuracy rate if we 
always classify as the most frequent key (right space key). 



selected set of classification features, the J48 algorithm 
achieved on average a classification accuracy of 82.6% (SD 
= 3.8) across all participants.  

Language model correction was not used in the full study 
because we observed in the pilot study that the accuracy of 
the language model—in our case perhaps unrealistically 
accurate—appeared to affect typing patterns. As such, we 
disabled the language model to control this possible 
interaction between the language and touch models and to 
isolate the effects of the touch model personalization. 

Finally, to reduce the chance of inadvertent or spurious 
input, the user had to activate the keyboard by briefly 
placing all 10 fingers on the screen. The keyboards 
deactivated after 5 seconds of inactivity. 

STUDY 
We conducted a controlled, three-session study to compare 
the two personalized keyboards to a conventional static 
keyboard. We hypothesized that the personalized keyboards 
would improve typing performance and subjective 
experience compared to the conventional keyboard. Since 
previous findings are inconclusive with respect to visual 
adaptation [7,13], this study also allowed for an exploratory 
comparison of the two personalized keyboards, one of 
which adapted visually and one of which did not. 

Method 
Participants 
Twelve participants were recruited through on-campus 
mailing lists (5 male, 7 female). Participants were 
volunteers and were compensated for their time. They 
ranged in age from 21 to 48 (M = 33.8). All were regular 
computer users and had experience with touch devices, with 
10 of the 12 indicating they enter text on mobile touch 
devices often. In terms of physical keyboard use, one 
participant regularly used a natural or split keyboard, while 
the remaining participants used standard rectangular 
layouts. On a physical keyboard typing test administered 
during the study, participants typed 79.2 WPM (SD = 16.6) 
and had an uncorrected error rate of 0.2% (SD = 0.2).  

Apparatus 
We used a Microsoft Surface running custom software 
written in C♯ .NET 4.0. The system recorded all down and 
up touch events during the typing tasks. Participants sat at 
the Surface, which was raised ~5” off the ground with a 
custom-built platform to about the same height as a 
standard desk. The task interface, shown in Figure 6, 
presented phrases to be typed at the top of the screen. After 
typing a phrase, participants advanced by pressing the 
“Next Phrase” button. At the end of each condition, the 
system wrote all information related to the personalized 
key-press classification model and visual key layout to an 
XML file. This data was reloaded when the participant used 
the same keyboard condition in future sessions. 

Experiment Design 
The study was a 3×3 within-subjects factorial design with 
the following factors and levels: 

 Session: Participants completed three sessions each. 

 Keyboard: Conventional, NonVisual-Adaptive, and 
Visual-Adaptive. The Conventional layout was the 
same as the initial rectangular layouts for the 
personalized keyboards. Key presses in Conventional 
were interpreted simply by which key’s visual bounds 
contained the fingertip. The personalized keyboards 
began adapting as soon as they had obtained 10 
training instances for each key in Session 1.  

Order of presentation for the keyboard conditions was fully 
counterbalanced within each session and participants were 
randomly assigned to orders.  

Procedure 
Participants completed three 1.5-hour sessions spaced at 
least 4 hours and at most 48 hours apart. Session 1 began 
with a brief introduction to the Microsoft Surface and 
experiment software. From the user’s perspective, the 
adaptive keyboards behaved exactly the same as the 
Conventional keyboard until a minimum number of training 
examples had been recorded for each key; therefore, all 
participants began by typing 10 practice phrases and 20 test 
phrases with the Conventional keyboard. This data was 
used to seed the personalized keyboards. Participants then 
typed 5 practice phrases and 20 test phrases with each of 
the three keyboards. In Sessions 2 and 3, participants typed 
5 practice phrases and 40 test phrases on each keyboard.  

The typing task interspersed two pangrams with randomly 
selected phrases from the MacKenzie and Soukoreff phrase 
set [23]. To ensure we collected sufficient training data for 
each key in Session 1, the ratio of regular phrases to 
pangrams was 1:1. In Sessions 2 and 3, that ratio increased 
to 9:1. Subjective questionnaires were given after each 
keyboard condition and at the end of each session. At the 
end of Session 3, we interviewed participants about the 
keyboards. Additionally, participants completed a physical 
keyboard typing test (20 phrases) at the beginning of 
Session 1 or end of Session 2. 

Figure 6. Experimental application showing the Conventional
keyboard. Two space bar keys appear because the right and left
halves of the space bar (corresponding to each thumb) were 
modeled separately in all keyboard interfaces. 



Analysis 
The main quantitative measures were speed and 
uncorrected error rate. Speed was calculated as WPM [39]: 

| | 1
60	

1
5

 (1) 

where T is the final transcribed string and S is the elapsed 
time in seconds from the first to the last letter in the phrase. 
Uncorrected error rate was calculated as [35]:  

	 	  (2)

where C is the total number of correct characters, IF is the 
number of incorrect but fixed (backspaced) characters,  and 
INF is the number of incorrect (but not fixed) characters. 
Uncorrected error rate measures the errors remaining in the 
transcribed input, as opposed to those fixed “along the 
way,” which take time and are thus subsumed in WPM. 

For WPM and uncorrected error rate, we analyzed the 20 
test phrases with each keyboard in Session 1 and the 40 
phrases from each of Sessions 2 and 3. Since presentation 
order was counterbalanced within each session, we tested 
for effects of Order on WPM within each session. Two-way 
ANOVAs with Order as a between-subjects factor and 
Keyboard as a within-subjects factor revealed no main or 
interaction effects of Order on WPM. Thus, our 
counterbalancing seemed effective. We used a two-way 
repeated measures ANOVA for WPM with both Session 
and Keyboard as within-subjects factors for the final 
analysis. For all post hoc pairwise comparisons, Bonferroni 
adjustments were used. 

The main subjective measures were NASA TLX workload 
scales [11] and rankings of the keyboards based on ease of 
use, efficiency, preference, comfort, how natural the typing 
felt, and frustration. We report the final subjective measures 
collected at the end of Session 3. For workload data, we ran 
one-way repeated measures ANOVAs with Keyboard as a 
single factor. For the ranking data, we used Chi-square tests 
to evaluate whether the number of times each keyboard was 
top-ranked in a category differed from chance. When the 
expected frequency values were too low for Chi-square 
(< 5), we used a randomization test of goodness-of-fit, 
which uses a Monte Carlo simulation to calculate the 
probability of the observed frequency values occurring by 
chance; it is robust against low expected values [34]. 

Quantitative Results 
Figure 7 shows sample personalized keyboard layouts. 

Speed (WPM) 
As hypothesized, the keyboards affected typing speed 
differently; see Figure 8. A significant main effect of 
Keyboard was found on WPM (F2,22 = 9.086, p = .001, η2 = 
.452). Post hoc pairwise comparisons revealed that 
NonVisual-Adaptive was the fastest keyboard. That 
keyboard offered a 12.9% improvement overall compared 
to Conventional (p = .003), a gap which increased to 15.2% 
by Session 3. NonVisual-Adaptive was also significantly 
faster than Visual-Adaptive (p = .016), which suggests that 

the visual adaptation had a negative effect that counteracted 
the positive effects of the personalized classification model 
on its own. No significant difference was found between 
Visual-Adaptive and Conventional.  

Participants also exhibited a general learning effect as the 
sessions progressed, shown through a main effect of 
Session on WPM (F2,22 = 13.590, p < .001, η2 = .553). 
Trends shown in Figure 8 suggest that with additional 
sessions, typing speeds on all conditions would increase 
further. No significant interaction effect was found between 
Session and Keyboard on WPM (F4,44 = 1.450, p = .234, η2 
= .116), indicating all keyboards improved at about the 
same rate during the study.  

Uncorrected Error Rate  
All three keyboard conditions resulted in extremely low 
uncorrected error rates. The mean error rates were: 
Conventional at 0.30% (SD = 0.43%), NonVisual-Adaptive 
at 0.22% (SD = 0.26%), and Visual-Adaptive at 0.30% (SD 
= 0.49%). Because of the low error rates (29% of conditions 
had no uncorrected errors at all), we did not perform 
inferential statistics on this data. Note, however, that the 
means for both adaptive conditions were the same as or 
lower than for the Conventional keyboard. This data dispels 
the notion that NonVisual-Adaptive improved speed at the 
expense of increased errors. 

(a) Illustration of underlying 
model for NonVisual-Adaptive 

(b) Actual Visual-Adaptive layout, 
as shown to the participant 

Figure 7. Sample adaptive keyboard layouts from Participant 
10 at the end of Session 3. To the user, the NonVisual-
Adaptive keyboard looked exactly like the Conventional 
keyboard, so (a) is an illustrative visualization of the x,y
coordinates stored in the underlying model.  This general 
pattern of increased adaptation from (a) to (b) is representative 
of all participants. 

Figure 8. Mean typing speed across sessions . Higher is 
better. There was a general increase in speed over time, as 
well as an advantage of NonVisual-Adaptive compared to the 
other keyboards. Error bars show 95% confidence intervals. 
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Subjective Measures 
Participants were asked to rank the three keyboards based 
on ease of use, efficiency, frustration, comfort, how natural 
the typing felt, and overall preference. Since some of these 
questions appeared to be capturing redundant information, 
we calculated Cohen’s κ (a measure of categorical 
agreement) to group related questions. The three groups 
shown in Table 2 emerged, suggesting that the six questions 
had only captured three underlying themes. Cohen κ values 
between each pair of characteristics in a group ranged from 
0.86 to 1.00; κ values between pairs across different groups 
ranged from .48 to .74. Thus, we tallied and analyzed the 
top keyboard votes within each group. 

The majority of the time, NonVisual-Adaptive was rated 
highest in the Efficiency/Ease/Preference group, whereas 
Visual-Adaptive received the most votes in the 
Comfort/Naturalness group. Regardless, Conventional 
ranked poorly in both groups. Chi-square tests showed that 
the tally frequencies in these two groups differed 
significantly from chance (Efficiency/Ease/Preference: χ2

(2, 

N=36) = 7.170, p = .028; Comfort/Naturalness: χ2
(2,N=24) = 

6.250, p = .044). For Least Frustration, a randomization test 
of goodness-of-fit using a Monte Carlo simulation with 
10,000 random samples was not significant (p = .423).  

NASA TLX workload ratings at the end of Session 3 were 
slightly higher for the Conventional keyboard (M = 8.3, SD 
= 3.6 across all measures) than for Visual-Adaptive (M = 
7.6, SD = 3.6) and NonVisual-Adaptive (M = 7.1, SD = 3.1), 
but no significant differences were found.  

Qualitative Findings 
To contextualize the quantitative results, we interviewed 
participants at the end of the study. One potential issue with 
adaptive interfaces is the degree to which the adaptation 
requires the users’ attention and distracts them from users’ 
primary task; Jameson [17] calls this obtrusiveness. Eight 
participants remarked negatively on the visual adaptation in 
the Visual-Adaptive condition. This keyboard appeared to 
increase cognitive overhead for at least some participants 
because of the unusual layout; for example, P8 stated, “I 
felt I was constantly looking at my hands.”  

Interestingly, however, negative comments about the visual 
look of Visual-Adaptive keyboard were not necessarily 
reflective of overall preference or perceived efficiency. 
Four of those same 8 participants either commented that 
they could type quickly on Visual-Adaptive when not 
looking at the keyboard or ranked that condition as their 

preferred keyboard at the end of the study. P9 expressed 
this sentiment as: “[Visual-Adaptive]…seemed easiest this 
time – as long as I didn’t look and see the odd spacing.” 

In contrast, the NonVisual-Adaptive keyboard was designed 
to be much less obtrusive than Visual-Adaptive, yet to still 
provide adaptive benefits. Highlighting this distinction, the 
majority of participants (7) stated they had trouble defining 
the difference between Conventional and NonVisual-
Adaptive. For example, P5 said of NonVisual-Adaptive, “I 
felt I just got more into a flow. I didn’t notice a big 
difference between the two. I just felt that I performed 
better with [NonVisual-Adaptive].” Likewise, P7 said she 
couldn’t “tell what the difference is but there’s something 
about [NonVisual-Adaptive] that is easier to type with.” 
Since NonVisual-Adaptive and Conventional looked 
identical, these comments reflect NonVisual-Adaptive’s 
benefit in terms of the mechanics or “feel” of the typing. 

Unprompted, participants also commented on the ability to 
type without looking frequently at the keyboard. While no 
one brought this up in the context of Conventional, 5 
participants commented that either NonVisual-Adaptive or 
Visual-Adaptive allowed them to get into more of a “flow” 
than Conventional. P6 also compared the keyboards to the 
iPad: “With the iPad you see the wrong letters and it 
corrects in front of you [using language model correction]. 
But this, I know I’m hitting in the wrong place and the right 
letter comes up, which is nice. I’m just not used to it.” 

Finally, a few participants made negative comments about 
how the Visual-Adaptive keyboard chose to move the keys, 
suggesting that there may be room for improvement for this 
design. For example, P10 commented that although he felt 
he was most consistent with the Visual-Adaptive keyboard, 
the keys had migrated quite close together, causing him 
difficulty. Two participants also explicitly commented that 
Visual-Adaptive got easier across the three sessions, which 
suggests that more training (both for the user and for the 
system) may further improve that keyboard’s usefulness. 

Summary 
The NonVisual-Adaptive keyboard provided a typing speed 
improvement over Conventional, but Visual-Adaptive did 
not. Both personalized keyboards, however, fared well in 
terms of subjective feedback. NonVisual-Adaptive was 
ranked as most Efficient/Easy-to-use/Preferred, while 
Visual-Adaptive was considered the most 
Comfortable/Natural. Qualitative feedback suggested 
participants recognized the performance benefits of 
NonVisual-Adaptive even though they could not necessarily 
recognize the source of those benefits (because it looked the 
same as the control condition). Error rates in all three 
conditions were extremely low.  

DISCUSSION 
Our results show that a personalized key-press 
classification model improves ten-finger touchscreen typing 
performance. Moreover, how this personalization is 

Ranking Characteristics 
Conven-

tional 
NonVisual-
Adaptive 

Visual-
Adaptive 

Efficiency/Ease/Preference* 6 19 11 

Comfort/Naturalness* 3 8 13 

Least Frustration 2 6 4 

Table 2. Tallies (higher is better) for top-ranked keyboard in 
each of three subjective groups. An asterisk (*) denotes a Chi-
square test is significant at p < .05 on the distribution of tally 
frequencies. 



visualized has a significant impact. We found that the 
visually adaptive keyboard resulted in lower performance 
than the non-visually adaptive keyboard, which suggests 
users incurred a cognitive cost from visual adaptation that 
counteracted the benefits of personalizing the key-press 
model. This theory is supported by comments from 
participants, which confirm previous research by Himberg 
et al. [13] examining visually adaptive 9-key numeric 
keypads. Despite these issues, however, the visually 
adaptive keyboard shows promise in that it was considered 
to be the most comfortable and natural of the keyboards.  

While we have focused on improving the underlying touch 
model for ten-finger keyboards, we envision that these 
personalized keyboards can be combined with language 
models. As noted in the implementation section, we 
disabled language model correction for this study to isolate 
the impact of the touch model adaptation. However, using a 
source-channel approach [9,10] to combine probabilities 
from the personalized key-press classifier with predictions 
from a language model should further improve typing 
accuracy. An open question is whether the use of a 
language model will result in changes to user typing 
behavior such that the touch models also change—might 
the two models interact, and if so, how? 

In addition to incorporating language models, augmenting 
the personalized keyboards with audio or tactile feedback is 
also possible. Indeed, even the distal tactile feedback that 
has been previously used for tabletop interaction [26] 
should provide a benefit here. 

In creating the two personalized keyboards, we made a 
number of design decisions that could potentially impact 
performance and user satisfaction. For example, only the 
last 100 key presses were stored for each key and the 
keyboards only began adapting after 10 training points had 
been recorded for every key (our study task included 
pangrams to expedite this process). Future work should 
explore how these decisions ultimately impact the 
effectiveness of the adaptation. One potential area for 
improvement is to ensure that over-adaptation does not 
occur. Particularly with the visually adaptive keyboards, a 
cycle of adaptation exists between the user and the system 
(the system adapts to the user, which, in turn, changes the 
user’s behavior). Identifying points of stability in the input 
model may reduce the potential negative effects of this 
adaptation cycle. 

With personalized interfaces, evaluations need to be 
designed not only to account for training time for the user, 
but also training time for the system. Although we 
conducted a multi-session study, performance 
improvements from the second session to the third session 
indicate that learning had yet to plateau for any condition. 
This issue may be most pertinent to the visually adaptive 
condition, since it was the most unfamiliar of the 
keyboards. Although not statistically significant, typing 
speed with this keyboard appeared to improve the most 

from Session 2 to Session 3 (Figure 8). A longer study 
would be useful for determining where performance 
stabilizes for all three keyboards, but particularly for the 
visually adaptive one. 

Although we have focused on ten-finger typing, much of 
the design space for personalized keyboards and the study 
findings have implications for other modes of touchscreen 
typing. Two of the three major dimensions of adaptation—
the underlying classification model and the visual layout of 
keys—should be equally applicable to mobile devices. 
Additionally, we tested a range of machine learning 
classifiers in the Weka toolkit that yielded reasonably high 
key-press classification accuracies, but further exploration 
likely will yield even better models. 

CONCLUSION 
We have introduced and evaluated two novel personalized 
keyboard interfaces that adapt their underlying key-press 
classification models based on an individual user’s typing 
patterns. In addition, these keyboards explore two points in 
the design space of adaptive keyboards: one visually adapts 
while the other always maintains a visually stable 
rectangular layout. Results from a user evaluation showed 
non-visual personalization can significantly improve typing 
speed. However, visualizing adapted key layouts can 
negatively impact speed. Both adaptive keyboards received 
a positive subjective response and, as such, point to the 
further promise of this area of research. We have also 
presented a design space for personalized keyboards to 
ground our design decisions and to identify areas for future 
work. Although our focus has been on ten-finger touch-
typing, the results and design space should also be 
applicable to adaptive text input techniques on small mobile 
devices. We believe this work is one step in a larger trend 
towards increased personalized interaction with devices. 
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