
Towards Lightweight Detection of Design Patterns in Source Code

Jeffy Jahfar Poozhithara Hazeline U. Asuncion Brent Lagesse

University of Washington Bothell, WA, USA
E-mail: jeffyj@uw.edu, hazeline@uw.edu, lagesse@uw.edu

Abstract

Identifying which design patterns exist in source code
helps maintenance engineers better understand source code
and determine if new requirements can be satisfied. Au-
tomated techniques for finding design patterns generally
require much time to label training datasets or to spec-
ify rules/queries for each pattern, and is difficult to ex-
tend support to secure design patterns (SDPs) and com-
bination patterns. To address these challenges, we intro-
duce PatternScout, a technique for automatic generation of
SPARQL queries from UML Class diagrams and Sequence
diagrams. These queries are used to detect patterns in the
source code. Our results indicate that PatternScout can de-
tect object-oriented design patterns (OODP) with accuracy
that is comparable or better than existing techniques. It can
also generate queries for SDPs that can be represented as
UML Class diagrams.

1 Introduction
Since design patterns assist with satisfying security re-

quirements, it is important for maintenance engineers to de-
termine which patterns already exist in the code, including
SDPs. Finding design patterns can be time-consuming, due
to manual work required to reverse engineer the code [1].
Automated techniques also have challenges. Mining tech-
niques involve the time-consuming task of manual labeling
the training dataset and manual checking results due to false
positives [2]. On the other hand, detection using rules [3]
and queries [4] also involve time-consuming specification
of design patterns and suffer from false negative results, as
they generally lack the flexibility to handle variations. This
challenge is especially pronounced in SDPs, which have a
higher level of variability than OODPs [5].

Meanwhile, Semantic Web technologies provide a
means of encapsulating rich information, using a graph
known as Resource Description Framework (RDF). When
source code is represented as an RDF graph, we can see
design- and code-level concepts (e.g., class relationships,
class properties), which are not captured in other graph
representations of source code (e.g., abstract syntax trees).
There are several query technologies to extract information
from RDF; among these SPARQL is the most popularly
used [6]. Running queries on an RDF yields highly ac-
curate results, as these only retrieve results with matching

graph pattern. However, as we mention above, this tech-
nique also suffers from false negatives, as the results ob-
tained are very specific. Furthermore, using Semantic Web
query languages, such as SPARQL, is difficult because the
user needs to learn not only the query language syntax, but
also the vocabulary and relationships in the data [6]. This is
why researchers developed automated techniques for gen-
erating SPARQL queries [7]. However, none of these tech-
niques cater to software.

To address these challenges, we developed PatternScout
which takes advantage of Semantic Web technologies while
overcoming its difficulties. First, the difficulty of using
SPARQL queries is handled by automatically generating
queries from UML Class and Sequence diagrams. This ap-
proach works as repositories of common design patterns ex-
ist [8, 9] and they already include UML Class diagrams in
their descriptions. This also applies to SDPs as many of
them also include Class diagrams [10]. Second, we over-
come the limitation of low recall by creating a catalogue of
known design pattern variations [11] and checking for these
variations in the source code.

Our main contribution is a novel technique to gener-
ate SPARQL queries that can correctly identify design pat-
terns. Compared to other methods, our approach is more
lightweight because it does not involve any manual training
and does not require manually defining rules or queries. In
addition to the 23 GoF patterns supported by state-of-the-art
design pattern detection techniques, PatternScout can gen-
erate SPARQL queries for secure design patterns, object-
oriented design pattern variants, as well as any ad-hoc pat-
tern (e.g., combination patterns) given their UML Class di-
agram. Our second contribution are insights to improving
design pattern detection accuracy, such as incorporating be-
havioral aspects of a pattern in addition to structural charac-
teristics by incorporating stereotypes, filters, and Sequence
diagrams when necessary. Our final contribution is a repos-
itory of SPARQL queries that contains object-oriented de-
sign patterns and their variants [11].

We assessed PatternScout using experiments to measure
accuracy. Our results indicate that they are comparable, or
outperform existing techniques (e.g., [4, 12]).

2 Detecting Design Patterns

In this section, we discuss key concepts for automatically
generating queries from UML Diagrams.

DOI reference number: 10.18293/SEKE2022-167

Figure 1: UML Representation of the Visitor Pattern

2.1 Identify Pattern Characteristics

Design pattern characteristics can be extracted from both
UML Class and Sequence Diagrams. A Class diagram
shows the objects within a design pattern and static rela-
tionships between those objects, while Sequence diagrams
shows interactions between objects. We discuss how we use
these diagrams in detecting patterns.

In a UML Class Diagram, PatternScout extracts rela-
tionships between classes, between classes and methods,
between classes and attributes, and between methods and
parameters, such as Contain Relationships (hasMethod,
hasType, hasReturnType, hasModifiers, hasField, hasPa-
rameter, hasConstructor) and Class Relationships (As-
sociation, Generalization, Aggregation, Composition, In-
terface Realization, Dependency). PatternScout also ex-
tracts the following: OO Entities (Classes, Methods, Con-
structors, Fields, Method Parameters, Interfaces), Visibili-
ty/Property (Public, Private, Protected, Static, Final, Syn-
chronized, Abstract), Stereotypes(Constructor, Override),
and Interactions(Method Invocations).

We generate a SPARQL query by including relevant
entities (i.e., “OO Entities”) of the design pattern in the SE-
LECT clause. We then add characteristics in the WHERE
clause. For example, a project that contains a visitor pattern
may contain the following RDF triples in its RDF graph:

1 PREFIX woc: <http://rdf.webofcode.org/woc/>
2 woc:SoldierVisitor woc:implements woc:UnitVisitor .
3 woc:SoldierVisitor woc:hasMethod woc:SoldierVisitor-vistSoldier() .
4 woc:SoldierVisitor-visitComander woc:hasParameter
5 woc:visitComander(com.iluwater.visitor.Commander)-parameter-0 .
6 woc:SoldierVisitor-visitCommander(com.iluwater.visitor.Commander)
7 -parameter-0 woc:hasType woc:Commander .

These characteristics are captured in a UML Class
diagram of a Visitor pattern as shown in Figure 1. To
generate a SPARQL query, we extract all the entities in the
Class diagram, such as class names and method names and
add them to the SELECT clause, as shown below.

1 SELECT ?Visitor27 ?VisitConcreteElementA11 ?VisitConcreteElementB13
2 ?VisitConcreteElementA27 ?VisitConcreteElementB29 ?Accept13
3 ?Accept16 ?Accept20 ?VisitConcreteElementA24
4 ?VisitConcreteElementB26 ?ConcreteVisitor15 ?Element14
5 ?ConcreteVisitor211 ?ConcreteElementA18 ?ConcreteElementB22

We also add triples defining the type (role) of each
entity to the WHERE clause. For example, if a Method is
encountered, woc:Method type is added for that component
in the WHERE clause:

1 SELECT ?ClassA ?OperationA
2 WHERE {
3 ?ClassA a woc:Class .
4 ?OperationA a woc:Method .

Next, we add the structure of the pattern, such as
the aforementioned relationships between entities to the
WHERE clause. A relationship is represented by an RDF
triple in the format (fromItem, relationshipType, toItem)
representing a relation from fromItem to toItem. Both
fromItem and toItem are OO Entities. In the following snip-
pet, ClassA is the fromItem, OperationA is the toItem and
woc:hasMethod is the relationshipType.

1 ?ClassA woc:hasMethod ?OperationA .

If characteristics related to visibility, property, data
types, and return types are included in a Class diagram,
PatternScout also generates the corresponding triples. Each
line is a condition. All conditions in a WHERE clause
must be satisfied for a design pattern match to occur. The
greater the conditions, the more specific and restrictive
the queries become. On the other hand, fewer conditions
provide more allowance for variation in implementation.
A partial list of characteristics for the above Class Di-
agram that would be included in a WHERE clause is below:

1 ?Visitor27 a woc:Interface .
2 ?ConcreteVisitor211 a woc:Class .
3 ?ConcreteVisitor211 woc:implements ?Visitor27 .
4 ?ConcreteVisitor211 woc:hasMethod ?VisitConcreteElementA11 .
5 ?VisitConcreteElementA11 woc:hasParameter ?cA10 .
6 ?cA10 woc:hasType ?ConcreteElementA18 .

Some design patterns such as the Visitor pattern require
behavioral information to accurately identify it. Behavioral
specifications related to method invocation can be obtained
from Sequence diagrams. Here is an example snippet
from [13] that shows an RDF triple with a behavioral
characteristic of Visitor design pattern pattern.

1 <http://rdf.webofcode.org/woc/com.iluwatar.visitor.Sergeant-
2 accept(com.iluwatar.visitor.UnitVisitor)>
3 <http://rdf.webofcode.org/woc/references>
4 <http://rdf.webofcode.org/woc/com.iluwatar.visitor.UnitVisitor-
5 visitSergeant(com.iluwatar.visitor.Sergeant)> .

A SPARQL query based only on the Class diagram of a
Visitor pattern will include the following triple representing
an association relationship:
1 ?ConcreteElementA18 woc:references ?Visitor27 .

This structural relationship will result in false positive
results as it does not describe the defining characteristics of
a Visitor pattern. Moreover, the RDF graph representation

Figure 2: Sequence Diagram for Visitor Design Pattern

of the code might not include the relevant triple with ref-
erences relationship if the two classes are under the same
package, causing false negatives. However, by including
information from the Sequence diagram shown in Figure 2,
the WHERE statement would include the invocation of Vis-
itConcreteElement method in the Accept method. This not
only reduces false positives with a defining characteristic
of the pattern, but is also immune to false negatives as the
triple will be part of the RDF graph irrespective of the code
base structure. The RDF triple is as follows:

1 ?Accept16 woc:references ?VisitConcreteElementA24 .

By including Sequence diagrams and consequently
method invocation characteristics, PatternScout can distin-
guish between otherwise structurally identical design pat-
terns (e.g., State - Strategy, Adapter - Command).

2.2 Use Stereotypes

Another way to improve accuracy of design pattern iden-
tification is to use stereotypes. Although not part of the
standard UML specification, stereotypes have been used to
differentiate or represent features like Constructors, Get-
ters, Setters and Overriding of methods. Using stereo-
types, Constructors can be differentiated from other Meth-
ods using woc:Constructor instead of the woc:Method type
and woc:hasConstructor instead of the woc:hasMethod re-
lationship. Similarly, methods of a child class that over-
rides methods of a parent class are differentiated with
woc:hasAnnotation overrides relationship. We observed
this to significantly reduce false positives, especially in de-
tecting patterns like Proxy, Builder and Singleton.

2.3 Accommodate Variations with Query Map

Design patterns not only have many implementation
variations, but some variations are combinations of exist-
ing patterns (e.g, Visitor Combinator patterns is a variant of
the Visitor pattern where the GoF specification of Visitor is
combined with Composite pattern for object oriented tree
traversal). PatternScout can handle these variations as long
as they can be represented as a Class diagram.

We use a query map to efficiently connect variants with
each pattern. Instead of running one SPARQL query at a
time (as shown in Figure 3), we run multiple queries at

Figure 3: Approach Overview

once. Each design pattern has its own section. Below each
design pattern is a list of variants, with the variant name
and filename as shown below:

1 "Visitor": {
2 "Visitor GoF": "visitor.rq",
3 "Visitor Combinators": "visitor_combinators.rq"
4 },
5 "Singleton" : {
6 "Singleton GoF" : "singleton.rq",
7 "Eager Instantiation": "singleton_Eager_Instantiation.rq",

3 Validation
We conducted two analyses to evaluate if the SPARQL

queries generated by PatternScout are accurate and suffi-
cient for detecting design patterns. The approach is sum-
marized in Figure 3. The pre-processing required is as fol-
lows: generating an RDF graph for each project, creating a
Class diagram in an XMI format and generating SPARQL
queries from the Class diagram. Creating Class diagrams
and generating SPARQL queries is a one time task for each
pattern variant and can be reused for any project. The repos-
itory of SPARQL queries for known variants of object ori-
ented design patterns are packaged with PatternScout. The
only project-specific pre-processing needed is generating
an RDF graph, using CodeOntology [14]. The preparation
time taken for each project is shown in Table 1.

3.1 Detecting Presence/Absence of Patterns

Experiment: We ran an experiment to determine if Pat-
ternScout can correctly detect the presence/absence of pat-
terns. Since these pattern instances in the selected projects
are widely studied in literature (e.g., [15, 16, 12]), we used
their results as our gold standard for this analysis. If a pat-

Open Source Project LOC Java
Classes

RDF
triples

Preparation
Time (ms)

JHotDraw v5.1 (JHD) 8907 155 52824 2040
JRefactory v2.6.24 (JRF) 56187 569 70178 3023
JUnit v3.7 (JUN) 1347 33 9497 2001
QuickUML 2001 (QUM) 9250 156 59480 1756
MapperXML 1.9.7 (MPX) 14928 217 17147 6002
Dom4J v1.6.1 (DOM) 26350 328 29874 2059
Lizzy v1.1.1 (LZ) 12915 197 11617 1083

Table 1: Projects used for evaluation

JHD JRF QUM JUN DOM MPX LZ P R
FM* ✓|✓ ✓|✓ × |✓ × | ✓ ✓|✓ ✓| × ✓|✓ 67.67 80
PRTT ✓|✓ × | × ✓| × × | × ✓| × × | × × | × 100 33.33
SGLT ✓|✓ ✓|✓ ✓|✓ × | × ✓|✓ ✓|✓ ✓|✓ 100 100
TPLT ✓|✓ ✓|✓ ✓|✓ ✓|✓ ✓|✓ ✓|✓ ✓|✓ 100 100
STT ✓|✓ ✓|✓ ✓|✓ ✓|✓ ✓| × × |✓ ✓|✓ 83.33 83.33
CMD ✓|✓ × | × ✓| × × | × × | × × | × × | × 100 50
OBSV ✓|✓ ✓|✓ ✓|✓ ✓| × ✓| × ✓|✓ × | × 100 66.67

Table 2: P&R based on presence(✓) or absence(×) of
Patterns. Tuple represent (Actual Label | Predicted Label)
*FM: Factory Method, PRTT: Prototype, SGLT: Singleton, TPLT: Template Method,

STT: State, CMD: Command, OBSV: Observer

tern is reported in a project (regardless of variation, as pre-
vious studies did not specify the variant used), we used a
check mark (or True) for the actual label. If it is reported as
absent, we used an X-mark (or False) (See Table 2).

Result: We summarize the precision and recall in detect-
ing each pattern in the P and R columns of Table 2. Based
on these 7 projects, we get an average precision of 92.86%
and average recall of 73.33%. During manual inspection,
we observed that the low recall was often due to SPARQL
not interpreting the transitive nature of the inheritance rela-
tionship when parsing triples in the RDF graph.

3.2 Comparing PatternScout with Existing Tools

Experiment: We also ran experiments to compare the
accuracy of PatternScout with existing tools (Table 3). In
order to calculate precision and recall of each tool, we iden-
tified the true instances of each pattern in the projects used
for benchmarking. We established the ground truth through
manual inspection and validated with other results [15, 17].
We compared unique instances of patterns retrieved by Pat-
ternScout with Finder [18] and DPD [12]. While SparT [17]
was also evaluated, we excluded it from the analysis as the
off-the-shelf implementation did not include specifications
for creational and structural patterns. We excluded Tools
that are unavailable for download (e.g., [19, 20]) or those
for which a core dependency is deprecated (e.g., [21, 15])
from the comparison.

We executed the benchmarked tools, DPD and SparT, on
a Windows 10 21H2 Virtual Machine. FINDER was exe-
cuted on a Rocky Linux 8.5 Virtual Machine. Java argu-
ments and runtime parameters for execution were as rec-
ommended by the tools. SparT did not utilize Java, but ran

PatternScout DPD FINDER
P R f1 P R f1 P R f1

FM 68.75 100 77.27 25 50 66.67 20 50 57.14
PRTT 100 33.33 50 100 100 100 100 33.33 50
CMD 88.89 57.14 69.57 100 57.14 72.73 55 78.57 64.71
STT 41.67 100 58.33 14.94 79.41 23.06 25 50 66.67
SGLT 100 100 100 100 100 100 66.67 55.56 90
TPLT 88.89 87.78 87.88 83.33 74.44 78.45 72.22 80 74.81

Table 3: Detection accuracy on JHD, MPX and QUM

natively on Windows.
Results: Precision, Recall and F1-score were calcu-

lated on JHD, MPX and QUM as these systems were in-
cluded in the required input formats with the distributions
of the selected tools (see Table 3). The average preci-
sion, recall and F1-score of SPARQL queries generated
with PatternScout(81.37%, 79.71%, 73.84%) are better than
DPD(70.55%, 76.83%, 73.49%) and FINDER(56.48%,
57.91%, 67.22%). DPD and FINDER rely exclusively on
code structure whereas queries generated by PatternScout
are able to detect both code structure and behavior.

4 Discussion: Precision & Recall Tradeoff
We now cover threats to validity, the language-agnostic

potential of our tool as well its present limitations. The
tradeoff in precision and recall depends upon how restric-
tive the SPARQL query is. For the same design pattern,
the SPARQL query can be more restrictive if there are con-
ditions specifying visibility, property, stereotypes, etc, and
less restrictive if these constraints are relaxed. While a more
restrictive query can reduce false positive results (increase
precision), this can fail to retrieve some instances that do
not conform strictly to the structure of a pattern. For pat-
terns like Singleton where access modifiers of the construc-
tor and instance are important, a more restrictive query is
appropriate. To achieve a balance between precision and
recall, we can use a query map to identify variants to detect.
The tolerance for false positives and false negatives vary for
different usecases (e.g., detecting SDPs to ensure a security
concern is addressed needs higher precision over recall).

5 Related Work
Earlier approaches for detecting design patterns in

source code ranged from sub-graph matching [22, 23] and
ontology based techniques [4] to using machine learning
(ML) techniques [2, 12]. A detailed meta-analysis of var-
ious design pattern mining approaches is discussed in [24].
Summary of comparison is in Table 4.

6 Conclusion
PatternScout is a lightweight tool that automatically gen-

erates SPARQL queries from Class and Sequence diagrams
to find design patterns in source code. The generated query
has the same granularity as input diagrams in terms of enti-
ties and relationships between those entities. Thus, it is able
to identify more types of patterns than other techniques.

Technique Limitation PatternScout
Semantic
Web /
Ontol-
ogy [4]

Supports variants with
same number of targets;
requires manual creation
of queries/rules for each
pattern

requires presence of
Class/Sequence diagrams,
many of which already
exist

ML /
Code
Metrics
[2] [25]

accommodates variations
but compromises accu-
racy; requires manual
training for each pattern

accommodates variations
without compromising ac-
curacy; no manual training

Subgraph
Match-
ing [23]
[26]

can’t capture design- and
code-level concepts; sub-
ject to false negatives as
results are very specific

captures design- and code-
level concepts; minimizes
false negatives using query
maps

Table 4: PatternScout with Existing Techniques

While we primarily focused on OO design patterns, SDPs
that can be expressed as Class or Sequence diagrams can
also be detected. We evaluated PatternScout using repre-
sentative patterns from three types of design patterns: cre-
ational, structural, and behavioral. Precision and recall on
the open source projects indicate that our technique is com-
parable to, or better than related tools.

Acknowledgment
The authors thank Elif Hepateskan, Conor Barrett,

Sonam Misra, Aashima Mehta, Namita Dave, Aidar
Kurmanbek-Uulu, Zhijun Huang, and Logan Petersen for
their assistance with performing evaluations. Matthew
Hewitt assisted with evaluation and related work. Jacob
McHugh assisted with providing Query Map feature. This
effort is supported in part by the University of Washington
Bothell Computing and Software Systems (CSS) Division
Project & the CSS Division Graduate Research funds.

References
[1] M. VanHilst and E. B. Fernandez, “Reverse engr to detect security

patterns in code,” in Proc. Int’l Workshop on Software Patterns &
Quality. Info Processing, 2007.

[2] S. Uchiyama, A. Kubo, H. Washizaki, Y. Fukazawa, and others, “De-
tecting design patterns in object-oriented program source code by
using metrics & machine learning,” Journal of Software Engr & Ap-
plications, vol. 7, no. 12, 2014.

[3] J. Niere, M. Meyer, and L. Wendehals, “User-driven adaption in rule-
based pattern recognition,” University of Paderborn, Germany, Tech.
Rep. tr-ri-04-249, 2004.

[4] S. Paydar and M. Kahani, “A semantic web based approach for de-
sign pattern detection from source code,” in Proc Int’l eConf on Com-
puter & Knowledge Engr, 2012.

[5] M. Bunke, “Security-Pattern Recognition & Validation,” PhD Thesis,
Universität Bremen, 2019.

[6] J. Potoniec, “Learning SPARQL Queries from Expected Results,”
Computing & Informatics, vol. 38, no. 3, 2019.

[7] F. Haag, S. Lohmann, and T. Ertl, “SparqlFilterFlow: SPARQL
Query Composition for Everyone,” in The Semantic Web: ESWC
Satellite Events, 2014.

[8] A. Ampatzoglou, S. Charalampidou, and I. Stamelos, “Research state
of the art on GoF design patterns: A mapping study,” Journal of
Systems & Software (JSS), vol. 86, no. 7, 2013.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
1995.

[10] C. Dougherty, K. Sayre, R. C. Seacord, D. Svoboda, and K. Togashi,
“Secure design patterns,” CMU Softw Engr Inst, Tech. Rep., 2009.

[11] G. Rasool and H. Akhtar, “Towards A Catalog of Design Patterns
Variants,” in Int’l Conf on Frontiers of Info Tech, 2019.

[12] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
“Design pattern detection using similarity scoring,” Trans on Soft-
ware Engr (TSE), vol. 32, no. 11, 2006.

[13] “Design patterns implemented in java,” https://github.com/iluwatar/
java-design-patterns/l, (accessed: 05.27.2020).

[14] M. Atzeni and M. Atzori, “CodeOntology: RDF-ization of source
code,” in Int’l Semantic Web Conf. Springer, 2017.

[15] A. D. Lucia, V. Deufemia, C. Gravino, and M. Risi, “Detecting the
behavior of design patterns through model checking & dynamic anal-
ysis,” Trans on Softw Engr & Methodology, vol. 26, no. 4, 2018.

[16] D. Yu, Y. Zhang, and Z. Chen, “A comprehensive approach to the
recovery of design pattern instances based on sub-patterns & method
signatures,” Journal of Systems & Software, vol. 103, 2015.

[17] R. Xiong, D. Lo, and B. Li, “Distinguishing Similar Design Pattern
Instances through Temporal Behavior Analysis,” in Proc Int’l Conf
on Softw Analysis, Evolution & Reengineering, 2020.

[18] H. Dabain, A. Manzer, and V. Tzerpos, “Design pattern detection
using FINDER,” in Proceedings of the 30th Annual ACM Symposium
on Applied Computing, 2015, pp. 1586–1593.

[19] M. L. Bernardi, M. Cimitile, and G. Di Lucca, “Design pattern de-
tection using a DSL-driven graph matching approach,” Journal of
Software: Evolution & Process, vol. 26, no. 12, 2014.

[20] G. Rasool and P. Mäder, “A customizable approach to design patterns
recognition based on feature types,” Arabian Journal for Science &
Engr, vol. 39, no. 12, 2014.

[21] A. Binun and G. Kniesel, “Joining forces for higher precision and
recall of design pattern detection,” CS Department III, Uni. Bonn,
Germany, Technical report IAI-TR-2012-01, 2012.

[22] D. Yu, Y. Zhang, J. Ge, and W. Wu, “From sub-patterns to patterns:
an approach to the detection of structural design pattern instances
by subgraph mining & merging,” in Proc Comp Softw & App Conf,
2013.

[23] M. Gupta and A. Pande, “Design patterns mining using subgraph
isomorphism: Relational view,” Int’l Journal of Softw Engr and Its
App, vol. 270.

[24] J. Dong, Y. Zhao, and T. Peng, “A review of design pattern min-
ing techniques,” Int’l Journal of Software Engr & Knowledge Engr,
vol. 19, no. 06, 2009, publisher: World Scientific.

[25] F. Tie, J. Le, Z. Jiachen, and W. Hongyuan, “Design pattern detec-
tion method based on stacking generalization,” Journal of Software,
vol. 31, no. 6, 2020.

[26] W. Liu, C. Zhang, F. Wang, and Y. Yang, “Combining Network Anal-
ysis with Structural Matching for Design Pattern Detection,” in Proc
Evaluation & Assessment in Softw Engr, 2020.

