
ReSCo: A Middleware Component for Reliable Service Composition in Pervasive
Systems

Brent Lagesse
Cyberspace Sciences and Information Intelligence Research

Oak Ridge National Laboratory
Oak Ridge, TN, USA

Email: lagessebj@ornl.gov

Mohan Kumar and Matthew Wright
Department of Computer Science and Engineering

University of Texas at Arlington
Arlington, TX, USA

Email: {mkumar, mwright}@uta.edu

Abstract—Service composition schemes create high-level ap-
plication services by combining several basic services. Service
composition schemes for dynamic, open systems, such as those
found in pervasive environments, must be cognizant of the
possibility of failures and attacks. In open systems, it is
seldom feasible to guarantee the reliability of each node prior
to access; however, there may be several possible ways to
compose the same high-level service, each having a different
(though possibly overlapping) set of nodes that can satisfy the
composition. We approach this problem with a Reliable Service
Composition middleware component, ReSCo, to determine
trustworthy compositions and nodes for service composition in
dynamic, open systems. ReSCo is a modular, adaptive middle-
ware component that selects from possible composition paths
and nodes to enhance reliability of service compositions. ReSCo
can work with a broad range of both service composition
algorithms and trust establishment mechanisms.

Keywords-Dynamic Service Composition; Reliability; Secu-
rity; Adaptive Systems

I. INTRODUCTION

Service composition is the process of combining available
low-level services in a system to create an application(or
high)-level service. In pervasive systems, the low-level ser-
vices that make up an application-level service may be
available on nodes with variable connectivity or availability.
While nodes that become unavailable can make it harder
to compose a service, new nodes may become available
that increase the possible composition possibilities. Adding
further to the complexity, multiple compositions for a single
high-level service may exist. For example, some services
may accept or produce a wide variety of data formats,
leading to a range of paths that might be possible, even
when only a few data transformations are performed.

Ideally, service composition in mobile and uncertain en-
vironments should be: i) adaptive to the dynamic nature of
connections between mobile nodes, so that it can overcome
loss of services due to disconnecting nodes and exploit
newly available services due to incoming nodes; and ii)
cognizant of the trustworthiness and reliability of nodes.

An example of a service composition system, which we
will use as a motivating example in this paper, is Col-

laborative Virtual Observation (CoVO). CoVO uses service
composition to complete tasks that allow users to recreate
and analyze an environment. For example, CoVO could be
used to enable the emergency responders to conduct real-
time monitoring, such as for a natural disaster in a populated
area, using services available in an ad-hoc network. While
there is not necessarily any single service that will allow the
responders to accomplish this, embedded in the environment
are traffic cameras, video cameras, microphones, and other
such devices. Furthermore, the responders have access to a
variety of software services available to them to perform
tasks such as fusing information, converting information
formats, and encrypting information. In such a situation the
responders can compose high-level services by gathering in-
formation from camera and microphone services and fusing
them together. The audio service can be connected with an
audio to text converter and the resulting text file can be cross
linked with other information or even translated if voices of
those in danger are speaking in other languages. Finally,
the resulting information can then be encrypted prior to
transmission in order to enhance privacy and security. As one
can see from the example, the composed high-level service
has many possible points where it can break if attacked or if
a node fails. There are also many possible ways to compose
a satisfactory high-level service. The goal of ReSCo is to
provide a mechanism for utilizing possible paths and nodes
to compose reliable high-level services.

Service composition frameworks employ a variety of
practices to build high-level services from the basic services
available in the environment. Some of these techniques
require exact matching of services [1], [2], [3], and others
perform dynamic matching [4]. Existing service composition
frameworks evaluate composition choices without consider-
ing the trustworthiness of nodes providing the available low-
level services or through mechanisms that do not scale well
to open and dynamic systems.

ReSCo abstracts the service composition problem into two
sub-problems: composition path selection and node selec-
tion along a chosen path. ReSCo utilizes local experience
information and reputation information to identify unreli-

486U.S. Government work not protected by U.S. copyright

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2010

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
ReSCo: A Middleware Component for Reliable Service Composition in
Pervasive Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Cyberspace Sciences and Information Intelligence Research Oak Ridge
National Laboratory Oak Ridge, TN, USA

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADA539422. IEEE International Conference on Pervasive Computing and Communications (8th)
(PerCom 2010) Held in Mannheim, Germany on March 29-April 2, 2010. U.S. Government or Federal
Purpose Rights License., The original document contains color images.

14. ABSTRACT
Service composition schemes create high-level application services by combining several basic services.
Service composition schemes for dynamic, open systems, such as those found in pervasive environments,
must be cognizant of the possibility of failures and attacks. In open systems, it is seldom feasible to
guarantee the reliability of each node prior to access; however, there may be several possible ways to
compose the same high-level service, each having a different (though possibly overlapping) set of nodes that
can satisfy the composition. We approach this problem with a Reliable Service Composition middleware
component, ReSCo, to determine trustworthy compositions and nodes for service composition in dynamic,
open systems. ReSCo is a modular, adaptive middleware component that selects from possible composition
paths and nodes to enhance reliability of service compositions. ReSCo can work with a broad range of both
service composition algorithms and trust establishment mechanisms.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

able nodes and adapts to select reliable nodes more often.
Because of its modular design, ReSCo is independent of
the service composition framework that decides which high-
level services are composable. This means that ReSCo can
provide greater reliability for both existing and future ser-
vice composition system. In technology-rich environments,
ReSCo can take advantage of redundant services and adapt
to select the most reliable nodes. Even in more sparsely-
populated systems, though, ReSCo benefits the user.

II. DESIGN

The objective of ReSCo is to minimize the effect of
unreliable and malicious nodes in a service composition
system. To accomplish this, a ReSCo instance running
on node u keeps track of u’s experiences with other
nodes in the system in an experiences database. In
this way, ReSCo can serve node u without relying on
collaboration with any other nodes to achieve its goals.

Input: N, π, Nodes
Output: Ordered List of Nodes to Access
Compute path probabilities (Equation 5);
Select path;
foreach ServiceInPath s do

Compute node probabilities for s (Equation 2);
Select node and add to access set;

end
Algorithm 1: Selecting the Node Set to Access

Input: π, Set of Requests
foreach request r do

Create Access Set from π (Algorithm 1);
Use the service composed by Access Set;
Evaluate Result;
Update evaluation information to database;

end
Algorithm 2: Composing a Service

Algorithm 2 describes the process of selecting the set of
nodes to be used for the construction of a high-level service.
More precisely, Algorithm 2 shows the default implementa-
tion of ReSCo, in which ReSCo adapts to the reliability of
nearby nodes to select trustworthy nodes more often.

ReSCo provides reliable path and node selection as part of
a complete service composition system (as shown in Figure
1). ReSCo is designed so that it acts as a layer between
the service composition framework and the network. We
designed ReSCo to be modular, so that it is independent
of the mechanism that determines valid compositions. This
allows ReSCo to remain useful as new techniques for creat-
ing high-level services continue to improve. This evaluation
of ReSCo utilizes SeSCo [4] for determining which high
level service compositions are available because its graph-
based composition provides a higher number of successful
compositions than discover and match techniques.

The ReSCo middleware component consists of four pri-
mary parts: a Path Selector, a Node Selector, a Request

Evaluator, and an Experience Database. The Request Eval-
uator determines if a service composition was successful.
Ideally this should be an automated process, e.g. based on
verifying a public key signature or checking a file format.
In some applications, however, the Request Evaluator may
rely on a user determining whether or not the result is
satisfactory and providing feedback, such as viewing a video
and clicking on a “thumbs-up” or “thumbs-down” icon. The
Experience Database is a storage location for the results of
local experience and the experiences reported from other
users (via reputation). The database contains cumulative
values based on an application-defined weighting for positive
and negative experiences, both local and from reputation
values. ReSCo can leverage techniques from other systems,
such as AREX [8] to populate the experience database
through exploration while increasing protection for the node
utilizing it. Section II-D and Section II-E discuss the Path
Selector and Node Selector components in more detail and
explain the algorithms that underly their operations.

A. Request Evaluator

The ReSCo request evaluator defines two values, α and
β that are designed to respond to negative and positive
interactions. α is subtracted from a node’s experience value
if it was involved in an unsuccessful service access and β
is added to the node’s experience value if the node was
involved in a successful service access.

B. Experience Database

The ReSCo database keeps track of the current experience
values for the known services. Each database entry contains
an identifier for the service and an experience value. Because
the experiences are compressed into an scalar value, the
individual entries for each node do not consume a significant
amount of memory and the database scales linearly with the
number of nodes in the system (databases in simulations
were typically on the order of 1 KB).

C. Example

An example scenario of how ReSCo is used to compose
an application-level service is now presented. For the details
on the methodology of the calculations, see Sections II-D
and II-E. In this example, the user is trying to compose a
service to get a video observation of a remote event (possible
compositions, the experience database, and available ser-
vices are depicted in Figure 1). SeSCo is able to determine
three ways to accomplish this task: i) Using a traffic video
camera and displaying it on the laptop ii) Using a predefined
set of cell phone video cameras in the area of the event
and fusing the information to create a comprehensive picture
then displaying it on the laptop and iii) Using a predefined
set of still photo cell phone cameras in the area of the event
and using an animator service to turn the sequential images
into a video, then showing the animation on the PDA screen.

487

Figure 1. Example Composition Scenario

π Set of possible paths
Pprune(x, node) Probability of pruning a service from database
Services Set of services used to compose paths
Nodes Set of nodes that provide a service
TE(x) Total Experience value for a service x
N(x) Set of values of nodes with service x
S(x) Set of services composing path x
Eσ(x) Expected success for a service x
Eρ(x) Expected success of a path x
Px Probability of success for service x
Pσ Probability of selecting a service
Pν Probability of selecting a node
Pρ Probability of selecting a path
Pα Probability that a node attacks
Ps Probability that a request was successful
tconn Amount of time a node is connectible
Pavail Probability that a node is available
Pawake Probability that a node is awake
PinRange Probability that a node is in range
α Punishment for unreliable service
β Reward for reliable service

Table I
TABLE OF COMMONLY USED TERMS

S(x) TE(x) Eσ(x) Eρ(x) Pρ(x)
TC, L 50, 35 0.19, 0.13 0.024 88.8%
CV, VF, L 25, 45, 35 0.09, 0.17, 0.13 0.002 7.5%
CC, IA, PDA 25, 10, 80 0.09, 0.04, 0.30 0.001 3.8%

Table II
SELECTION RATE FOR PATHS IN EXAMPLE APPLICATION (FIGURE 1)

These possible compositions are passed from SeSCo to
ReSCo. ReSCo then looks up services in the experience
database and uses the information to perform the com-
position path calculations (shown in Table II). After the
calculations are performed, ReSCo selects a path and then

N(x) Pν(x)
TC1 40.0%
TC2 60.0%
L1 57.1%
L2 42.9%

Table III
SELECTION RATE FOR NODES IN EXAMPLE APPLICATION (FIGURE 1)

performs the calculations (shown in Table III) to select the
nodes to request for the low-level services.

D. Path Selector

A composition path refers only to the types of services
that will be used, not the individual nodes that provide those
services. To do this, ReSCo randomly selects a path with a
probability computed by the portion of the expected relia-
bility of the services that compose each path. The expected
reliability is determined by the product of the expected
reliability of a service. The reason ReSCo takes the product
of the reliability percentage is twofold. Because the values
are between 0 and 1, it means that longer compositions will
be chosen less often than shorter compositions, unless they
are significantly more reliable. Second, it means that if there
is a choke point (a service that is significantly less reliable
than other services), then that path will be chosen less often.
The expected reliability of a service can be described by the
expected reliability of the nodes that compose the service
(which is discussed in Section II-E).

The service experience is calculated with Equation 1 and
is the total sum of the experiences that the node running
ReSCo has had with other nodes that provide that particular

488

service. Table II-B provides a list of commonly used terms.

TE(x) =
|N(x)|∑
i=0

N(x)i (1)

The probability of selecting a node for a service is given
by Equation 2. It is equivalent to taking the ratio of the
experience values of a node to that of the total experience
value of that particular service.

Pν(x, node) =
N(x)node
TE(x)

(2)

The expected experience value of a service (Equation 3)
describes the weighted average of all the nodes that provide
a particular service. In particular it is calculated by summing
the probability that a node will be selected by the current
experience value of that node over all the known nodes that
provide the particular service.

Eσ(x) =
|N(x)|∑
i=0

Pν(x,N(x)i)×N(x)i (3)

A path is composed of one or more services. To determine
an expected experience value for the entire path (Equation
4), ReSCo takes the product of the expected values of each
individual service. While this value has little meaning in
isolation, it is used in Equation 5 to calculate the probability
of selecting a path. Similar to the computation for selecting
a node, a path is selected with a probability equivalent to
the ratio of its expected experience value to the sum of the
expected values of all possible paths.

Eρ(x) =
|S(x)|∏
i=0

Eσ(i) (4)

Pρ(x) =
Eρ(x)∑|π|
i=0Eρ(i)

(5)

ReSCo makes the selection randomly instead of only choos-
ing the best path for several reasons. First, it results in
a natural load balancing. The most trustworthy paths will
obviously receive more of the traffic, but among reasonably
trusted paths, the traffic will be balanced relative to their
trustworthiness. Next, randomly selecting paths allows us to
explore the service-space. This point is particularly impor-
tant as ReSCo is designed for dynamic environments. Since
nodes may be mobile (both the node accessing services and
the service nodes themselves), the best service selected by
a composition scheme may not be on a static node and
may vary significantly throughout the time in the system
and random selection allows us to transition as the available
system changes.

E. Node Selector

Once a path has been chosen to construct, ReSCo must
then choose the individual nodes that will provide the
services that are required to construct the high-level service.
The selection process is similar to that of Path Selection.
The node that will be accessed for each service is selected

Number of Simulation Executions 200
Number of Peers 100
Average Benign Reliability 95%
Execution Time (seconds) 1000
Attack Rate of Malicious Peers 100%

Table IV
DEFAULT SIMULATION PARAMETERS

Figure 2. Effect of Attackers on Success (Ap-
proach:NumPeers:NumIterations)

randomly with the probability equal to the proportion of its
contribution to the total experience value (Equation 1) for
that service as described in Equation 2.

Algorithm 2 is the operating procedure for the architec-
ture shown in Figure 1. The composition layer presents
the ReSCo layer possible compositions for a request, then
ReSCo computes which composition to use and which nodes
to access for each service. After the services have been
accessed, ReSCo adds any available evaluation information
from the result to the experience database.

III. EVALUATION

A. Simulation Setup

The simulator is designed to take an input consisting of
the possible paths that can be used to create a service, and
then create that service from the underlying nodes available
in the network. For most simulation experiments, ReSCo
is simulated and compared with a system in which all
parameters are the same except that the service path and
the nodes that compose it are chosen randomly from the set
of available paths and available nodes that can successfully
fulfill the composition request. Where relevant, ReSCo is
compared to the default behavior of the service composition
system that does not use ReSCo. The simulation results
are grouped into several sections. This section examines
ReSCo’s response to varying numbers of attackers and
unreliable nodes, how ReSCo adapts over time, the effect
of differing composition requirements on ReSCo, the effect
of mobility on ReSCo, and the effect of augmenting ReSCo
with reputation.

1) Attackers and Unreliable Nodes: The first experiment
is designed to show the resiliency of ReSCo against an

489

Figure 3. Cumulative Success at Each Timestep

Figure 4. Effect of Path Length on Success

increasing number of attackers in a system. Figure III-A1
shows that as the number of attackers increases, random
selection shows an exponential decrease in the percentage
of successful high level services it can access. ReSCo natu-
rally decreases in the percentage of successful constructions
accessed, but is successful over half the time as long as
less than 85% of the system is attacking. The reason for the
sharp decrease after this point in success is not a failure
of ReSCo, but rather is a result of the fact that when
simulating 100 peers in a system, there exist some cases
in which there is no possible way to construct a path out
of trustworthy nodes. To illustrate this, consider a system in
which is trying to compose a high level service from two
possible paths consisting of three services, {A,B,C} and
{D,E, F}. If 95% of the system is attacking and there are
100 nodes in the system, then there will be 5 nodes that
are benign. This means there there may be no benign paths
possible. To demonstrate that the effect is not present in
larger systems, Figure III-A1 also shows ReSCo in a system
with 300 nodes. Since more nodes are included, it takes more
time to adapt, so a 300 node simulation plot is shown after
3000 time-steps (Labeled ReSCo-300:3000) in addition to
the default of 1000. After this additional time is used, the
adaptation produces favorable results that do not include a
sharp decrease in performance with high levels of attackers.

2) Adaptation over Time: This section shows the adap-
tation of ReSCo as time progresses. Figure 3 shows the
cumulative success rate up to each given time step in a
system with 20% attackers. The result shows how a standard
setup of the system progressively adapts to its environment
in order to provide better service over time. Also the results
show user expected success rate over a given time. The third
plot in Figure 3 shows ReSCo’s cumulative success in a
system that has 80% attackers and that after 100 time steps,
ReSCo has had the same success as the naive approach in
a system with 20% attackers.

3) Path Length: The length of a path can have significant
effect on the ability to successfully create and access a
high-level service. As the number of services needed to
create a composed service increases, the opportunity for a
single node in the service to fail increases. The effect is
clearly shown by the exponential decrease of the Random
Selection curve in Figure III-A1 with 20% of the system as
attackers. Through its adaptive selection algorithm, ReSCo is
able to mitigate this problem and still successfully complete
requests 55% of the time, even when the requests are 10
services long.

IV. RELATED WORK

Significant research has recently taken place in service
composition. While much of the work in service composition
has been focused on composing web-services, there has also
been some work in the dynamic environments encountered
in pervasive computing.

Composition Trust Bindings [9] verify the integrity of
composed services using the service composition equivalent
of digitally signed software. In contrast, ReSCo is concerned
with dynamic compositions of potentially unknown nodes,
services, and composition paths.

SAHARA [10] is a service composition framework that
provides authorization control based on local rules and
credentials from other domains. SAHARA also relies on a
central Authentication, Authorizing, and Accounting (AAA)
server and a requirement for credentials that are not feasible
in our environment.

Bartoletti, et al. [11] model service composition with
security constraints using an extension of λ-calculus. This
approach requires a statically determined abstraction of ser-
vice behavior which may not be feasible in our environment.
In particular, our system should not need to be aware of
what services will be available in an environment, the nodes
that will be providing these services, and the method of
composition until run-time.

QUEST [12] is a service composition infracture designed
to assure QoS constraints. While QUEST does handle mul-
tiple nodes providing each lower-level service, it does not
address multiple different paths that could be used to achieve
a compositions.

490

Jiang, et al. [13] focus on reliable service composition in
mobile ad-hoc networks (MANETs). The work is focused on
minimizing MANET disruptions in the service composition
process. The system is viewed in two tiers, a service layer
and a network layer. A dynamic programming solution and
a heuristic-based solution (to loosen the requirements of the
dynamic programming solution) are presented to provide
both network-level and service-level recoveries.

Prior work lacks the flexibility and adaptability required
for service composition in dynamic systems.

V. CONCLUSION

ReSCo is a lightweight, modular middleware component
for increasing the reliability of service composition in open,
dynamic, pervasive systems. Through stochastic selection
that adapts based on personal and reported experiences,
ReSCo provides reliability to service composition systems
despite the presence of unreliable nodes and attackers.
ReSCo provides secure service compositions for systems
like CoVO whilst remaining flexible enough to operate in an
open and dynamic environment. ReSCo also is lightweight
enough to operate on a wide variety of low-resource devices
such as sensor and PDAs.

This paper presented simulation results that illustrate
the effectiveness of ReSCo. In particular, ReSCo shows
significant improvement in reliability over the naive ap-
proach against attackers (about 700% improvement when
half the system attacks), erroneous entities (about 500%
improvement when nodes make errors 50% of the time), and
in mobile environments (nearly 28% improvement when all
nodes are mobile).

ACKNOWLEDGMENTS

The work presented in this paper was partially sup-
ported under US National Science Foundation Grant ECCS-
0824120.

NOTICE

This manuscript has been authored by UT-Battelle, LLC,
under Contract No. DE-AC05-00OR22725 with the U.S. De-
partment of Energy. The United States Government retains
and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a
non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript,
or allow others to do so, for United States Government
purposes.

REFERENCES

[1] D. Chakraborty, F. Perich, A. Joshi, T. W. Finin, and Y. Yesha,
“A reactive service composition architecture for pervasive
computing environments,” in PWC ’02: Proceedings of the
IFIP TC6/WG6.8 Working Conference on Personal Wireless
Communications. Deventer, The Netherlands, The Nether-
lands: Kluwer, B.V., 2002, pp. 53–62.

[2] X. Gu, K. Nahrstedt, and B. Yu, “Spidernet: An integrated
peer-to-peer service composition framework,” in HPDC ’04:
Proceedings of the 13th IEEE International Symposium on
High Performance Distributed Computing. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 110–119.

[3] J. Robinson, I. Wakeman, and T. Owen, “Scooby: Middleware
for service composition in pervasive computing,” in MPAC
’04: Proceedings of the 2nd workshop on Middleware for
pervasive and ad-hoc computing. New York, NY, USA:
ACM, 2004, pp. 161–166.

[4] S. Kalasapur, M. Kumar, and B. Shirazi, “Dynamic service
composition in pervasive computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 18, no. 7, pp. 907–917,
2007.

[5] L. Xiong and L. Liu, “Building trust in decentralized peer-
to-peer electronic communitties,” in International Conference
on Electronic Commerce Research, 2002.

[6] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The
eigentrust algorithm for reputation management in P2P net-
works,” in WWW, 2003, pp. 640–651.

[7] K. Walsh and E. G. Sirer, “Experience with an object reputa-
tion system for peer-to-peer filesharing,” in NSDI. USENIX,
2006.

[8] B. Lagesse, M. Kumar, and M. Wright, “AREX: An adaptive
system for secure resource access in mobile P2P systems,” in
Eighth International Conference on Peer-to-Peer Computing.
IEEE Computer Society, 2008, pp. 43–52.

[9] J. Buford, R. Kumar, and G. Perkins, “Composition trust
bindings in pervasive computing service composition,” in Pro-
ceedings of the Fourth Annual IEEE International Conference
on Pervasive Computing and Communications Workshops.
IEEE Computer Society, 2006.

[10] B. Raman, S. Agarwal, Y. Chen, M. Caesar, W. Cui, P. Johans-
son, K. Lai, T. Lavian, S. Machiraju, Z. M. Mao, G. Porter,
T. Roscoe, M. Seshadri, J. S. Shih, K. Sklower, L. Subra-
manian, T. Suzuki, S. Zhuang, A. D. Joseph, R. H. Katz,
and I. Stoica, “The SAHARA model for service composition
across multiple providers,” in Pervasive ’02: Proceedings of
the First International Conference on Pervasive Computing.
London, UK: Springer-Verlag, 2002, pp. 1–14.

[11] M. Bartoletti, P. Degano, and G. L. Ferrari, “Enforcing
secure service composition,” in CSFW ’05: Proceedings of
the 18th IEEE workshop on Computer Security Foundations.
Washington, DC, USA: IEEE Computer Society, 2005, pp.
211–223.

[12] X. Gu, K. Nahrstedt, R. N. Chang, and C. Ward, “QoS-
assured service composition in managed service overlay net-
works,” in ICDCS ’03: Proceedings of the 23rd International
Conference on Distributed Computing Systems. Washington,
DC, USA: IEEE Computer Society, 2003, p. 194.

[13] S. Jiang, Y. Xue, and D. Schmidt, “Minimum disruption
service composition and recovery in mobile ad hoc networks,”
in Computer Network Journal, Special Issue on Autonomic
and Self-Organizing Systems, 2008. [Online]. Available:
http://www.truststc.org/pubs/442.html

491

