
A Dual-Model Anomaly Detection Algorithm for
non-linear stream data in Smart City Environments

Anthony J. Bustamante∗, Sarah Asad∗, Daniela Nicklas†, Brent Lagesse∗
∗University of Washington Bothell

Email: absuarez@uw.edu, sasad23@uw.edu, lagesse@uw.edu
†Otto-Friedrich-University Bamberg

Email: daniela.nicklsa@uni-bamberg.de

Abstract—In this paper, we introduce a complementary and
straightforward mechanism for anomaly detection tailored for
smart city infrastructures, utilizing a combination of regression
algorithms. Our methodology employs two distinct regression
models to generate future predictions from a given dataset. The
primary model is crafted to yield high-fidelity predictions, while
the secondary model is purposefully designed to introduce a
degree of noise. Both models work together as a defense against
Flooding attacks through the detection of abnormal levels of
data inflow (detection of outliers). We calculate the alignment
cost, or Euclidean distance, between the predictions from these
two models, establishing a threshold against which real future
traffic can be evaluated. The alignment cost or euclidean distance
of the actual traffic is computed in relation to the high-quality
predictions and then compared with the established threshold
to pinpoint anomalies. Through experimentation with various
regression algorithms, including linear regression, support vector
regression, decision trees, etc., we identified an optimal com-
bination for peak performance. Our assessments, grounded in
comprehensive smart city datasets, center on the process of
transforming complex non-linear data into a more appropriate
form to detect anomalous data points. Conclusively, the dual-
model anomaly detection framework we propose stands out as an
invaluable tool in defending smart city infrastructures from data
irregularities and potential threats, highlighting the criticality of
bespoke solutions in contemporary urban digital environments.

Index Terms—Smart City, Security, Flooding attacks, Denial of
Service Attacks(DoS), Anomaly Detection, Pattern Recognition,
Outlier Detection.

I. INTRODUCTION

The emergence of smart cities—urban environments en-
riched with interconnected devices, sensors, and advanced
information systems promises transformative changes in urban
life and governance [1]. Such ecosystems, however, bring forth
a plethora of data that necessitates rigorous monitoring to
ensure data integrity and security.

Flooding attacks(for instance DoS, DDoS, Replay attacks,
MAC spoofing) in smart city environments exemplify critical
challenges that can severely compromise the entire urban
digital infrastructure [2]. Anomalies, if undetected, can lead to
serious repercussions, affecting the decision-making processes,
operational efficiency, and even public safety [3]. While a va-
riety of techniques have been proposed for anomaly detection,
smart city-specific datasets with their unique characteristics

and high data volume pose significant challenges to these
traditional methods.

To address this pressing matter, we propose a comple-
mentary technique to detect outliers. Past approaches for
anomaly detection, particularly for time-series data, have often
been limited in their adaptability and sensitivity, especially
when applied to intricate and voluminous smart city datasets
[4]. Our dual-model system, by contrast, has been designed
with adaptability and simplicity at its core, ensuring robust
detection capabilities with very high sensitivity and being able
to handle complex non-linear traffic.

II. RELATED WORK

The realm of anomaly detection in time series data, particu-
larly in smart city environments, has seen various approaches.
Prior works in this domain span statistical analysis, machine
learning, deep learning, and time series analysis, each with its
strengths and limitations in handling the complexity of smart
city data [5]–[8].

Goldberg’s work [9] emphasizes the use of volume-based
anomaly detection in network traffic, which aligns with our
approach in addressing large-scale data but lacks the simplicity
and dual-model robustness of our method. The TadGAN
paper [10] introduces generative adversarial networks for
anomaly detection, a sophisticated method, but possibly over-
complex for certain applications, unlike our more straight-
forward regression-based approach. The paper on Dynamic
Time Warping (DTW) [11] shares similarities with our use of
DTW for alignment cost measurement. However, our method
enhances this by integrating a dual regression model, offering
increased sensitivity and adaptability for smart city datasets.

Our methodology distinguishes itself by its simplicity and
robustness, leveraging basic regression algorithms capable of
predicting future data trends effectively. This approach not
only simplifies the anomaly detection process but also ensures
high sensitivity in identifying even minor anomalies. Unlike
existing methods that may require complex feature engineering
or struggle with noise and evolving data patterns, our dual-
model system is adept at handling such challenges, making it
particularly suitable for the dynamic and voluminous datasets
typical of smart city infrastructures.

By comparing the alignment cost or Euclidean distance of
real traffic against high-quality predictions, our method offers

a flexible and adaptable framework for anomaly detection that
can effectively handle diverse datasets and evolving anomalies.
Furthermore, our approach mitigates the sensitivity to noisy
data and outliers typically associated with regression-based
methods, making it a valuable contribution to the field of
anomaly detection.

III. PROBLEM STATEMENT AND SOLUTION

Detecting anomalies in time series data and non-linear
functions, especially those commonly observed in smart cities,
poses significant challenges. The dynamic nature of this data,
intertwined with noise and prevalent non-linear patterns, ex-
acerbates these challenges [12]. Traditional statistical and ma-
chine learning techniques for anomaly detection often struggle
to adapt to evolving patterns, handle noisy data efficiently, or
require complex feature engineering [13]. While regression-
based methods have potential in predictive modeling for such
scenarios, they are notoriously vulnerable to noise and outliers
[14] and measurement techniques like R2, MAE, MSE, etc.
are not adequate to detect anomalies as stated in [15].

That is why in our proposed solution, we combine two
regression algorithms with time series distance measures,
which will more effectively detect anomalies in smart city time
series data than traditional statistical and machine learning
techniques. This effectiveness is hypothesized to be due to
the method’s increased resilience to noise and its capacity to
adapt to evolving data patterns. We generate two distinct pre-
dictions on future data behaviors using two separate regression
algorithms:
• Pbest: It is the prediction that is most similar to the real

data, we derived it from our top-tier regression algorithm,
and this prediction is optimized for accuracy.

• Preference: It is another prediction or dataset that is similar
to the actual data but is not necessarily optimized for high
accuracy, we sourced it from our secondary regression
algorithm, this prediction intentionally has slightly noisier
results. If necessary, we can introduce additional noise to
expand our anomaly detection threshold.

The central tenet of our approach is that the alignment cost
or Euclidean distance (either through Dynamic Time Warping
(DTW) or standard Euclidean measures) between the two
predictions (Pbest and Preference) provides a spectrum within
which we anticipate the future real traffic to align.

The methodology’s core premise is to use the alignment
cost or Euclidean distance between the real traffic data (Treal)
and the optimal prediction (Pbest) as a metric for anomaly
detection. This approach is grounded in the assumption that
normal traffic behavior will fall within a predefined thresh-
old, determined by the disparity between the two predictive
models. When the real traffic deviates significantly from
this threshold, it is identified as an anomaly. This technique
theoretically improves anomaly detection by balancing the pre-
cision of regression models with the robustness of a threshold-
based approach, thereby enhancing adaptability and reducing
vulnerability to noise and outliers. In other words, the crux

of our methodology is the assumption that this computed
alignment cost or distance should fall within the threshold
delineated by the two predictions. If the real traffic deviates
beyond this boundary, it signifies an anomaly.

Our method offers the following advantages:
1) A merger of the predictive capabilities of regression

models with the adaptability of a threshold-centric ap-
proach.

2) A significant reduction in the susceptibility to noise and
outliers, a common issue with regression-based methods.
This is achieved by combining them with time series
distance measure techniques.

3) The inherent flexibility of the method makes it compat-
ible with any regression algorithm(using batch learning
or online learning), thus ensuring its applicability across
diverse datasets and use cases.

IV. METHODOLOGY

A. Regression Algorithms

This study is narrowed to two regression algorithms that
produced the best results for our use case: Decision Tree
Regressor (DTR) and Random Forest Regressor (RFR).
We also tried multiple regression algorithms with different
techniques, including batch learning and online learning. In
our case, DTR and RFR were the models that performed the
best (using batch learning). Our approach is not specifically
limited to these regression algorithms and other regressors
can be plugged in as needed for different applications or
as new regressors are devised. In table III, we dive deeper
into the reasons why we chose DTR and RFR. As stated
in our conclusions we chose these two models because they
offered the best R2, MAE, MSE, and RMSE results for our
case(as a way to standardize our technique), however, the
methodology would work also with any other algorithm that
provides reasonable good predictions.

B. Threshold Calculation

1) Dynamic Time Warping (DTW): DTW is a technique
used for measuring similarity between two temporal sequences
that may vary in time, intensity or speed. It calculates an
alignment cost that represents the best alignment between two
sequences regardless of their non-linear variations in time [16].

2) Euclidean Distance: Euclidean distance is a metric used
to measure the similarity between two vectors [17].

3) Threshold Calculation: In this study, we calculate
thresholds using both the alignment cost (DTW) and the
Euclidean distance. The goal is to establish a threshold that
represents the expected distance between two future predic-
tions: one that is the best possible prediction and another
that serves as a reference point. The reference prediction is
preferably a bit irregular, allowing for more flexibility in the
threshold.

Given two future predictions A and B, the alignment cost
threshold is calculated as:

Tac = DTW(A,B) (1)

and the Euclidean distance threshold is calculated as:

Ted = deuc(A,B) (2)

where DTW(A,B) is the alignment cost between A and B,
and deuc(A,B) is the Euclidean distance between A and B.

C. Anomaly Detection

Taking into account the equations in 1 and 2, we then
analyze the real traffic (Treal) by calculating the alignment
cost or Euclidean distance between the real traffic and the
best prediction (Pbest). If the calculated distance is within the
previously computed threshold, the real traffic is considered
normal; otherwise, it is considered anomalous. Specifically,
the real traffic C is considered normal if:

DTW(A,C) ≤ Tac or deuc(A,C) ≤ Ted (3)

where Tac is the alignment cost threshold, and Ted is the
Euclidean distance threshold.

The threshold calculation approach was implemented as
part of our experiment. Data can be sourced from various
formats or directly collected in real-time. In our experiment,
we analyze data both in real-time (running simulation by
replaying real-world data) and from CSV files.

V. EXPERIMENT SETUP

In this section, we outline the experimental configuration
employed to assess the efficiency of our proposed approach in
identifying anomalies within the data stream from the smart
city. (Figure 1). In the next sub-sections, we illustrate the
deployed topology, data collection process, and the specifics
of our anomaly detection implementation.

A. Deployment Topology

Our experimental setup, we were provided access to a
smart city environment, which consisted of six Wi-Fi probing
sensors that are deployed across the busiest areas of Bamberg,
Germany (see Figure 1) [14]. The purpose of these sensors
is to capture anonymized probe requests from Wi-Fi-enabled
devices, generating real-time data that represents the overall
network traffic in the city.

As shown in Figure 1, the Wi-Fi sensors communicate
with a processing backend server using TCP. The backend
server receives JSON-formatted requests from the sensors and
implements our proposed anomaly detection algorithm. The
processed data, either tagged as normal or anomalous, is then
stored in a database. APIs can subsequently consume the
stored data for additional processing.

B. Data Collection

The Wi-Fi sensors collect probe requests, which are small
data packets sent by Wi-Fi-enabled devices to discover nearby
Wi-Fi networks as seen in Figure 1. These probe requests
contain information such as the device’s MAC address, times-
tamps, and additional details about the street and city, among
other things. In our experimental setup, the sensors capture
these probe requests and anonymize the data to protect indi-
viduals’ privacy. The anonymized data is then encapsulated
in JSON format before being sent to the backend server via
TCP/HTTPS. The JSON data included the following fields:

• eventype: Event defined in our sensors based on their
position and status.

• epocutc: Timestamp about when the event took place.
• zone: Sensor’s location in the city.
• mac address: Hash of the MAC addresses of devices,

hashed using SHA-224.
• RSSI: RSSI value of each device in the vicinity.
• techtype: Technology type used for data collection. For

this study, only WiFi receptors were employed.

At the backend server, the incoming JSON requests are
parsed, and the relevant information is extracted for further
processing. The data is then pre-processed and prepared for
anomaly detection.

C. Anomaly Detection and Defense Mechanisms

Our anomaly detection algorithm is implemented on the
backend server. It analyzes the incoming traffic, represented
by probe request data from the Wi-Fi sensors, to identify any
deviations from expected patterns. The primary focus of our
experiment is to detect flooding attacks(anomaly in the flow
of traffic) that could disrupt the city’s network infrastructure.

If the algorithm detects an anomaly, the server can trigger
predefined protection mechanisms, such as another defense
mechanism, alerting network administrators, blocking suspi-
cious traffic, or adjusting network parameters to mitigate the
impact of the attack. Conversely, if no anomalies are detected,
the traffic is considered legitimate and allowed to proceed to
the database, where APIs can access and consume the data for
various applications.

It is worth nothing that the experimental setup described
in this chapter was tested for flooding attacks in forms of
DoS, Replay attacks and MAC spoofing. Since, the nature of
the paper is identifying anomalies in the traffic sent to our
backend server, we refer to these different attacks as flooding
attacks in the rest of the paper.

VI. EVALUATION AND RESULTS

A. Pre-processing and Feature Engineering

Time series and non-linear datasets inherently contain com-
plexities that demand careful pre-processing. In our study,
dates (time-variable) serve as independent variables, with a
counter value or count as the dependent variable (as shown in

Fig. 1. Smart City Architecture Used For Our Experiments and Demonstration of WiFi Probe Reception by the Sensor

Table I). The fundamental steps of our pre-processing method
are: Date Parsing, Resampling, Handling Missing Values,
Stationarity, and Feature Engineering. Our approach bins the
timestamps on data into 5-minute windows. Additionally, it is
worth noting that we initially used a 5-minute window as it
served as a foundational aspect of our project, primarily due
to the need for consistency across various project components.
Nonetheless, this can be modified according to the user’s
needs. We also tested our approach with different window
gaps, such as 1 minute and 2 minutes, and obtained similar
results.

Besides the fields in Table I, interaction terms were also
introduced in the data to capture inter-feature relationships
and improve model performance (Feature engineering part
indicated in section IV). These interactions were obtained by
multiplying two features together to create a new feature, al-
though some other types of interactions can also be established
to tailor the model to the problem’s needs. A sample of the
data after feature engineering is shown in Table II.

TABLE I
SAMPLE DATA FROM THE DATASETS

Year Month Day Hour Minute Second Counter
2023 1 30 12 33 2 2
2023 1 30 12 33 4 3
. .

2023 7 10 0 0 8 1
2023 7 10 0 0 18 1

B. Model Training

Our model was trained on a 3 million entry dataset.
We used an 80/20% split of training to testing data and
selected the best performing models. For our research, we
utilized scikit-learn library but also tried online-learning
libraries like River. Furthermore, the hyperparameters used

for training our models were set to their default values in
scikit-learn (except number of estimators = 1
and random_state = 0 for RFR). We experimented with
various configurations, but in our specific scenario, they did
not yield a substantial impact.

C. Threshold Generation

Algorithm 1 describes the threshold generation process.

Algorithm 1 Anomaly Detection Using DTW and Euclidean
Distance
Require: Future predictions: A, B, Real traffic data: C
Ensure: Anomaly detection in real traffic data

1: function CALCULATEDTW(X , Y)
2: return Dynamic Time Warping distance between X and Y
3: end function

4: function CALCULATEEUCLIDEAN(X , Y)
5: return Euclidean distance between X and Y
6: end function

7: procedure GENERATETHRESHOLDS(A, B)
8: Tac ← CALCULATEDTW(A,B)
9: Ted ← CALCULATEEUCLIDEAN(A,B)

10: return Tac, Ted
11: end procedure

12: procedure CHECKANOMALY(C, Tac, Ted)
13: Dac ← CALCULATEDTW(A,C)
14: Ded ← CALCULATEEUCLIDEAN(A,C)
15: if Dac ≤ Tac or Ded ≤ Ted then
16: return False ▷ Traffic is normal
17: else
18: return True ▷ Traffic is anomalous
19: end if
20: end procedure

21: (Tac, Ted)← GENERATETHRESHOLDS(A,B)
22: isAnomalous← CHECKANOMALY(C, Tac, Ted)
23: if isAnomalous then
24: Handle anomaly in traffic data
25: else
26: Continue normal operations
27: end if

The thresholds generated from the predictive models were
used to evaluate real traffic data. They provided an effective

TABLE II
SAMPLE DATA AFTER FEATURE ENGINEERING

Table I values(except counter and year) Interactions Counter
month day day hour month hour hour min hour sec min sec

For our final dataset month*day day*hour month*hour hour*min hour*sec min*sec 2
we copied the same values from 1 84 12 550 120 1 3

Table I, except .
the values in counter and year 1 30 72 451 1288 100 5

means of identifying abnormal traffic patterns and alerting for
potential flooding attacks.

D. Problem to solve

Figure 2 illustrates the category of Non-linear Time Series
challenges relevant to Smart Cities. The dataset spans 7
months. Although, for the graph presented in this paper (Figure
2), we are depicting data from just a single week.

Fig. 2. One week example of the dataset.

E. Predictions vs real traffic

In Figure 3 we can see the plots for the real traffic that we
are evaluating with our algorithm, the predictions with our best
model (in red), which is almost identical to the real traffic (in
blue), and lastly the noisy prediction with our second model
that we used as a reference point to create our threshold(in
purple).

In our dual-model approach, the secondary prediction was
derived from what we discerned as the second-best regression
model. To create a meaningful differential for establishing
a threshold, we deliberately introduced a controlled amount
of random noise. It is essential to note that during our
experimental phase, we evaluated both the Euclidean distance
and the alignment cost across a myriad of models, ultimately
selecting those that demonstrated superior performance in the
smart-city domain. Given:
• P1 as the prediction of the primary (best) model.
• P2 as the prediction of the secondary (second-best) model

before noise introduction.
• N as the random noise vector.
• ED as the Euclidean distance.
• AC as the alignment cost.

Note: The noise N introduced in this experiment was
generated by multiplying the results of our second-best model
with a random number ranging from 1 to 3.5, however, people
can use any other type of technique to introduce noise to
expand the threshold.

The prediction with noise for the secondary model can be
represented as:

P ′2 = P2 +N (4)

The Euclidean distance and alignment cost can then be
computed between P1 and P ′2 to determine anomalies:

ED(P1, P
′
2) (5)

AC(P1, P
′
2) (6)

Fig. 3. Comparison for our best model vs reference point model vs real traffic

Moreover, we also measured the performance of our se-
lected models using multiple evaluation metrics including the
R2 score [18], MAE [19], MSE [20], and RMSE [21]. These
metrics offer insights into the accuracy and reliability of
our regression models. The results from our evaluation are
summarized in the table III:

TABLE III
SUMMARY OF REGRESSOR ERROR RESULTS

Evaluation methods DTR RFR (without noise)
R2 -0.809517785 -0.816383466
MAE 3.149929931 3.190064165
MSE 34.34288167 34.4731856
RMSE 5.860279999 5.871387025

Upon examining the values presented in the table, we
observe that the R2 values for DTR marginally surpass those
for RFR, and similar trends appear across MAE, MSE, and
RMSE. The data stream emanating from smart city infrastruc-
tures is characteristically inundated with noise and exhibits
non-linearity. Thus, achieving perfect evaluation scores can
be elusive, especially in complex scenarios, this observation
resonates with findings in the literature, where the intricacies
of dealing with noisy and non-linear data in networking-
monitoring systems lead to less-than-perfect R2 values [15]
Our research emphasizes the significance of adaptive modeling
in smart city environments, focusing not merely on achieving
high scores but on building models that adeptly discern
anomalies amidst the vastness of urban digital data streams.

F. Analysis of Euclidean Distance and Alignment Cost Out-
comes

Figure 4 delineates the derived threshold juxtaposed against
the genuine Euclidean distance and Alignment cost associated
with real-world traffic. This congruence substantiates that our
algorithmic approach is robust and aptly suitable for handling
challenges inherent to time series data as well as nonlinear
complexities (Characteristics of smart city traffic).

Fig. 4. Comparison between Projected Alignment Cost Threshold(black)
and Actual Traffic Alignment Cost(blue) / Projected Euclidean Distance
Threshold(green) and Actual Traffic Euclidean Distance(purple)

G. Benchmarking Proposed Methodology Against Statistical
Techniques

Figure 5 displays the performance of various thresholds
in relation to the true alignment cost. The distinct curves
represent:
• The real alignment cost (dashed blue curve).
• The anomaly detection threshold derived from our pro-

posed technique (solid black curve).
• An alternative threshold determined using the real statis-

tics from the preceding day (green dash-dot curve)- ”We
used the Dataset of the previous day and calculated the
AC against our best prediction”.

• A threshold established by averaging statistical values
from the past week (red curve)- ”We obtained the mean

value of the previous week and then calculated the AC
against our best prediction”.

Note that we did not compare the related work with our
proposed method for not being precisely applicable to our
project.

Our evaluation also extended to setting thresholds based
on statistical analysis. Specifically, we assessed the alignment
cost between our premier model and the values from the
day prior, as well as the cumulative averages from the last
seven days. As Figure 5 elucidates, these statistically derived
thresholds did not resonate optimally with the real-world
alignment costs. This stark contrast accentuates the superior
efficacy of our proposed approach in accurately mirroring the
genuine alignment costs.

τproposed = fregression(data) (7)

τday = fstatistical(dataday−1) (8)

τweek =
1

7

7∑
i=1

fstatistical(dataday−i) (9)

Where:
• τproposed represents the threshold from our proposed

methodology.
• τday denotes the threshold derived from the prior day’s

data.
• τweek symbolizes the threshold computed by calculating

the mean of the last week’s data.

Fig. 5. Comparative Analysis: Proposed Model, Reference Point Model, and
Real Traffic Alignment Cost

As we can see from Figure 5, our proposed method is more
suitable than the other approaches, which is another way to
demonstrate the value of our proposal.

H. Performance Analysis under Flooding Attack

Figure 6 showcases the system’s capability to detect anoma-
lies even under subtle adversarial conditions, such as a sim-
ulated flooding attack (this encompasses DoS, DDoS, Replay
attacks, and MAC spoofing). The alignment cost resulting from

the fabricated ”flooding attack data” significantly exceeds the
threshold defined by our methodology. This contrast reaffirms
the sensitivity and robustness of our anomaly detection mech-
anism.

Fig. 6. Anomaly Detection Performance during a Simulated Flooding Attack

To simulate the attack, fake data was generated by dis-
patching random JSON queries at intervals ranging between
40 to 200 within a 5-minute span. This volume is markedly
higher than the typical peak observed in legitimate traffic
(approximately 50 queries). However, it is worth noting that in
real-world attack scenarios, the volume of such queries could
escalate into thousands. This underlines the superior sensitiv-
ity of our model: if it can accurately identify anomalies
with such low-level surges, detecting larger-scale attacks
becomes exponentially more straightforward.

Mathematically, the surge in traffic can be represented as:

∆Qattack = Qattack −Qnormal (10)

Where: Qattack denotes the number of queries during the
flooding attack and Qnormal signifies the standard query
count in genuine traffic. Given our observed values, we have:
∆Qattack = 150.

The modest value of ∆Qattack and our model’s ability to
spot it elucidates its refined sensitivity. With the ever-evolving
threat landscape, having an anomaly detection system with
such sensitivity becomes paramount for maintaining robust
security postures.

VII. ANOMALY DETECTION USING THE ANOMALY
INDICATOR

An essential aspect of anomaly detection, especially in
complex environments like smart cities, is to have a quantifi-
able measure that can effectively differentiate between typical
and anomalous data. To this end, we introduce an Anomaly
Indicator (AnI) given by the formula:

AnI =
Threshold value

Real value
(11)

The AnI serves as a decisive metric in our analysis. When
AnI is greater than or equal to 1, it suggests that the observed

traffic conforms to the expected patterns and does not exhibit
any anomalies. Conversely, if AnI is less than 1, it indicates
the presence of anomalous behavior in the traffic data.

This straightforward yet effective metric provides a clear
boundary that distinguishes between benign and malign data.
By using AnI, we can swiftly ascertain the nature of the traffic
without delving into the intricacies of underlying patterns or
dependencies.

Fig. 7. Anomaly Indicator vs Date for Benign and Malign Data

From Figure 7, the calculated Anomaly Indicator (AnI)
values further emphasize the accuracy of our model in dif-
ferentiating between benign and malign data. Specifically,
when using the formula 11, the benign data (depicted in blue)
consistently results in AnI values closer to or greater than 1,
indicating the absence of anomalies. In contrast, the malign
data (depicted in coral) produces AnI values substantially
below 1, signifying the presence of anomalies. This clear
distinction not only highlights the efficacy of our anomaly
detection mechanism but also underscores its vital role in
safeguarding smart city infrastructures. The model’s consistent
performance across different data points further solidifies the
robustness of our proposed approach.

Furthermore, during our experiments, we subjected our de-
fense mechanism to a rigorous testing environment (simulation
of our real environment). Over a span of 168 hours(one
week), we dispatched approximately 80,640 probe requests
to evaluate the system’s robustness (We chose to use our
Euclidean distance results). The results, as Table IV shows,
were commendable.

TABLE IV
PERFORMANCE METRICS OF THE DEFENSE MECHANISM

Metric Score

Accuracy 100%
Precision 100%
Recall 100%
F1 Score 100%
True Positive Rate (TP) 100%
False Positive Rate (FP) 0%

While we are optimistic about the reproducibility and con-
sistency of these results in real-world scenarios, we acknowl-

edge the importance of comprehensive testing. As a part of
our ongoing research, we are in the process of evaluating our
defense mechanism against an even broader array of attack
scenarios in our real infrastructure.

VIII. CONCLUSIONS

This study has unveiled a specialized solution to address
the significant challenge of anomaly detection in smart cities,
characterized by copious amounts of dynamic data, intricate
fluctuations, noise, and evolving non-linearities. Our approach,
leveraging the predictive capabilities of regression models
coupled with the flexibility of a threshold-based method, has
shown prime adaptability for complex non-linear volumes of
data. It has been designed to inherently offer resilience against
outliers, a prevalent shortcoming of conventional regression
techniques, by factoring in noise when making predictions
with the secondary model.

Moreover, the methodology adopted in this paper for re-
producing results and comparing different models highlights
a structured yet flexible approach. The choice of reference
algorithms and the comparison metrics used demonstrate that
while a standardized procedure was followed, there is room
for variation that does not compromise the objectives. This
research, though oriented towards smart cities, lays a foun-
dation that could be beneficial in broader contexts of time
series analysis and non-linear dynamics, suggesting a potential
universality of the approach.

IX. FUTURE WORK

The forthcoming steps for this research include conducting
additional experiments and refining our findings with the
new data obtained. The present study serves as a proof of
concept, demonstrating initial results. A key focus for practical
implementation is adopting online or pseudo-online learning
mechanisms. These mechanisms aim to update the model in
real or near-real time as new information is received, moving
towards using libraries like River for continuous learning. Our
initial experiments were designed to re-train the model with
each new batch of data from Wifi sensors. Transitioning from
batch to dynamic learning is intended to improve the model’s
relevance in real-world settings, especially within the fast-
changing landscapes of smart cities.

Beyond the current focus on smart cities, we plan to assess
the methodology’s effectiveness across a variety of datasets
and environments. There is a pressing need to refine our
approach, evaluate its performance on a wider scale, and
broaden its utility beyond urban digital ecosystems. Future
research will investigate the challenges within time series
analysis and non-linear dynamics more thoroughly. Our aim is
to harness the inherent versatility of our methodology, making
it a valuable tool for addressing a broad spectrum of scientific
and practical issues.

ACKNOWLEDGMENT

This work is partially funded by the National Science
Foundation, Grant No. 1853953.

REFERENCES

[1] H. Chourabi, T. Nam, S. Walker, J. R. Gil-Garcia, S. Mellouli, K. Nahon,
T. A. Pardo, and H. J. Scholl, “Understanding smart cities: An integrative
framework,” in 2012 45th Hawaii International Conference on System
Sciences. IEEE, 2012, pp. 2289–2297.

[2] Y. Zhang, N. Meratnia, and P. J. Havinga, “Flooding attack detection
in smart cities,” in 2014 IEEE International Conference on Pervasive
Computing and Communication Workshops (PERCOM WORKSHOPS).
IEEE, 2014, pp. 440–445.

[3] M. S. Hossain and G. Muhammad, “Anomaly detection in smart city
using deep and machine learning models,” IEEE Access, vol. 7, pp.
38 583–38 593, 2019.

[4] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[5] A. A. Cook, G. Mısırlı, and Z. Fan, “Anomaly detection for iot time-
series data: A survey,” IEEE Internet of Things Journal, vol. 7, no. 7,
pp. 6481–6494, 2020.

[6] M. Hoh, A. Schöttl, H. Schaub, and F. Wenninger, “A generative model
for anomaly detection in time series data,” Procedia Computer Science,
vol. 200, pp. 629–637, 2022.

[7] K. Choi, J. Yi, C. Park, and S. Yoon, “Deep learning for anomaly
detection in time-series data: Review, analysis, and guidelines,” IEEE
Access, vol. 9, pp. 120 043–120 065, 2021.

[8] M. Hu, Z. Ji, K. Yan, Y. Guo, X. Feng, J. Gong, X. Zhao, and
L. Dong, “Detecting anomalies in time series data via a meta-feature
based approach,” IEEE Access, vol. 6, pp. 27 760–27 776, 2018.

[9] D. Goldberg and Y. Shan, “Volume-based anomaly detection in network
traffic,” Presented at HotCloud’15, 2015.

[10] A. Geiger, D. Liu, A. Cuesta-Infante, S. Alnegheimish, and K. Veera-
machaneni, “Tadgan: Time series anomaly detection using generative
adversarial networks,” Preprint, 2020.

[11] D. M. Diab, B. AsSadhan, H. Binsalleeh, S. Lambotharan, K. G.
Kyriakopoulos, and I. Ghafir, “Anomaly detection using dynamic time
warping,” in 2019 IEEE International Conference on Computational
Science and Engineering (CSE) and IEEE International Conference on
Embedded and Ubiquitous Computing (EUC). IEEE, 2019, pp. 193–
198.

[12] J. Li, H. Izakian, W. Pedrycz, and I. Jamal, “Clustering-based
anomaly detection in multivariate time series data,” Applied Soft
Computing, vol. 100, p. 106919, 2021. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1568494620308577

[13] F. Stoffel, F. Fischer, and D. A. Keim, “Finding anomalies in
time-series using visual correlation for interactive root cause analysis,”
in Proceedings of the Tenth Workshop on Visualization for Cyber
Security, ser. VizSec ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 65–72. [Online]. Available:
https://doi.org/10.1145/2517957.2517966

[14] T. Rütermann, A. Benabbas, and D. Nicklas, “Know thy quality: Assess-
ment of device detection by wifi signals,” in 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops), 2019, pp. 639–644.

[15] A. Bustamante, N. Ghimire, P. Sanghavi, A. Pokharel, and V. Irekponor,
“Advantages of machine learning in networking-monitoring systems to
size network appliances and identify incongruences in data networks,”
in Trends in Artificial Intelligence and Computer Engineering. ICAETT
2021. Lecture Notes in Networks and Systems, vol. 407. Cham:
Springer, 2022.

[16] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE Transactions on Acoustics, Speech,
and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978.

[17] G. Strang, Linear Algebra and Its Applications, 4th ed. Cengage
Learning, 2005.

[18] N. R. Draper and H. Smith, Applied Regression Analysis, 3rd ed. Wiley,
1998.

[19] R. Hyndman and G. Athanasopoulos, Forecasting: principles and prac-
tice. OTexts, 2018.

[20] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning. Springer, 2013.

[21] C. Willmott and K. Matsuura, “Advantages of the mean absolute error
(mae) over the root mean square error (rmse) in assessing average model
performance,” Climate research, vol. 30, no. 1, pp. 79–82, 2005.

https://www.sciencedirect.com/science/article/pii/S1568494620308577
https://www.sciencedirect.com/science/article/pii/S1568494620308577
https://doi.org/10.1145/2517957.2517966

	Introduction
	Related Work
	Problem Statement and Solution
	Methodology
	Regression Algorithms
	Threshold Calculation
	Dynamic Time Warping (DTW)
	Euclidean Distance
	Threshold Calculation

	Anomaly Detection

	Experiment Setup
	Deployment Topology
	Data Collection
	Anomaly Detection and Defense Mechanisms

	Evaluation and Results
	Pre-processing and Feature Engineering
	Model Training
	Threshold Generation
	Problem to solve
	Predictions vs real traffic
	Analysis of Euclidean Distance and Alignment Cost Outcomes
	Benchmarking Proposed Methodology Against Statistical Techniques
	Performance Analysis under Flooding Attack

	Anomaly Detection Using the Anomaly Indicator
	Conclusions
	Future Work
	References

